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1. Introduction. The integral equations

(1) ulz;) = A éA(z,z]-)u(z)a’q+(I)(Zj),

where C is a smooth closed curve, and
A(z,Zj) =darg(z -—z]')/dq,

has many important applications. Thus { 6], iteration of (1) gives a solution

for the conformal mapping problem for the interior and exterior of C.

In numerical work, the rate of convergence of such iterations depends on the
eigenvalues of the integral operator 4 (z,z;). It is known that the absolute
values of the nontrivial * eigenvalues of the integral operator 4(z,z;) are less

than one. A recent paper [ 1] gives a sharper bound to the eigenvalues.

However, in numerical computation, equation (1) must be replaced [6] by a

discrete equation of the form

N
(2) u,-+1(z]-)=/\ ZAjkur(z]‘)+(D(Zj).
k=1

This makes it important to know the relation between the eigenvalues of A(z, z})

and those of the matrix 4 .

We determine this relation below in the special case that C is an ellipse.
In particular, we show that the eigenvalues of 4;; approach N/2 times those
of A(z,z;) with exponential convergence. Since trapezoidal integration based

on trigonometric interpolation gives exponential accuracy, this fact is probably

it is easy to verify that for the eigenfunction u(z) = 1, we have the simple eigen-
value unity. By the nontrivial eigenvalues of 4(z, z;), we mean all other eigenvalues.
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true for any analytic curve. However, it seemed most interesting to get quantita-

tive bounds in the special case of ellipses.

2. Circulant matrices. For the ellipse

2 2
x
_+}’_= 1,
a? b2
it is known [ 1] that
b
A(z,z;) = n! : .

(a?+b2) = (a®?-b?) cos (q+‘7j)

It follows that the associated matrix

ab

-1

Aj = = lajkll

(a? + b2) = (a? - b?) cos (qk+qj)

is a circulant matrix, in the usual sense that

(3) @, joh = B,

for all integers k, where subscripts are taken mod N. We first show how to com-
pute the eigenvalues of a circulant matrix in a way which seems somewhat more

simple and perspicuous than that given in the literature [ 7].

Following the notation of [5], let €1+, En denote the unit vectors in
V,(C), and let

-> -
€; — Zai]' €j

denote the linear transformation associated with the matrix Aj;. It is convenient

to introduce the new basis

8:1,---,&’,, defined by al = Zwlkgk,

27,

where - =e'2”/" is a primitive nth root of unity. The matrix

Q = |||
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is closely related to that used in Lagrangian resolvents; it is symmetric, and

-" 3 .
Qs unitary.

. . - - . . .
Relative to the basis Cy,+++, &p, cyclic matrices [2, p.124] are diagon-
alized, while circulant matrices (whose squares are cyclic matrices) reduce
to monomial matrices which are reducible into 2 x 2 components. Specifically,

easy computations show that the basic transposition
-> ->
Ry e — €my (m =0,1,+--,n-1),

corresponding to a circulant matrix with ones on a reversed diagonal: i + j=m
3 = 3 L > 3 -
(mod n), carries ; into @'™ W,.;. Hence, a general circulant matrix 2 ¢, R,

- -2 .
carries (; 1nto
; ->
(2 eme™)0n;i.

Thus, in general a pair of eigenvalues is associated with each subspace
spanned by C(Z and (Xn-, (we have an exception when i =n, and, if n is even,

when i = n/2), On this subspace, 4 is similar to
0 e @™
P 0o /.

Hence, the eigenvalues A;, A,.; are the distinct roots of:

2

. . im \ 2 2
(4) A2=(Zcmw””)(Zcmw”m)=(26m cos 2mm) (Zcm sin 2nim .

n n '

For i =n, and i = n/2 for n even, we have, similarly, the respective eigenvalues:

n-1
= Zcm; Ap/g = Z (~1)" cppy

If the coefficients c,, are real, then it follows from (4) that all the eigenvalues
are real, Furthermore, if we have an evenness-property for cp,’s, that is, cj =

Cn-k» then

2akr

n

- s

2_c; sin
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which implies

2nkr 2uakr
Ap=+ 2c; cos i Apk =~ 2-cy cos .
n n
M ey =—cp-g, then
2mkr
2 c; cos =0,
n
which implies
n-1 -
2akr n-1 2ukr
)\k=+zcr sin — )\n_k=—Zcrsin-———.
r=0 n k=0 n

The eigenvalues in the real or complex case can be conveniently calculated

by the formulas

n-1 ne-1 27Tk]
(5) by = 2 Cj+k ¢j; vj = Z by cos s
]'=0 k=0 n

where A;, A,.; are the distinct roots of

)\2=Vi§ /\o=+\/70; An/2 =+ VVn/2 o

This involves about fifty per cent fewer steps than that usually given.

3. Discrete approximation to eigenvalues. For the circulant matrix A]- ks

associated with the ellipse
X2 42
— + —

a b2=1’

a > b > 0, we have the real coefficients

ab

¢j = (j=0,1,0-e,N=1).
(a?+b6?)~(a?-b?) cos (27j/N)

Since ¢j = cy.j, we have then as the positive eigenvalues:
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N-1 2mkr cos (2wkr/N)
(6) A (N)=+ ; CcOS =ab
¢ r=zo e -20 (a?+b2)=(a?=b2?) cos (2ar/N)

(k=0,1,...,[N/2]).

