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1. Introduction. ¥ f(z) and F(z) are nonconstant analytic functions,
regular in the unit circle |z| < 1, then f(z) is called subordinate to F(z),

written
(1) f(z)<F(z), |z] <1,

provided there exists a function w (z ), regular in the unit circle, with
w(0)=0, |w(z)]| <1, and f(2z)=Flw(z)].

The concept of subordination has proved useful in studies of the range of values
of analytic functions {2, pp.163-171]. The following interesting result has
recently been established by G.M. Goluzin [1]:

GoLuzIN'S THEOREM. Let

a(r) = area of the region on the Riemann surface onto which the disk
lz| < ris mapped by f(z),

and

A (r) = area of the region on the Riemann surface onto which the disk

lz| < ris mapped by F(z).

Then

(2) al(r) <A(r) for rs—l:';
V2

further, if r < 1/\/2, equality in (2) can be achieved only in the trivial case
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wlz)=7nz.1

It should be remarked that Goluzin’s Theorem is intuitively obvious for the
case where w(z) is schlicht, for then the Riemann surface corresponding to
|z| < r under f(z) is a subset of the corresponding surface for F(z), and (2)
is therefore obtained for any r < 1. If w(z) is not restricted to be schlicht, the

example
f(z) =22 F(z)=2

shows that (2) does not always hold for all r < 1; in fact for this case, as
pointed out by Goluzin,

1
a(r) > A(r) forany r > —,

V2

)

so that the range 0 < r < 1/\/§ is the best possible one for the inequality (2).

while

2. Theorem. In this paper we extend Goluzin’s Theorem to the complete
interval 0 < r < 1; that is, we explicitly find a universal function 7 (r) (which
turns out to be a continuous function of r, made up of arcs of polynomials),
such that, for any f (z), F(z) satisfying (1),

(3)

< T(r) (0<r<1),

where we denote lim,_, ¢ a(r)/A(r) by a(0)/4(0), and where the inequality
(3) is the best possible one, in the sense that for any r (0 < r < 1) it is pos-
sible to find a pair of functions f (z), F(z), satisfying (1), such that (3) is an
equality for that particular r. (Of course, it follows from Goluzin’s Theorem
that T(r) =1 for 0 < r? < 1/2.) We supplement our result by making a complete
enumeration of the function pairs [f(z), F(z)] for which equality in (3) can
be achieved. The final result is as follows.

THEOREM. The function T (r) is given by the formula

In this paper m always denotes an arbitrary complex constant of unit absolute
value,
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(4) T(r) = mr2™-2

in the range

3
!
s

3

<

(m=1,2,"‘ ).

Equality in (3) for a given r is possible under, and only under, the following
circumstances:

(i) r?2<1/2and w(z) =7z (as remarked above);
(ii) r?=1/2, and either
wlz) =nz
or
F(z)=Co + Ciz, f(2)=Co+Cyinz?;
i) 2ol O (m>2),
m m+1
(5) 3 and
F(z)=Cy+ Cyz, f(2)=Cy+Cinz™;
(iv) r?=— (m>2),
m+ 1
and either
F(z)=Co+ Ciz, f(2)=0Co+ Cinz"
or
{ F(z)=Cy+ Ciz, f(2)=0Co+ Cinz™*1,

It is very easy to check that for the cases listed above one actually obtains

equality in (3), so that if (3) can be shown to be generally true it follows that
it is the best possible inequality.

Since f(z)=0and |f(z)| < 1 imply that f (z) <z, we can, as an applica-
tion of the theorem, immediately state the following:
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COROLLARY. Iff(z)=0and |f(2z)| <1 forlz| <1, then

a(r) < amr?™

in the range

m-1 ) m
<rt<
m m+1

(m=1,2,+¢+).
This is the best possible inequality. [ The cases of equality can be obtained by
putting C, = 0, C; =1 in (5)].

3. Lemmas. Before proceeding with the proof proper of the theorem we shall

state some known results, and derive some others.

