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1. Introduction. An F-metric space arises by associating with each pair
x, ¥ of elements (‘“‘points’’) of an abstract set S an element xy? (the *“squared-
distance’”) of a field F. It is required of the association merely that xy? = yx?,
xx2 =0, and if x £ y then xz? #£ yz? for at least one point z of S. In this note we
establish some fundamental distance-geometric properties of the two F-metric

spaces Iy, F, (ay,++- ,a,) obtained by attaching to each two elements
x = (xln Xogyeees Xp), y = (yls Yps *o*s yn)
of the set of ordered n-tuples of F the elements

n

n
xy? = Z (xi——yi)2 and xy?= z ai(xi—yi)2

=1 =1
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(Ergebnisse eines mathematischen Kolloquiums (Wien), Heft 3 (1933), pp.32-42). It
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as squared-distances respectively, where, in the second instance, the coef-
ficients a; ay, -++, a, belong to F. (Translators note: In the manuscript
““distance’’ rather than ‘‘squared-distance’” is used; for example, 2_}=; (xi—yi)2
is spoken of as the distance of the points x=(xy, %2, ¢, %), y=(y,
¥, +**» ¥,). In order that the developments of the paper should more exactly
generalize the euclidean case (in which F is the real field) it seemed desir-
able to call 2 7=, (x, -y, )? the squared-distance of x, y and to make the neces-
sary minor changes in the manuscript. There is, of course, no implication that
““/distance’” is meaningful. The reader is asked to interpret all such terms as
“‘congruent’’, ‘““congruence order’’, ‘‘metric basis’’, etc. in the sense of squared-
distance. For definitions of these and other Distance Geometry concepts used
in this paper see L.M. Blumenthal, Theory and Applications of Distance Ge-
ometry, The Clarendon Press, Oxford 1953.) It is assumed throughout that F has
characteristic 0, while in § 3 it is further supposed that (1) each sum of squares

of elements of F is a square of an element of F and (2) F does not contain

V-1.

2. Congruence order of F,. It is shown in this section that F, has con-
gruence order n + 3 with respect to the class of F-metric spaces; that is, any
F-metric space can be mapped into F, with preservation of squared-distances
whenever that is true for each (n + 3 )-tuple of the space. We prove first some

lemmas.

LeEmMA 2.1. Each (k+ 1)tuple py, p,s+++>p, of Fp (k=1,2,.-c,n)
for which the Cayley-Menger determinant

01 1 |

10 p0p12 ° ¢ popk2

1 plpg 0 . . plpkz
D(po’ py s ’pk) =

1 Pkpg Pkpf - - 0

is not zero forms a metric basis for the k-dimensional subspace they determine.

Proof. Putting p, =(0, 0, +++, 0), we note that each point p of the sub-

space can be written

p=)\1p1+)\2p2+---+)\kpk.

Then a necessary condition that such a point p have assigned squared-distances
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from py, ps +++5 py is that Ay, Ap, «+«, Ay satisfy the system of linear equa-
tions

(py p;)=(1/2) (P0P2 + Popi2 - ppiz)

=X (s P )+ A, (py s p ) 4 oo 4, (pyy ;)

(i=1,2,+++, k), where (.,.) denotes a scalar product. The coefficient
determinant | (p;, s )| (i,j=1,2,+++, k) is the Gram determinant G (v,

Vys ey vg ) of the vectors v; = [po’ Pi] (i=1,2,+++, k), and from the relation
G(’Ul, Vgy ooy vk)=[(__1)k+l/2k]. D(po’ pl’.”’ pk)

it does not vanish. Hence A, Ay, «++, Aj are uniquely determined.

