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1. Methods of Rogosinski and Bernstein. In this note we shall discuss
certain matrix methods of summation, though otherwise §1 and §2 are unre-
lated. In this section we wish to consider some of the properties of the method

(Bh), where we say that a series 2";‘:0 1, is summable (Bh) when

v

)-—)S, n— .
n+h

n
B,’: = Z u, cos-;- (

v=g
The method (B”) has been the subject of recent papers by Agnew [ 1], Karamata
[5, 6], and Petersen [7]. It has been shown in the papers by Agnew and
Petersen that for 2 > 1/2 the method (B") is equivalent to the arithmetic means
of Cesaro (C), and in the paper by Agnew that for 0 < 2 < 1/2 the method is

equivalent to methods stronger than (C).

We shall now construct examples after a method of Hurwitz {41, to show that
for £ < O the method (B") sums a series not summable (C). Hence, since all
series summable (C) are summable (Bh), we shall have proved that (Bh) is

stronger than (C).

We shall first consider — 1 < & < 0, so that all the coefficients in any row
are positive except the nth coefficient cos {nn/[2(n + A)]1}. We choose ug > 1
and assume that the first m — 1 terms of the series 203:0 u,, are known. Then

we select up, so that

m
I3 w v

or

m+h
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All of the u,, are positive; and since

. ﬂ(2+-h)
sin —
um 2 \m+h 2
> ~—l=4+1
Um-2 - . h - h
— sin —
2\m+h

for -1 < h < 0, the u, do not satisfy u, =o0(n), and hence Z:—.—O uy is not
summable (C); see [3].

If A < -1, we consider

m-1 1 .
B:l=2 cosz( Y ) —cosz(v+ )]Sv+c051( n )Sm
o 2 2 2

m+h m+h m+h

Here again we select positive increasing S, so that Bﬁ: 0 for v<m- 1.
Under the assumption that S, > v, v < m—1, we shall show that S, > m.
Observing that the first m — 1 coefficients of the S, are positive, we have

(setting w/[2(m +h)]=6):

m-1
—cosmf > > lcosvf-cos (v+1)0]v
v=0
m-1
= 2 cosvl—-(m-1)cosmb
v=0
m-1
=R e’ _(m—-1)cosmb6
V=0
1__ezm9
= ————(m=1)cosm0
1—6‘6

i(e-(ié‘)/z _ ei(m-x/z)e)

i
3

—(m=1) cosmé@

2 sin 6/2

therefore,
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1 = m+h 2
s >(—-——h) 2
"=\2 2 _hX”_>_qm,q>1.

Hence the series constructed does not satisfy the condition S, = 0(n), and is
not summable (C).

2. A Norlund method. The method defined by

Sn+1

()
Onp = - +
" n+3/"  n+3
has been used as an example in a recent paper by Agnew [2]. We shall treat
this method in a manner similar to that in which the method

tp = (1=a)Sp.y + a$p,
is treated in [7].

THEOREM. If

1 1
0n=[(1-— )Sn'l— +3Sn+1 — o,

n

then
Sp=C+-(=1)""(n+1)!+oa,,
where o is convergent to o and C is a constant.

Proof. Since (we may assume Sy, =0)

(n+1)Sp-1 + Sn

(n+ 2)0n'l

n Sp.2 + Sp-y

(n+1)op.q

3 0o = 2 S +5

we have
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Sp=n+2)opy — (n+1)2 05 +n2(n+1)op.s

—(n=1)?n(n+1Dopg+++++(-1)"23%2.4.5.6+++(n+1)o,,

or
. -+ 2 +1
Sp= (=1 '+ D (-1 222 (1) 2
(n+1)! n!
v v+3 E
+ (-1) (V+2)!ay+---+2o'o .
Let
v v+3 _ i
D" oo v

3 Ll . 3
since 2- .=, t, is absolutely convergent (¢, — ¢ ), we may write

to+t1+"'+tn-l=c"(tn+tn+1+"')

c 1 [n+3 (n+2)! n+4 (n+3)!
= - t +
(n+1)! ln+2 n+3 " (n+2)(n+3) n+4
c (-1)" [n+3 n+4 ]
=C - on — o +oeee ],
(n+ D! ln+2 " (n+2)(n+3) ntt
Then
Sp = (=1)" (n+ 1) {tg+ty+seetitpy]

n+3 n+4
op = =—————— O
n+2 (n+2)(n+3)

(—1)""-C-(n+1)+[

n+1 +

+3
(=1 Ce (e D122 0,
n+
1 [n+4 n+5
_ o —
n+2ln+3 " (n+3)(n+4)
n+3

(-1 C.(n+1)!+

— o)
n+20n— n+2

Opag + oo

- +]
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= (=)' C.(n+1D)'+0, + 0(1).

rrh- :
1S proves our assertion.

(Obvious extensions can be made to the methods

1 1
0"=[(1—n+k)sn +n+k Snt1 |5

or to iterations of these methods.
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