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1. Introduction. In 1941, Arne Beurling gave a proof (unpublished) of the

following result:

If ap > 0,6, >0forn=1,2,+++, and

then

(1) D° 2 amby/log (m+n) < K| D ma; > nbrf
m=1 n=1 m=1 n=1

with 0 < K < 4e.

If we set

a(x)=fx e,
1

then the inequality (1) is of the form

(2) Z Z ambp/v(m+n) < K(at) Z a;/a'(m)] [Z b;/a'(n)] ,

m=1 n=1 m=1 n=1

and it is the purpose of this note to generalize this latter inequality. As an

example of the type of result to be obtained, we quote the integral analogue of

(2):

THEOREM 1. Let a(x) be nonnegative, nondecreasing, and locally ab-
solutely continuous on the interval 0 < x < «. If F(x) > 0, G(x) > 0 for
0 <x < w, and
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o for(x)P! o [a’(y)l!

where 1 < p < o and p™' + ¢”' = 1, then
F(x)G(y)
/ f — 2 iy
“a(x+y)

o [F(x)IP VP | o q 1/p
< K@) / [F(x)] i f [G(y)] dy
o [a(x)]P-t o [a’(y)]a!
with 0 < K(a) < p+gq.

If alx+y)> alx) + aly), then K(a) < a/sin (a/p). If &(0) =0
a(x) —w as x — o, and dlx +y) < a(x) + aly), then K(a) >

n/sin (7/p).
The author wishes to acknowledge that any novelty in the subject matter of

this note is due entirely to Professor Beurling who suggested the very general
Theorem 2 below.

2. The main result. This is:

THEOREM 2. Let «(x) be nonnegative, nondecreasing, and continuous
from the right for 0 < x < «. Let f(x) > 0, g(x) > 0 for 0 < x < cc. Let
1<p<owandpl+qgt=1If

f°° [f () Pda(x) < , /” [g(y)19daly) < o,
(4] 0

then

0o foo f(x)g(y)
4 SRR AL
(4) fo ey e

00 ) /
gK(oc)[fo [f(x)lpda(x)]‘/”[fo [g(y)]qdoc(y)]‘q

with 0 < K(&) < p+gq.
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If a(x +y) > alx)+ aly), then
(5) K(a) < #/sin (7/p).

If a(0)=0, td(x)—cc as x — o, &(x) is continuous for 0 < x < w,
and G(x+y) < olx)+ &(y), then

(6) K(«) > a/sin (a/p).

Proof. We have

f(x)g(y)
= d
I= / f c<(x+y do(x)daly)

f‘” ~ [y Lo (x)/a(y)1VPE Lo (y)/a ()1 Plda(x) daly)
o Jo al(x+y)

< pl/p‘/‘)l/q'

by Holder’s Inequality [ 1, p.11], where

o [f(x)]1P Ve
P ff s la)/a) 1 du () daty),

oo foo [g(y)]d ' /p
Q=f/ oI /a1 P da ) daly).

Since ¢ (x) is nondecreasing, we have

a(x+y) > max [a(x), ay)].

Consequently,

o Lo(x)/aly)]1t/a
J=/; Ty do(y) 5_/;

o [a(x)/a(y)]t9

d
max [0 (x), a(y)] a(y)

~lo(x) P fo le(y)1 Y Tda(y) + [o(x) ]2/ f"’ [ ()11 9 doi(y)

X

< pt1=[a(0)/a(x)1P} + gf1=[o(x)/ ()]} < p+g.
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In a similar way, we find that

o 1/p
./; La(y)/a(x)] do(x) < p .

alx +y)

Thus,
1 <PYPQY9 < (p+q) [/N [[(x)JPdo:(x)]l/p[fw [g(y)]qdo\(y)]l/q,
0 0

and this implies (4).

If a(x+y) > a(x)+ aly), then we have

o [ 1/q o [ ( 1/q
j; a(x)/a(y)] a'“(y)sfo La(x) /a(y)] doly)

U(x +y) a(x) + aly)

(00)/alx) o0
gf“ Va1 e g/ V9140 ) Ut = n/sin (a/p),
a(0)/a(x) 0

and this implies (5).