LEMMA 2.2, Let k be any one of the first n integers, and let py, p s+ p,
be a (k+ 1)-tuple of F, with D(po’,px’ ceespp )£ 0 If plypls e pf is a
(k + 1)-tuple of F, with p, p]? = p; p].'2 (i, j=0,1, «¢e, k) (symbolized by
Writing Poy Pys ***s Py =5 Pgs Pis ***s Py ) then a nonsingular linear trans-
formation that maps p; on p/(i=0,1, .+, %) also maps the k-dimensional
subspace S determined by py, p s «++, p), congruently (that is, with preserva-

tion of squared-distances) onto the k-dimensional subspace Sk' determined by

Pys Pis =% Py

Proof. Putting p, = p; = (0, 0, «++, 0), we note that any such transforma-

tion clearly maps S, onto S/ and associates with each point

P=A Py tA,py +oee LDy
of S, the point

p'=)\1pl'+)\2 p2'+---+)\kpk'
ofSk. If

q=Hp Py TRy Pyt R Py
and

q =y Pty Pyt Py
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are corresponding points of S; and S/, respectively, then it is seen that

k k

k
2 =) =) (p/y P/ ) =p"q"7,
1j=1

||[\/];¢.

~.

since
2 2 2
(Pi, P])=(1/2)(p0 pi +p0 p] —pL, p])
=(1/2) (p§ pi'2+Po'p]/2_pi, pj,2)=(pi" /) Gy j=1,2,00, k).

LEmMMA 2.3. Let py, p,s++spys P» q be k+ 3 points of F, (0 < k < n) for
which D(py, p yeees Pis Ps q) vanishes, along with each of its bordered prin-
cipal minors of order k+3. If D(pg, p s +++5p,)#0 then the k-dimensional
.iubjpace Si(pgs Pys =+ *s P ) determined by py, p s +++, p, contains points
p, q such that

Pgs Pys» s Pps Ps @ =g Pgs Pys st’IZ&_-

Proof. Put p, =(0,0, .-, 0) and denote by F* the closed algebraic ex-
tension of F. Now every element of F* is a square, and according to a theorem

of O. Taussky F* contains a (k + 3 )-tuple p,, p¥, -+, pf, p*, ¢* with

* * ook ok
Pos Pys s PpsPs § =5 Pos Py2°*sDPpsP s G »

and
p*, g* ES;:(PO,PT, p:,...,p:).l

Let T denote a linear transformation of F, with p,=T(p}) (i=1,2,.-+, k),
po = T'(py), and let p= T (p*), g= T (¢*). By Lemma 2.2,

Pos Pis *o s Pl P* GF =  Dgs Pys Pys=o® oPps Ps 45

10. Taussky (Mrs. John Todd), Abstracte Kirper und Metrik. Erste Mitteilung:
Endliche Mengen und Korperpotenzen, Frgebnisse eines mathematischen Kolloquiums
(Wien) Heft 6 (1935), pp.20-23. The reference is to Theorem II (p.23) in which it is
assumed that every element of the base field is a square.
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(*) pO’Pl!""PksFTa q—zs Pogs Pys s PpsDPs q-

Since T carries S;:(po, p‘T, ceey p;:) into S;:(po, Pys ***s Py )» the k-dimen-
sional subspace of ¥ determined by p,, p, , +++» p; , then

;)_’ ?ES:(PO’ Pl’ cety P},),

F7= )\1P1+)\2P2+"'+Akl’k: —q—=#1p1 + py, Pyt L P

where A, p, € F* (i=1,2, ... , k). To complete the proof, we show that
A p; are also elements of F(i=1,2,.--, kY.

Now
(s p; ) =M (pys )+ A, (pys )+ eee w0, (ppypy) (=1, 2, 0045 k),
(g, pi)=u1(p1,pi)+y2(p2,pi)+---+pk(pk,pi) (i=1,2,44, k),
and since
Py Py2*t*s PrsPs q € Fr

it follows from (*) that all of the coefficients in these two systems of equations
(as well as the left members ) belong to F. The relation between the determinant
G(vy, vy o0, vg) and D(py, pys=svspy) exhibited in Lemma 2.1, together
with the nonvanishing (by hypothesis) of the latter determinant, imply that
Ap Ayyeees Ay and pu, p,, +++, Jy, are uniquely determined and belong to F.

THEOREM 2.1. The space Fy has congruence order n +3 with respect to

the class of F-metric spaces, where F is any field of characteristic zero.

Proof. Let S be any F-metric space with the property that each (n + 3)-tuple
of S may be mapped in a squared-distance preserving manner into F,. We show

that S itself may be so mapped into Fj,.