The following notation will be adopted as standard:
f(z)=co+crz+cozldeee, F(2)=Co+Ciz+Coz+.e-,
m(z)=Blz+B2z2 Foeee
Thus
cg=Cq.
Furthermore, as an easy computation shows,
a(r)=mn i kleg|?r®, A =n }3 k| Cy|2r2k,
k=1 k=1
LEmMa 1(2]. fw(z) # 5z, then | ey | < |Cy |, |B1] < L.
This is an immediate consequence of the Lemma of Schwarz.
Lemma 2[2) |B2] < 1-|B1]%.
This is proved by applying the Lemma of Schwarz to the function

w(z)/z - B,
1~Blw(z)/z )

zl=r zl=r

Lemma 3(2], max |f(z)] < Imax | F(z)] (r<1).
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Also a consequence of Schwarz’s Lemma.

L.EMMA 4.
(6) 2o e 12r2k < 37 G 22k (r<1).
k=1 k=1

This is a special case of a more general inequality for mean values of
arbitrary nonnegative order on the circle | z| =r. The proof by Littlewood [2]

uses subharmonic functions. A different proof has been given by Goluzin [1].

Lemma 5. If

Sp = Z lck\2’5n= Z ‘Cklz’
k=1 k=1

then
(7) sp < S,,

with equality for a particular n implying that
(8) Cn+1=,37+1cn+1-

The inequality (7) is a known result [1], but we shall repeat the proof to
show how (8) follows.

Proof. Let
n n o0
sp(z) = 2 ckzk,Sn(z)= > Ckzk, Rolz) = > Ckzk.
k=1 k=1 k=n+1
Then

Co+snlz)+ D ckzk=f(z)=F(w(z))=Sn((u(z))+Rn(w(z))+Co

n+t

=Co+Splw(z))+ Z c,ﬁ")zk,

n+1
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where
+
C,E'i)l = Cn+1B,11 la
and so on. We have
Sn(a)(z))=sn(z)+ Z d]in)zk’
ntl

where

so that, for example,

n+1
n+1 = Snt1 Cn+1ﬁl

Now, by the fundamental definition of subordination,
Salw(z)]1<8,(2).
Therefore, using (6) in the equation above, we have
n oo n
Z lck|2’2k+ z: ldl(cn)|2r2k < Z le l2r2k.
1 n+i1 1
Thus (7) follows, and equality certainly implies

4 _

n+1 = Cn+1

- Cn+1‘8?+1 = 0’

as was to be shown.

LEvmma 6 [11. If{A,} are such that

(9) A > 0, )\kz)\k*'l (k=1,2,...),

then

(10) D Melerl? < 20 M| Cil?
k=1 k=1
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Proof Ly partial summation, using Lemma 5.

LEMMA 6.1. Under the hypothesis (9), and with s, and S, defined by (7),
equality in (10) implies

(11) (Mg = Ap+y) e (Sp—sp)=0 (E=1,2,.4).

Proof. Let
n n
=2 M ler|® Ro= 27 A [ Crl? s0=50=0.
k=1 k=1

The hypothesis is

lim (R, ~r,)=0.

n— oo

Thus

<
It

lim z )\k(sk"sk-l)"Z)\k(sk—sk-l)]

n—ooo 4 k=1 k=1

[ n n-1 n n-1
lim >0 Sk - D0 Me+1Sk = D0 Mesk+ D Ak+iSk

n— o0 =1 k=0 k=1 k=0

=

[ n-1 n-1
lim Z (Mg = M+ ) Sp + Ap Sy = Z ()\k—)\k+1)sk—)\nsn]
| k=1 k=1

n-—ox

It

n-1
lim Z (Ak—-)\kﬂ)(Sk—sk)+)xn(5n—sn)}.
k=1

n-—o0

Since the terms in the square brackets are all nonnegative, (11) follows.
Lemma 7. If
(i) f(z)=co+ciz+cp2? <F(z)=co+ Cyz+ Cyz?,
(ii) Jer] <|Cy,

(i) Jer |2+ e l2=1C ]2+ Ca )2,
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then

(12) f(z)=co+ Cyinz?, F(z)=co+ Cyz.?

Proof. As indicated by (ii), we have |C,| > 0, so we can normalize as

follows:
(13) f(2)=ciz+cyz?, F(z)=2z4+Cyz?.
Let

p=leil, g=leal, Q=]C2f.

We have, according to (ii) and (iii),

(14) p<l,

(15) p?+q?=1+0Q%

Now
|nllax lerz + e =ler| +]eal=p+g,
zl =1

as is obvious if c¢; =0, and follows by taking z = e-i argles/ey) if ¢; # 0.