Now

2w +7 cos kO dO
lim — Ap(N) = ab/ - G(h).
N (a2 +52%)=(a?=b2%) cos 0

N - o

But G (%) is tabulated [ 4, Table 65, no. 31]:

a—b\k
G(k) = 77( ) .
a+b
Hence, from (6), it follows that
N{a - b\~
(1) MV ~ —( ) (h=0, 1, 2,0+, [N/21),
2\a + b

which gives us an asymptotic approximation to the eigenvalues of the matrix

Aj. The eigenvalues of 4 (z,z;) can be shown, by means of [3], to be:

k
a-b
( ) (k=0,1,2,---).

a+b

4. Error estimates. We define £ (m, N), the error, by

0do
(8) /” s T + E(m,N)
0 (a?+b2)-(a?~b%)cos @

2

27 1 cos (2akm/N)
N = (a?+b2)=(a?=b2) cos (2ak/N) )

We shall assume that N > 2m, and that N is even. We have:

f27r cos mA df 1 /‘271 cos mf d6
0 0

(a2+b2)-—(a2—b2)cos€_ a?+ b2 1—)’0050’
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where

a’-b?

a?+b?

<1.

'y=

Since y cos 6 < 1 for all values of §, we can write:

27 66 1 2 -
/ cos m _ f " cos m > y* cos® 0 do
°© (a?+b%)-(a*~-b?) cos 6 a? +b2 Jo k=0
1

~ k [27 &
— >y cos” 0 cos mf d6,
a‘+b* f=¢ 0

since the series converges uniformly and absolutely. Now
ko_ Lok e
cos” 0 = EBO + D By cospb,
p=1
where the Fourier coefficients are given by

k 1 2T k
(9) R = — f cos” @ cos pfdo.
P Jo

Rewriting, we have

/'277 cos mO df
0 (a?+b5%2)-(a%?-b%)cos 6

00 1 k )
2 yk[— Bok fzwcos mdo + B: / " cos m cos p@d@].
0 0

p=t

Using the orthogonality of the cosines in the interval [0,27], we obtain:

2 s mf d6 w it
(10 fﬂ — = > Y B
0 (a?+b%)—(a?-b%)cos @ a*+b? 4o,

We shall now obtain a similar expression for the sum in (8):
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—

o N- cos (2wkm/N)
N = (a?+b%)=(a®~-b2) cos (2ak/N)

2 gk Qakm X . . 2ak
- — > cos o > ¥ cos! —”I— .
N(a2+b2) k=0 N ]'-;0 /\

Since y < 1, the sum is absolutely convergent, and we have

N-1 cos (2akm/N)
im0 (a?+0%)-(a®-b?%)cos (2ak/N)

N(a®+6%) j= k=0 /
Now,
N-1 N-1 ]
2k 27k 2akm (1 . / . 2wk
cos = cosl —= = cos nm{—B{J+Z BF]’ cos np]'
k=0 N k=0 N p=1 N

27 N-1 cos (27km/N)
N = (a?+b2)=(a?~b2%) cos (2ak/N)

27 © (1 ., N-? 2mkm I Nt 2mkm 2nkp
Z)’]{"Békz_%cos ~ +Z B}], cos .

C N(a2+b?) j5 0 2

From [ 8, p.212], we have the result that

Nfork=0, N, 2N,«--, if [ = 0; zero otherwise
N-1 2mkj 2alj | N '
Zcos cos-—N—= 5fqu:l,/\‘—l,N+l,2N—l,---,ifl;é0;zero

j=o

otherwise.

Thus, in the case that m # 0, we have, for example
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i o N-1 2nkm 2napk
Z B{, cos cos —
p=0 k=0 N N
where
[j+ m
r; =
4 N

Thus, we obtain, for m # 0

27

cos (27km/N)

N . .
- S B+ Bl

+B{l‘j-l)N+m + ngN-m } ’

N-1
(12) - 2

N 4= (a2 4+ b2)=(a?-b?) cos (2ak/N)

o

T

a2 + b2 j=m
From our original definition, we have

(13) E(mN)=
a’+b? ]-’-Nz-m

o0

E(O,N) =

a +b j:N

We establish the following:

LEMMA.
0; I—j #0(mod 2)

B =

2 Y B 4 By

‘y]{BI\{-m +...+B{']‘N-m}’m #O

ZVJ{B{V*L"'“LB%N}'

1
l l . - _
;(C(l-])/2 + C(l+])/2)’ l—]=0(mod 2).
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Proof. From (9), we have

P Y L I 1 f(z2+1/2) [zl 4277\ dz
,8.=—/ cos Qcosj0d9=——f —
I 7 do 7 9t 2 zi

where the path of integration is the circumference of the unit circle. This re-
duces to

1 1 ! Zit2p z7i*t2p
l -
B]' 27n Y g [f dz +f e dz].

z

Applying Cauchy’s residue theorem, we have the desired result.

COROLLARY.

1 1
{ {
-z_ﬁ°+]_§"8f=

Proof. This is an immediate consequence of the Lemma. From the Lemma,
we see that £(m,N) is nonnegative, since the terms in the sum in (6) are
nonnegative. Furthermore, by the Corollary, it is clear that

(14) E(m,N) <

In the particular case a = 3, b = 2, this reduces to
a [5\NT"
E(myN) < — (E) ’
which is in good agreement with the numerical results in § 5.

5. Numerical results. For N= 16, a =3, b =2, the following numerical
results were obtained:
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Table 1

Calculated Approximated by (7) of § 3

|

1. o, 8.00000 8.00000
2. Vv;  1.60000 1.60000
3. Vva  0.32000 0.32000
4. Jvs  0.06400 0.06400
5. Vva  0.01279 0.01280
6. Vs  0.00256 0.00256
7. Vvse  0.00051 0.00051
8. Vv,  0.00011 0.00010
9. Vvg  0.00003 0.00002
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