Since the Cayley-Menger determinants of all (n +2)-tuples and (n +3)-
tuples of F, vanish, the same is true of such subsets of S.2 Let k(k <n)

® The vanishing of the Cayley-Menger determinant D of each m-tuple of F, for
m>n+ 1 may be proved in the same way in which this result is established for
euclidean n-space. See, for example, Theorem 40.1 (page 99) of the book referred to in

$1.
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denote the largest natural number for which % + 1 points of S exist with non-

vanishing determinant D, and let p, P,s"**s p; be such a (k+ 1)-tuple. The
F, contains, by hypothesis, & + 1 points Po Py s*+*s pj Wwith

Pos Pyosc*°s P =g PO’:PI"", P/;-
If p, ¢ € S(p#q), elements pJ", p/’s «++, p/’, p”’, q°° of F, exist such that

’’

s’ 4 ’” L4
Pos Pyo***sPpsPs 9=s PosPys* " sPpsP 59

and by Lemma 2.3 we may suppose that p”, ¢** belong to S; (py*, p{’s «++, p/).

A linear transformation that carries po s P{seees pp into pg, Pl cets Py
respectively, carries Si(p;”, pl s eoes pp’) into Sklpg, pls +++, py) and con-
sequently sends the points p”/, ¢’° into points, say p’, q’, of the latter &-
dimensional hyperplane. According to Lemma 2.2, this linear transformation

preserves squared-distances, and so
Pgs Pys ***» Pys Ps 9 =¢ P(;', pl’" Tty p]:'s P, q":s P(;, P;’ R P}:s p’sq’.

Use of Lemma 2.1 shows that the point p” corresponding to p by the proce-
dure described is unique, and so S is mapped in a squared-distance preserving

manner into a k-dimensional subspace of F,.

THEOREM 2.2. Let F, (ay, ay ,+++, ap) denote the space obtained by as-

sociating with each two n-tuples

xz(x1’x2 9“’axn)1 }’=(}’1s)’2,---,yn)

of a field F, with characteristic zero, the element

n

xy? = Z a(x; —yt.)2

i=1

as squared-distance, where ay, az, «++, a, are n selected elements of F. The
space Fp(ay, ay, +++, ap) has congruence order n + 3 with respect to the class

of all F-metric spaces.

Proof. The closed algebraic extension F* of F contains elements v/ g

(i=1,2,++,n) If to each point (x;, x5, «++, %) of Fplay, az, -+, ay)
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there is associated the point
(Var«x1, Vaz-x2,++5Vag %)

of Fy it is seen that F,(ay, ay, +++, a,) is congruently contained in F, which
has, by Theorem 2.1, congruence order n + 3 with respect to F*-metric spaces
and hence also with respect to F-metric spaces. Thus, if S is any F-metric
space with each (n + 3)-tuple imbeddable congruently in F,(a;, az, ++-, ay)
then S is congruent with a subset of F .

Let & be the greatest natural number such that a (£ + 1)-tuple pg, p, 5 +++, p,

of S exists with

Then & < n, and p;, p,, +++, p, are congruent with a (k + 1)-tuple of F,(a,,
g s +++5 ap ) which, in turn, is congruent with a (k + 1)-tuple (pg, p/s+++, p;)
of F;. We have, putting py =(0,0,..+,0),

pjf:(\/a .le’\/a2 .ij’--.’v,E_r;.xjn) (j=1’2’...,k)’

where xjm € F (j=1,2, ey kym=1,2, .. ,n) We see that S is congruent
with a subset S’ of the k-dimensional hyperplane of F, determined by Py s
Plscees Py

If p€S” then p"= A p/+ A, py+ece+ A, py and A, Ay, +o+, A satisfy

the system of equations.

(% p/ ) =2 (pls p{)+ A, (p) s p)) 4o+ 2 (pfsp[) (i=1,2, -0, k),

i

with all coefficients in F and with nonvanishing determinant. Hence Ay, Ag, -+,

Ar € F, and so each point p’ of S” has coordinates

Vay exy, Vag %y, 05 \Van »x,) with xq, x5, +«+y x, €F.

If, now, we make correspond to each such point p” of S’ the point (x1, x2,+++,%p)
of F,(ay, @z, «++, ap), the correspondence is clearly a congruence, and S’ is
mapped congruently onto a subset of F,(ay, ay, +++, ap). It follows that S is

congruent with a subset of F,(ay, a, +++, a, ), and the theorem is proved.