Similarly,

max |z+ Cpz?|=1+0Q.
z| =1

Applying Lemma 3, we get
(16) p+qg <1+0Q.

The shaded triangle OL; L, in the facing figure corresponds to the inequality
(16). The quarter-circle P; P, P; corresponds to the equality (15); P; lies below
Ly, and Pj to the left of L,, because

V1+Q? <14 Q forany Q > 0.

The circle and the hypotenuse of the triangle intersect in two points with co-

ordinates (Q,1) and (1,Q), respectively (merging into a single point if Q = 1).

2 A more general result is stated, but not proved, in a footnote on page 56 of
Rogosinski’s paper [3].
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When @ > 1, the point L; in the figure has the coordinates (1,Q), and L4 has
coordinates (Q,1). When Q < 1, then L3 = (Q,1), L, =(1,Q). In either case,
(14) dictates that eligible points (p, ) lie to the left of L,, and therefore on
the arc P, L3. Therefore, since the ordinate of L; is never less than 1, it is
always true that

(17) g>1.
We proceed by considering two cases:

(I) Q=0,
(Im Q> o,

and show that (II) leads to a contradiction. Thus, assume Q > 0. We have

c1z+czt=w+ Chw?, C, £0,

Therefore

—-1+\/1+4C2(clz +cyz2)
2C,

(18) w(z)=

where, since w(z) is regular in | z| < 1, we must have

(19) 1+4C,(ciz +c322) # 0 (Jz] < 1),
Ly
L
P, >
PZ
f
L4

o
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and we must take that branch of w (z) which equals zero for z = 0. Let z,, z, be

the roots of (19). Since (19) is to have no roots for | z| < 1, we have
[zll _>_]-1 |Z2l 2_1,

and therefore, by (19),

1< | 1 1
<iz12 = = —
= de, Gy 4q0Q
or, in view of (17),

(20) Q <1/4.

The next step consists in applying Lemma 2. By (18),
, 1 ’r 2
Bl=(o(0)=cl,32=§w (0)=c2—-01C2.

Thus, by Lemma 2,

c, —-chzl _<_1—|01|2,

and so
lczl—lcfc2l Sl—lcllz;

that is,

g+p2(1-0Q)<1.
But ¢ > 1 by (17),and 1 — Q > 0 by (20). Therefore
g=1 and p=0.

Equation (15) now implies Q = 0, showing the impossibility of (IT).

Since (1) is the only alternative to (II), we may conclude that
(22) Q=l62l=0.
Then (14), (15), (17), (22) jointly imply

g=1 and p=0.



AN INEQUALITY FOR SUBORDINATE ANALYTIC FUNCTIONS 269
Therefore, by (13),

wl(z)=nz?,
and (12) now follows.

[.EMMA 8. Let m be a fixed positive integer, t a fixed positive real number,

and k a positive integer. The following relations hold:

m-—1 m
<t <

(i) for any k, if , then me™ > ke®s

m+ 1

(ii) ifk <mt> , then {ktk}k is an increasing sequence;

m

-1
(i) ifk <mt> =

, then { kt* §), is a strictly increasing sequence;
m

(iv) ifk<m-1,t> , then { kt* §j, is a strictly increasing sequence;

m

(v) ifk>mt<

, then {ktk}k is a decreasing sequence;
m+1

(Vi) ifk>mt<

T then { kt* §;, is a strictly decreasing sequence;
m +

(vil) ifk>m+1,¢t < , then { kt* §, is a strictly decreasing sequence.

m+1

4. Proof of the theorem. For any positive integer m,

a(r) >
(23) = Z klcklerk
4 k=1
m-1 0 m=1 m-1
= {mr?" > (ck(2+ > klck(2r2k ~ | mr2m > lcklz— > klcklzrzk ,
k=1 k=m k=1 k=1

o, .
where qu is to be understood to have the value zero; (23) can be rewritten as

a(r)

4

00 m=1
(24) = S MM e 12 o S mem - k) | ¢, |21,
k=1 k=1

where
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r2moif 1<k <m-1,

(25) Am)
B2k itk >m.
Similarly,
A(r) hod m-1
(26) =k§;x§€m>xck|2_}:z[(mrm_kr”)‘ckt?].

