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GENERALIZATIONS OF THE ROGERS-RAMANUJAN IDENTITIES

HENRY L . A L D E R

1. Introduction. The first of the two Rogers-Ramanujan identities [ 1 , Chap.

19] states that

l l
-x* ι ) ( l - * ) μ=o (1 -x) (1 - * )• (1 ~ % )

where the left side is the generating function for the number of partitions into

parts not congruent to 0, ±2 (mod 5). This paper shows that as a generaliza-

tion of (1) the generating function for the number of partitions into parts not

congruent to 0, ±k (mod 2k + 1), where k is any positive integer, can be ex-

pressed as a sum similar to the one appearing in (1); in fact in general the

are replaced by polynomials G, {x), so that we have the following theofem:
2

THEOREM 1. The following identity holds:

( 2 ) Π _

Gk (x)

μ = C

where the left side is the generating function for the number of partitions into

parts not congruent to 0, ±k (mod 2k + 1) . The G, (x) are polynomials in x

and reduce to the monomial x^1 for k = 2, that is, for the Rogers-Ramanujan

case.

While the right side of (1) is the generating function for the number of
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partitions into parts differing by at least 2, no similar interpretation of the

right hand of (2) is possible. In particular, it follows from a theorem of the

author [2] that the right side of (2) cannot be interpreted as the generating

function for the number of partitions of n into parts differing by at least d, each

part being greater than or equal to m, unless d = 2, m = 1, that is, unless we

have the Rogers-Ramanujan identity (1 )•

As a generalization of the second of the Rogers-Ramanujan identities:

(3) π
0

we have again that not only the generating function for the number of partitions

into parts not congruent to 0, ± 1 (mod 5), but in general the one for the number

of partitions into parts not congruent to 0, ± 1 (mod 2 k + 1) can be expressed

as a sum; in fact again the xμ are replaced by the same polynomials G^ {x)

appearing in (2), so that we have the following theorem:

THEOREM 2. The following identity holds:

1

Do ( I ~ χ ( 2 k + ί ) v + 2 ) ( l - . χ ( 2 k + ι ) ^ 3 ) . . . ( l - χ { 2 k + ι ) v + 2 k ' 1 )

= hh ( i - % ) ( i - % 2 ) . u - % μ )

More generally, it can be shown that identities involving the generating

function for the number of partitions into parts not congruent to 0, ± (A; — r)

(mod 2& + 1), where 0 < r <̂  k - 1, can be obtained, of which (2) is the

particular case where r = k - 1, that is, for each modulus 2k + 1 there are k

identities.

2. Proof of Theorem 1: If we replace, in Jacobi's identity,

v=0 α = -oo

y by χ^+ι)/2 a n d χ b y _ χ i
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μ =

so that, dividing both s ides o f ( 6 ) b y ( l — # ) ( 1 - x2) ( 1 - x3 )• , we obtain

oo

π —( 7 )

v =0

To prove Theorem 1, we therefore have to show that the right s ide of ( 7 ) i s the

same as the right side of ( 2 ) .

We use the auxiliary function

( 8 ) CKi{y) = 1 - y V

ϊ

which was first used by Selberg [ 3 ] and is a generalization of the function

used in some proofs of the Rogers-Ramanujan identit ies [ 1 , Chap. 1 9 ] . The

function ( 8 ) converges if | y \ < 1 and if k is real and > - 1/2. In our case k

ana : will be nonnegative integers. For i — k and y = 1, ( 8 ) reduces to

(9) C

k,k
(1) = Σ, {~l)

μ — —oo

Since the C^ -(y) satisfy the equation
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it is easily seen that we can find a functional equation for the C^ ^,(y), which

can be found to be of the form

d o ) ckfk
(^y>ί = Σ Ak,μ(y*

μ=ι

If we let

(11) Qk(γ)= —

(10) reduces to

k

If, for instance, k = 3, (12) becomes

(13) Q3(y) = (l+yx)Q3(yx) + y2 x2 Q3(yx2) ~ y3 x5 Q3(yx3),

while for k = 4 we would have

(14) <?4(y)=(l+y:O<24(y*) + y 2 * 2 ( l + y * + y * 2 ) ( M y * 2 )

In order to solve (12) for (?fc(y) we try a solution of the form

where Bkt0(x) = (?^(0)= 1 by use of (11) and (8) .

