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1. Introduction. We consider the equation
(1) K(jy)uxx+uyy=0,

where K(y) is a monotone increasing, twice differentiable function of y with
K (0) = 0. The equation is elliptic for ¥ > 0, hyperbolic for y < 0, and y = 0
is a parabolic line. Equations of this type have been of interest recently be-
cause of certain problems arising in transonic flow. The equations for the com-
pressible flow of an ideal fluid when transformed to the hodograph plane lead,

in the transonic case, to an elliptic-hyperbolic equation of the above type.

In this paper the existence and uniqueness of the solution of a certain
boundary value problem are discussed. It will be clear from the methods em-
ployed that estimates can be obtained for the solution in terms of the boundary

values, although these estimates are not stated explicitly.

Equation (1) has real characteristics in the lower half-plane given by the

equations
d 1
(2a) AN —,
dx VvV -K
d 1
(2b) e A
dx V=K

Let y, be the characteristic of (2b) passing through (0, 0), and y, the member
of (2a) passing through (2, 0). Then the segment 0 < x < 2, along with y, and
¥,» will enclose a domain which we denote by D" Let I', given by y = h(x),
be a curve lying in D’ and emanating from the point (2, 0). It will be assumed
that & (x) intersects each characteristic of (1) at most once, and that there
are two positive constants m and M such that 0 < m < £2°(x) < M. We call
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Py (%0, y, ) the point where I intersects y,.

The following problem is treated. Let
Fo(x), (0<x<2), Golx),(x <x<2),

be two given functions possessing continuous derivatives of the fifth order.
A solution u(x, y) of (1) is sought in D’ which satisfies the conditions
ul(x, y)=Fy(x) (0<x<2) and ulx, A{x)]=Gol(x) (%o < x < 2) We
denote by D the domain bounded by y,, I', and the segment 0 < x < 2. Then
clearly all considerations may be confined to D instead of D”. For, once u(x, y)
is determined in D, the Cauchy problem may be solved with the function z and
its first derivatives prescribed along 4 (x) and this will yield u in the remainder
of D", The solution of this problem is well known for the case of purely hyper-
bolic equations [2]. The case where I" coincides with one of the characteristics
has been treated earlier [3], and under those circumstances certain simplifica-

tions take place and some of the hypotheses can be weakened.

2. The step-function case. Suppose K*(y) is a nondecreasing step-function

with m steps:
K*(y) == A2, 5, <y <y, (i=1,2, 000 ,m).
We will take
)\12>0,y0=0, and y, =c <O0.
The boundary value problem proposed in § 1 will first be solved for the equation
(3) K*(y)uxy + uyy = 0.

The characteristic curves of equation (2) are polygonal arcs, and the domain
D’ will be divided into strips in each one of which the solution u(x, y) will
satisfy the wave equation with the appropriate constant )\?.

Thus by a solution of (3) we mean a function u(x, y) which satisfies the

equation
)tiz Ugx — uyy = 0

in the ith strip, and in addition u, u,, and u, are continuous throughout D’ In

the jth strip a solution of (3) will have the form
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filx+X,5) + g,(x=Ay),

and this is valid for y; <y <y, ;. To preserve continuity of u, ux, u, at the

junction of two strips we have

e Ay )+ g =Xy = fi (24 Xy v) + gy (=20 ;)
Al dy ) = gl (e = Ny ) = M e (o A v) = Ny gl (2= A 409).
With a proper adjustment of constants this yields the relations

—A

’\i+x+

1 +1 i
f.+l(x+)\-+ly.)=——l f.(x+)\.y.)+-L-——g.(x-—)\.y.)
l 12 13 2/\l+l 1 171 2/\i+l 13 171
(4)
Ay, = A, A+ A,
it i it1 i
gi+l(x-—)\i+lyi)= T fi(x+)\i)’i)+ ox gi(x—/\iyi).

i+1 i+1
Without loss of generality we may suppose Fy(2) = Go(2)=0. We denote by
yi”') and yg’”) the characteristics of (3) which pass through (0, 0) and (2, 0),
respectively, and which intersect. Then D,, will designate the domain bounded
by ygm), I', and the segment of the x-axis, 0 < x < 2. Let Pém)(x(()m), y(()m)) be
the point where I' and y('") intersect. Since our ultimate purpose is to select

1
a sequence of step-functions K,(y) converging to K(y) it is no restriction to

select K*(y) so that D,, lies entirely in the domain D, consisting of yim),

y:(zm) and 0 < x < 2.

LEMMA. Let Fo(x) (0 < x < 2) and Go(x) (%o < x < 2) be given func-
tions with continuous first derivatives with Fy(2)=Go(2)=0. Then there
exists a unique solution u(x, y) of (3) in Dy, satisfying the conditions

ulx, 0)=Fy(x) (0<x<2) and ulx, h(x)]=Gy(x) (x(()m) <x < 2).
Further, for y, <y < 0, u(x, y) may be represented in the form
u(x, y) = fl(x+/\1y) + g (x—/\ly),

and the functions f , g, satisfy the inequalities
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where M is a constant depending on the slope of h(x) and the maximum of
| Fo(2) ], [Fg(2)], | Golx)], | Golx)].