Henceforth let r be positive, and restricted to the interval

m-1 m

We see by (25) and Lemma 8(v) that

(m) (m) (m) (m) (m)
Al’” =/\2’” =---=)\m’” > A S AN s 00> 0

m+1 m+2

if

while, by Lemma 8(vii),

)\(lm) _ A(Zm) o= Am) S am) S am) oS g

mt1 mt2 m+3
if
r? = i
m+ 1
By Lemmas 6 and 6.1, therefore,
(2) RVRIPAEIID SR TR (m
k=1 k=1
with equality possible only if
m-—1 2 m
(28) S, =s forall k > m, providing <r* < ,

m m+ 1

1,2,
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or

S, =s, forall k> m+1, providing r? = - .
m+1
Subtracting (26) from (24) gives, by (27),
-A@G) m-1 ]
(30) Lr—g > [ (mr2™ — kr2%) ICkl2]— > [(nzr2m~kr2/‘)lck|2],
" k=1 k=1

with equality possible only if conditions (28) and (29) are met. By Lemma (8)

(ii), (iii), and (iv), the last sum of (30) is nonnegative, and can vanish only if

m-1 m
(31) ¢, =0, k=1,2,.-+, m—1, providing <r?< ,
m m+1
or
) m-1
(32) ¢, =0, k=1,2,--,m=-2, if r*=
m
We conclude that
(ry-A(r) 7!
(33) oy < Z [ (mr2™ = fr2k) ]CkP]
m k=1
m=1 m-1
= (mr2™2_1) Z k|Ck|2r2k-mr2m'2 Z [(krzk—rz)]Cklz].
k=1 k-1

By Lemma (8)(iv), the last sum of (33) is nonnegative, and can vanish only if

(34) C2=C3=--~= Cm_l=0.
Therefore

—A m=1
(35) ————a(r) ) <

m

(mr2m=2 1) Z k‘Ck\Zer
k=1

> A
< (mr2m2 - 1) Zk\ck\Zrzkz(erm-z_l) (r) i

k=1 "
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where the first inequality sign may reduce to an equality sign only if (28),
(29), (31), (32), and (34) hold, while the second inequality may become an
equality only if either m=1, orr?=1/2, or

?

1
C =C =o-a=0 r2>—.
2

From (35) we immediately obtain the desired relation (4). Only the need for
examining the possibility of equality in (35) remains.

Collecting the available information for this case, we are led to (5)(iii)
when

When

on the other hand, we obtain
fz)=C,+ cmzm+cm+lzmﬂ, F(z)=C, +C,z,
with

(36) 1€ 12=1e, 12+ 1c

2
m+1\ ¢

Since f(z) < F(z), we also have
ez e

Therefore, using Lemma 3, we get

(37) Icml+\c | <1C, 1.

m+i

Squaring (37), and subtracting (36), yields the conclusion that either ¢, =0

orc, ,, =0, and therefore (5) (iv) follows.

2

Forr* < 1/2 we know that
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(38) Z lck12= > ICkl2 for n > 2.
k=1 k=1

For r* < 1/2, from Lemma 6.1 it is found to be necessary that w(z) =7z, as

was already shown by Goluzin.

The only remaining case is r*=1/2. Again w(z) =7z gives equality in
(3). We leave this trivial possibility aside by restricting our attention (see
Lemma 1) to

(39) le, | <1C,1, 18,1 < 1.
Applying Lemma 5 to (38) yields
(40) ¢, =pBrC, (k=3,4,---),

or, by (38) and (40),

lep =18, 1%1C, 1=1C, ] (k > 3).
Therefore, in view of (39),
¢, =C, =0 (k> 3).
This shows that f (z) and F (z) are respectively of the forms

(41) f(z)=c0+clz+czzr2 and F(z)=CO+Clz+C2z2.
Equations (38) and (41) contain the hypotheses of Lemma 7, and the result

(5)(ii) of the theorem therefore follows.

In conclusion, it may be remarked that due to Lemma (8)(i), the function

T (r) may be written in the compact form

T(r) = max (kr?k?) (0<r<1).
k=1,2,000

As an immediate consequence, we have the much weaker result that

T(r) < Z kr2k-2 ——1— (r>0).

k=1 (1—r2)2
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