Putting (15) into (12) we obtain a difference equation for the Bk9μ(x). It

can easily be verified that the Bk^{x) are of the form

(16) Bk Λx) = ,
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where the Gkfμ(x) are polynomials in x and reduce to the monomial xμ for

k - 2. In general these polynomials do not seem to possess any striking proper-

ties, even for small values of k and μ, as shall be illustrated below for k - 3

and k = 4.

Substituting now (16) into (15), and remembering (11), we obtain

so that we have, in view of ( 9 ) ,

(18) — = —

~~ M 2λ AM '

which completes the proof of the theorem.

In case k = 3, the difference equation for the B3fμ(x), which can easily be

obtained from (13), is the following:

(19) B39μ{x)(l-X^) = B39μ_ι(x)xμ'+B3tμ_2(x)χ2μ-2-B3>μ.3(x)χ3ίl'\

f r o m w h i c h w e c a l c u l a t e , r e m e m b e r i n g t h a t B3yQ{x) = 1 :

G3fi(x)=x,

+x6-xs,

- x ι \

+ x l 5 - x l 8 - x 1 9
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and so on.

It can easily be verified by induction that the degree of the G3 μ(x) is equal

to

5μ2 + μ
if μ = 0 or 1 (mod 3 ) ,

6

and is less than or equal to

5μ2 - μ - 6
— if μ= 2 (mod 3 ) .

6

Similarly, it can be shown that the term with smallest exponent in each

polynomial G3f/ji(x) is x*- ^μ ι)/2-ly s o that each polynomial has this power

of x as a divisor and no higher power.

For k — 4, we obtain the difference equation for the B4 μ(x) from (14):

(20) B4>μ(x)(l-x») = B4>μ.ι(x)xfl+B4)μ.2(x)x2^2

so that we obtain:

G4>0(x)=1»

G4>ι(x)=x,

G4>4(x) = x6 + x1 + xΆ - x9 - x ί 0 - x11 + x13 ,

G4tS(x) = x9 + x10 + x ι ι - x ι 4 - x ι 5 - χ 1 6 + x 2 \

G4y6(x) = x l 2 + x l 4

+ x i 5 + x ι 6 - x l 9 - 2 x 2 ° - x 2 l - x 2 2 + x 2 5 + x 2 6 ,

G4> 7 (x) = x l 7 + * 1 8 + 2x l 9 + x20 + x21 - x23 - 2x24 - 2x25 - 2x26 - x27 + x30

+ x 3 l

+ x 3 2 ,
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and so on.

In this case the term with smallest exponent can be shown to equal

l μ 2J/3J^ w h j } e f0Γ G$f μ{x) we would find the corresponding term to be
[ ( 2 ) / ]

3. Proof of Theorem 2. From the definition of C^^iγ) we find

( 2 1 )

Substituting now, in Jacobi ' s identity ( 5 ) , % ( 2 ^ + 1 > / 2 fQΓ y a n ( j _ Λ .(2A-i)/2

for z, and dividing at the same time both s ides by (1 - x) ( 1 - x2) ( 1 - Λ ; 3 ) ,

we obtain

(22) Π

; r 0
u - * ) ( i - * 2 ) ( i - * μ )

if we recall (11), (15), and (16).

Identities involving the generating function for the number of partitions

into parts not congruent to 0, ±(k — r) (mod 2k + 1), where 0 < r < k — 1, can

be obtained by noting that, using Jacobi's identity with y = x and

z = - Λ

( 2 r + l ) / 2 , we obtain
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where the right side, as can be verified, is expressible in terms of C/ϋf

which was shown already for r = 0 by Theorem 1 and for r = k - 1 by Theorem 2

and shall only be indicated here for r = 1, where we find

(23) C M ( 1 ) - xk'1 (1 - * ) U ~ χ2)Cktk{x2)

Vs (_1)MΛ.((2/c+l)μ2+3μ)/2β

μ = -oo

This method therefore allows us to find for each modulus Ik + 1 exactly k

identities, that is, one for each value of r in 0 < r £ k - 1.
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