Proof. The existence and uniqueness will be established simultaneously
by constructing the solution. The solution itself will be obtained in a step-by-
step process, and the method for constructing the first few steps will be shown
in detail. From this it will be clear how to continue until the complete solution
is obtained in a finite number of steps. Let @y, Q2, «++, Q) (k < m) be the
points of intersection of y =hA(x) with the lines y =y, y=vy,, «++, y =7,
respectively. Draw the characteristic Q, R; (see figure). The determination of
the solution of (3) in the trapezoid Ay,4,Q, R, with data given along two
noncharacteristics is a classical problem for the wave equation. However, since
certain estimates are needed for the functions f, and g, this solution will be
obtained explicitly. Let P (x, y) be a point in the trapezoid 44, Q, R, lying
above I'. Then f, (x + A ¥) is constant along the characteristic through P paral-

lel to R, Q,. This characteristic intersects I" at, say, S, and we have

Bs 4,
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FAP) = £,(S,) = G,(S,) - g,(5,).

From S draw the characteristic parallel to 44 4, intersecting the x-axis at T,.

Then

g,(S,) = g,(T)) = F,(T,) = f,(T,),
and consequently

fL(P) =6, (S) - F (T))+ f(T).

Through T, draw the characteristic parallel to R; Q, intersecting I at S,.
Through S, draw the characteristic parallel to 444, intersecting the x-axis

at T,. Continuing in this way we find

fl(P) = Z GO(Sn) - Z Fo(Tn),

n=1 n=i
or
f{(PY = 37 nlGo(Sn) = Go(Sn+1)] = 3= nlFo(T,) ~ Fo(Tpei)].
n=1 n=1

The convergence of these series under the hypotheses of the lemma follows

easily. Let
Ml = max(lFo'(X)l, IG(;(X)'),

and denote the length of the line segment from T, to Tp+q by | Ty = T4y |- Then

an application of the theorem of the mean yields

00

fl <My 2 n|Ty=Toer| + My - nlSp—Speel.

n=1 n=1

To obtain an estimate for f, we first note that the lengths | T, — Tp+;| and
|Sp— Sp+y| form geometric progressions. Let L denote the length of that part
of " between 4y and @;. For simplicity we may replace the arc 4,{; by the
chord and let & be the tangent of the angle this chord makes with the horizontal.
In the actual case k is replaced by a variable for which we have upper and

lower bounds. Construct the perpendiculars from the points S, to the x-axis
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and denote these lengths by b,. It is easily seen that these lengths are given by

Lk
by = —
(1+A1k)n

and hence

2X, Lk

| Tpey = Tn| = ———— .
(1+ A k)

Since a similar estimate holds for the lengths | S, ~ S, +, |, we find

where C is a constant depending only on the slope of A(x). To determine
g,{x—A1y) we proceed in a similar way. From the point P in the trapezoid
Ao A, Qy R, lying above I' we draw the characteristic parallel to 4¢4,, and
denote by ¢, the point where this characteristic meets the x-axis. Through ¢; we
construct the characteristic parallel to R, ¢, intersecting I" at s,. The se-

quences {¢,} and { s, } are constructed as before, and we obtain
8,(P) =g, (¢))=F (e )~f(¢)=F(t)~f(s))=Fye,)-Gy(s,)+g,(2,).
Hence
gl(P) = Z FO(tn) - Z Go(sn)-
n=t n=t

A similar estimate to that made for f, yields

M, CL
Ay

lg, | <

The solution u(x, y) is now completely determined in that part of the trapezoid
Ao A1 Q1 Ry lying above I'. However, from the fact that f, is constant along
the characteristics x + A,y = const., and g, along the characteristics x - A;y =
const., we see that u is completely determined in the remainder of 44, @ R;.
From the compatibility relations (4) this determines the solution in the triangle
(or trapezoid) 4; B; Q;. (See figure.) Construct now the characteristics @, B3,
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R, B, and B, B,. Since g, is a function of x — A, y, the determination of g, in
Ao A, Q, R, defines it also in the triangle R, 0, B, and in particular along the
segment Q, B,. This together with the fact that u is prescribed along the arc
(@, Q, enables us to determine u throughout the triangle Q; B, B4. Let P(x, y)
be a point on the segment Q; B,. From (4) we have

Yo 22 (P)  ag ()
P TN m—— - a ’
fi( Y f, -
where we have set
)\2"-)\1
= =q
Ay + Ay

Through P construct the characteristic parallel to B, B, and intersecting
@, Q, at the point r;. From r; we next draw the characteristic parallel to ¢, B,
and meeting (), B, at the point v;. Continuing this process we obtain the se-
quences {r,} along Q,; Q2 converging to Q, and {v,} along ), B, converging
to ;. Then, by the same argument employed above,

2A
1\2 +

2 2A,
" f(r))=-ag (P)+ Y [Go(r;) - g,(r,)]

fi(P)=-ag (P)+

and

2X,

fl(P)=—agl(P) + : Gol(ry) -—gl(vl)—afl(vl).