If «(0)=0, u(ec)=cc, t(x) is continuous for 0 < x < w, and & (x+y) <
(%) + & (y), then

1>f /' (x)g(y) de(x)doc(y) = /‘/ F(S)G(t) dsdi -1,

O»(x)+0£(y) T s+t

where we have made the changes of variable a(x) = s, a(y) =t and set

F(s)=f(x), G(t)=g(y). By Hilbert’s Inequality [1, 2261,

1/q

/sl = p l/p[ ~ q ]
I <I /m(ﬂ/p)][/Z) [F(s)) ds] ‘/; [G(¢))9de
_ [/sin (ﬂ/p)][/“’ [f(x)lpda<x>]‘/P[f°° [g(y)]qd(x(y)} e,

0 0

and the constant 7/sin (7/p) is the best possible [ 1, p.226]. This gives (6).

We note that the inequality (4), for «(x) continuous, could be obtained
directly from Theorem 319 of [ 1, p. 229] as follows:
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o foo f(x)gly) F(s)G(t)
[ x =
S/; ./o max[a(x),a(y)]d a(x)daly) / -/ max[s,t] dedt
o0 P l/p[ 00 q ]l/q
k[fo [F(s)] ds] [ tewnea

0 / oo /
k“; [f(x)]Pda(x)]‘p[fo [g(y)]qdo;<y)]‘q

IN

where

=) S-l/qu
S NS

max [ s, 1]
We have made the changes of variable 0 (x) =35, «(y) =t and set

F(s)=f(x) for a(0) <s < &),
=0 otherwise,
G(t) =gly) fora(0) <t < a(w),

=0 otherwise .

3. Corollaries. If we set f(x)=F(x)/a’(x), gly)=G(y)a’(y) in

Theorem 2, we obtain Theorem 1.

As another application of Theorem 2, we deduce:

THEOREM 3. Let the sequence {037 be nonnegative and nondecreasing
for n=1,2, +++,and set Go=0. Let 1 <p < and p"' +¢ ' =1 If a > 0,
by > 0forn=1,2,-++ and

o0

2 aP /(O ~ O W7 <, 2 b9/ (g = U ) <

m=1 n=1
then
o

(7) Z Z ambn/o\m\“n
m=1 n=1

[

s K(C{) Z: af)n/(am - O(M-l)p-l}l/p[ Z bg/(an - Qn-l)q-l}l/q

m=1 n=1
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with 0 < K(&) < p+q.
Proof. Let a(x), 0 <x < «, be the polygonal function with vertices

(ny &p)y n=0,1,00-. Set f(x)=A4, >0, g(x)=B, >0 for n-1<x <n,
n=1,2,.... By Theorem 2,

i i i B /:)l./- do(x)a’a(y)

m=1 n=1 Talxey)

o0 1/p o0 1/q
SK(C()[Z ,}:, UAm = G- 1)] [ZB,?(an_C{n-l)] ’

n=1

with 0 < K (&) < p + q. Since & (x) is nondecreasing, the double sum dominates

(O(m‘ o(m-l)(o{n“‘ an-1)°

3
"
3
1}
<
3
+
R

Setting A (G — Ume1) = @y By (G = Uppey) = by, gives (7).

As a special case of Theorem 3, we take 0o = 0, G, — Up-y = 1/n for
n=1,2, ..., Since, for n=2,3, .-+,

)
n,
2

n
= -1
kézla' <1+logn§(l+10

we find that

© o0 00 1/p, oo 1/q
Z Zambn/log (m+n) SM(Z mp'lar‘:l) (z nq'lbr?) s
n=1

m=1 n=1 m=1

with 0 < M < (p+4q) (1 +1/log 2). For p = 2, this is the inequality (1) with
a slightly smaller bound for the constant.

4. A generalization to several variables. The alternative proof offered for
Theorem 2 suggests that the inequalities of this paper can be stated for N
variables, N > 2.

For example, we have:
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THEOREM 2°. Let a(x) be continuous, nonnegative, and nondecreasing for

0<x<ow.Letp >1,eee,py > landp'11+---+p['vl=l.lffl(x)ZO,---,
fN(x)_>_0for0_<_x < w and

j;“’ [f; (x)1P dot(x) <

fori=1,«««, N, then

foo foc vanfi(xi)dci(xi)
0 0

N
2 < Ky(a) n[ﬁ [f,-<x>]"ido<(x>]‘/”i
[C((Z,'=1xi)]N'l i=1

with

w e TEVPiay
0<KN(0t)gf f :
0 0 {max[xq, eeey xy.y, 113V°E

If a(x+y) > a(x)+ aly), then

N-1 -l/pidx‘
12

0 00 =1 X§
KN(c<)§f / . : = My.
0 0 (1 N-1 V-1

t =1 X5

If a(0)=0, a(x) —>w as x —x and &(x+y) < alx) + «(y), then
Ky(o) > My .

The proof is patterned on that of Theorem 322 of [ 1, p.231].
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