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J. C. SHEPHERDSON

We prove 1 :

THEOREM 1. There exists a denumerable ramified partially ordered set with

the property that there is no chain meeting all maximal anti-chains and no anti-

chain meeting all maximal chains,

(Here a chain {anti-chain) is a set of elements every pair of which are com-

parable (incomparable). A ramified partially ordered set S is one in which for

each x in S the set of elements <̂  x forms a chain.)

Proof. We denote by F the set of all finite sequences (al9 (X2, •••»&&) of

integers. We use Greek letters (X, β to denote elements of F, we denote by Z (OC)

the length of (X (that is, the number of terms in the sequence Cί) and by (X;

(for i = 1, , I ( α ) ) the ίth term in the sequence (X i9 k are used throughout

as variables for positive integers. If n is an integer we denote by (Cί, n) the

sequence (Cί l9 ••• , CX/(α), n) obtained by adding the term n to the sequence CX.

We define CX <_ β to hold when conditions

A: Ha) < H β ) ,

B: &i = βi for ΐ = 1, . - . , Z ( θ O - 1,

and

C : « K α ) < - β /(α) '

are all satisf ied. It is easi ly seen that this relation '<_' is a ramified partial

ordering of F

Now let La denote the chain of elements £ C\9 let Ca denote the se t of

1 This answers two questions posed by Kurepa (Pacific J. Math. 2 (1952), 323-326).
Answers to these questions were found independently by W. Gustin; see the reviews in
Math. Rev. 14 (March, 1953), p. 255 by W. Gustin, and in Zentralblatt fϋr Math., m (1953),
p. 52, by J. C. Shepherdson.

Received March 25, 1953, and in revised form on May 25, 1953.
Pacific J. Math., 4 (1954), 301-304

301



302 J. C. SHEPHERDSON

elements of the form (C(, u), where u runs through all integer values, and let

L(Ca) denote the set of elements less than all elements of C α . Then we can

easily prove

( i ) C α is a chain,

( i i ) the elements of F which are comparable with all elements of Ca belong to

CaυL(Ca),

(iiί) L(Ca) = La,

and hence

( i v ) Ca u La is a maximal chain.

We now prove by reductio ad absurdum that no anti-chain meets all maximal

chains. Suppose the anti-chain A meets all maximal chains . Clearly it has just

one point in common with each maximal chain. It is easi ly seen that the set

TQ of all elements (u) of length one is a maximal chain. Hence there exists a

unique integer ai such that ( α t ) G A. Take nx = ax - 1. Then the chain C\ of

elements < ( n t ) consis ts of all the elements (u) with u < ai9 and is therefore

a subchain of To not meeting A, We now define for each positive integer k by

induction on k an integer n^ such that the chain C& of elements <_ (n\ , , n^)

does not meet A. We have just disposed of the case k = 1. Suppose then that

k > 1 and that τiι , •••, ftA -i a r e already defined so that the chain C/c-i of

elements < {τiι , •••, nk-i) does not meet A. By ( i v ) the set T^.i2 of all

elements of the form (ni, •••, ft/c-i, u) together with Cj^.i forms a maximal

chain. By hypothesis this meets A and Cj^.γ does not; hence there exis t s a

unique integer a^ such that (ni, ••, ra&-i, α& ) £ /4. Take n^- a^- 1. Clearly

C/,. does not meet A. This completes the definition by induction of a sequence
n\9

 n2i ••• °f integers such that for all positive integers k the chain C^ of

elements <̂  ( ^ t , , n^ ) does not meet /4. Now

s o Cfϋ ζz. ̂ A + i Hence the set

= Σ

With the previous notation Tfc-i = £(rc t , , 7ifc.t )» Qc-1 = L (n^ . . . ? njcm t ).
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is a chain. Now let Cί be an element of F comparable with all elements of C.

Then

α i> {nu n29 ••• , «/(α) + 1 ) ,

so

that is, α G Cwα\ + 1 , so Cί G C. Hence C is a maximal chain. But C cannot

meet A s ince none of CΪ9 C 2 , ••• meet A. Thus we have obtained a contra-

diction from the assumption that there exists an anti-chain meeting all maximal

chains .

We now prove by reductio ad absurdum that no chain meets all maximal anti-

chains. Suppose C is a chain meeting all maximal anti-chains. We note first

that the lengths of the elements of C are unbounded. To prove this i t is clearly

enough to show that for each positive integer k there are maximal anti-chains

all of whose elements are of length greater than k It is easi ly seen that a se t

Ajς with this property may be defined as follows: Denote by S^ the se t of all

elements of F of length k9 and by N the set of elements (α i , , V>n) of F all

of whose terms α 1 ? . . . , α Λ are < 0. L e t A^ be the s e t of all elements of the

form ((X, 0) for Cί £ S^ together with all elements of the form ((X, β9 0 ) for

α e Sk, β e N. (Here (α, β, 0) s tands for ( α l 9 ••-, Cί/(α), βl9 ••., βi(β), 0) . )

We note secondly that it follows easily from the definition of ' < ' that s ince

C is a chain, all elements of C of length > i have the same ith term.

In view of these two observations, it follows that we may define a unique

sequence rcl3 ra2? ^3 ? * * ' °f integers by putting n( equal to the common ith term

of the elements of C of length greater than i. Now let A be the se t consist ing

of all sequences (X such that Oίj <_nι for 1 <_ i < l{d) and Cί/(α) = rc/(α) + l

This set A is easi ly seen to be a maximal anti-chain, so by hypothesis there

exists an element (X belonging to C and A. Let j8 be any element of C of greater

length than (X. Since (X, β G C they are comparable, so, s ince l(β) > ί(Ci),

we must have (X < j8. From the definition of n\9 n2, •••? we have Ctj = nι for

i < I (α) and, s ince α < β,

°Ί(a) 1 -β/(α) = nί(a)

( s i n c e l(β) > I (a)). H e n c e
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α < ( „ ! , n 2 , •-, n U a ) m l ,

but both these are elements of the anti-chain A and so are incomparable. So our

hypothesis that there exists a chain meeting all maximal anti-chains leads to a

contradiction; this completes the proof of Theorem 1.

By using the same sort of argument as Kurepa one can use the example of

Theorem 1 to show, by means of the axiom of choice:

THEOREM 2. A sufficient condition for a nonvoid set S to be finite is that

in every ramified partial ordering of S there exists a chain meeting all maximal

anti-chains (or9 *••• there exists an anti-chain meeting all maximal chains')*

By Kurepa's result both these conditions are also necessary conditions for

S to be finite.
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