2+ A
Continuing, we obtain

22,
Ay + A

5 (=a)™16y(ry)

1 n=

fl(P)=-agl(P)+

4A1A, 00 ( et
- — -a)"lg (v,).
()‘14')\2)2 n=t Suten

This yields not only the complete determination of f, on the segment ¢, B, but

also the estimate
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I A, A,
< ~ ’
f“—,\lmz A

where M, depends only on the given data and I'. Knowledge of the function
f, along Q B, together with relations (4) yields the solution u in the triangle
Q, B, B,. Draw now the characteristic B, R, as shown. Since f is a function
of x+ Ay, we now know f in the parallelogram R @, B,R,. Along R R,
g,=F,—f,, and thus g, and therefore u is determined in this parallelogram.
The transition frem the second to the third step is completely analogous and
may be carried out in the same way. The estimates for f, and g, are easily
obtained by an induction argument that parallels that given in [3] and need
not be repeated. The bounds show that the solution obtained is unique.

We note that u,(x, y) also satisfies equation (3). Therefore we may consider

again the same problem treated in the lemma with the following data:
F(x) (0<x<2 y=0)
and

filx + Xih(x)) + g] (x = Ajh(x)) (xé'") <x <2, along y=h(x)).

To do this we assume that Fy(x), G, (x) possess continuous second deriva-
tives. If the argument employed in the lemma is repeated and the relation

Gy(x) = fl'[x + 0BT L1+ 247(x)] +gi'[x-)\ih(x)] [1-X2%(x)]

is employed then estimates of the form

’ . 3
THATHES o

may be obtained. Here M; depends only on max |K*(y)|, the given data, and
h(x). In the first strip, that is, the strip bounding the x-axis, we have

uy (%, y) = M f{(x+A1y) = Aig (x=Ary).

Hence the estimates for f{ and g show that uy(x, y) is uniformly bounded
with the bound depending only on the given data, the domain, and max | K*(y)|.

3. The limiting process. We now consider a sequence K, (y) of nondecreas-
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ing step-functions, each with a finite number of steps, which converges uni-
formly to K(y). The fact that u(x, 0) and uy(x, 0) are uniformly bounded for
all n enables us to employ the following theorem of Bers [1]:

THEOREM (Bers). Let 7(x) and v(x) be once continuously differentiable
functions defined for 0 < x < 2. Then there exists a unique solution u(x, y)

of equation (1) in D’ satisfying the initial conditions
u(x,0)=7"(x), uy (%, 0) = v(x) (0<x<2).
In D%, u(x, y) satisfies the inequalities

lul < T+ |yIN, luy| <AT"+ BN’,

where

A=A(y)=V-K(y),B=x+|y|A(y), T =max | 7(x)|, N =max |v(x)],

T’=max |7°(x) |, N = max | v"(x)

The theorem of Bers applies equally well to equation (3). Employing this
theorem together with the bounds we obtained for f] and g, we obtain uniform
bounds for the solution u(x, y) in D’ in terms of Fy, Go, and their first two

derivatives.
Denote by u(”)(x, y) the solution of the boundary value problem corres-

ponding to K, (y ). Then

u(m (%, 0) = Fy(x)

for all n, and {u{® (x, 0)} is a uniformly bounded sequence. The assumption
that F;, and G, possess continuous fourth derivatives gives us a uniform bound
on {u;';) (x, 0)}; hence the sequence {u§,") (%, 0)} is equicontinuous, and there
exists a convergent subsequence. Let uy(x, 0) be the limiting value. This
fact together with the estimates obtained above allows us to apply a lemma of
the author [3, p.427] and conclude that a subsequence of { u, (x, y)} converges
to a function u(x, y) which satisfies (1). It is clear that u(x, y) assumes the

proper boundary values as each u,(x, y) does.

To determine the uniqueness of the solution, a method previously exploited
[4] may be used. We assume that u(x, y) is a solution which vanishes on the
x-axis, 0 < x < 2, and on I'. We consider the integral
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2 ff(aux + buy + cuy) (Kugy + uyy)dxdy = 0,
D

where a, b, and ¢ are functions yet to be determined. In this case we may take
a =0 and b and ¢ constant. An application of Green’s theorem yields

2
0=/ c(x, 0)u2(x, 0)dx + fch'uzdx
0 Y o x

_f (cvV~-K -b) (\/—K ui ~- 2uxuy + _1___ uz)dx
2 v=K 7

—/ (e -h’(x)b) (K + --I—)ufc dx.
r L2

An appropriate selection for b and ¢ makes all these integrals have the same

sign, This can only happen if u vanishes identically.

The preceding has proved the following:

THEOREM. Let Fo(x) (0 < x < 2), Go(x) (%o < x < 2) be functions
with continuous fifth derivatives and Fy(2)=Go(2). Let y =h(x) and D be
defined as in $1. Then there exists a unique solution u(x,y) of (1) in D
satisfying the boundary conditions u(x, 0) = Fo(x) (0 < x < 2) and
ulx, h(x)] = Go(x) (%o < x < 2). Further, estimates for u(x, y) may be ob-

tained in terms of the given data.
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