3. F-metric spaces with F formally real. Let F be a field with characteristic
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0 such that every sum of squares of elements of F is the square of an element
of F. In case F contains \/—1, Taussky has shown that every (n + 1)-tuple of
an F-metric space is congruently imbeddable in Fy,, and an (n + 3)-tuple p,
Py»***s Pp4p has this property if and only if D(pg, p,, +++, p,4,) vanishes
along with each of its bordered principal minors of order n + 3.° In this section

we suppose that \/~1 is not an element of F; that is, F is a formally real field.

Let py, p,5+++s p; be an F-metric space of k + 1 elements. As in Lemma
2.1, we call the ordered pointpairs [p, pi] vectors v;, and define the scalar

product (v;, vj) of vectors v;, v; by
(Uis ’U]')= (1/2) (po Pi2 + p, p]_2 ~-p; ij) (i, i=1,2,..., E).

The Gram determinant | (v;, v;)| (i, j=1,2, +++, k) is denoted as before, by
G('Ul’ Vyy ooy vk)-

THEOREM 3.1. A necessary and sufficient condition that an F-metric
(k+1)-tuple pyy pyseees p, be congruently imbeddable in the Fy is that for
j > n every j of the vectors vy, vy, +++, vy have a vanishing Gram determinant,
while for j < n, the Gram determinant G(v; , vi,, +++, vi].) of each | of the

vectors vj, Uy, +++, V) be the square of an element of F.

Proof. Letp/, p/, «++ sp; be a (k+1)-tuple of F;.

Then D(pg, pi’l, pi’2 s +++5 p; ) vanishes for every j of the £+ 1 points when
j > n, and consequently (by the relation in Lemma 2.1) G (v, v/, +++, vi']. )=0
for every j of the vectors v{, vj ,-++ ,vf when j > n. Since, moreover, G (v,

““volume-~

Viyseots v,"].) is easily shown to be the square of the determinant (the
determinant’’) formed by annexing a column of 1’s to the j x (j + 1) rectangular
array of the j coordinates (j < m) of the points pg, pf;, piys *+*» pi']. with
respect to a j-dimensional subspace F; of F, containing them (we put p0'= (o,

0, -+, 0)), the necessity is established.

To prove the sufficiency, let » *++, p, form an F-metric space satisfy-
p ¥, let pg, p, Py p y
ing the conditions of the theorem, and suppose v;, vi,, «+*, v;; are | of the
vectors with nonvanishing Gram determinant. We show that the corresponding
(j + 1)-tuple p,, Piy» "2 Py, is imbeddable in Fj. Assume this the case for
all positive integers less than j—an assumption that is obviously valid for
j=1.

There exists a regular arrangement, say vr , vr,, «++, Urjs of the vectors

Vigs Vigs ** 0y Vi such that in the sequence

3See footnote 1.
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G(‘Url), G('Url, Ur2) 3%y G(Urly Urgs "> Urj)

no two neighboring elements are zero. We consider two cases.

Case 1. G(v,l, Vrys ooy vrj_l) # 0. According to the inductive hypothesis,
Pos Prys Prys oo Priy are imbeddable in Fj.y. If po’, p”x’ cee, pf’]’-l are the
image points in Fj.;, we put

P(; =(O, 0’ ey 0),Pr'i= (O'ily Uigy vy OLi,j-l) (i=1,2”"s]""1)a

where the coordinates are all elements of F. Now by Taussky’s theorem the
points p, Pr» Pryottts Py, are imbeddable in F].*, where F* is the closed
algebraic extension of F and, indeed, in such a manner that the images of

Pos Pry st ®s Py, aTe Pes pr" Y eees P”jq , respectively. Let

’ ’:
prj = (Ql, Gysoees o(]_)

be the image of p, ., where &, t,, -, oy belong to F*. We have
j

2 2
(Uri; vrj)= G ig +0%g Kjg +eee + 0y U juy (i=1,cee,j=0,
which uniquely determine the elements 0y, 05 ,e++, Uj.y, since the square of

the determinant | ;| (i, m =1, 2, +++, j = 1) of the coefficients is

G(Ur’l’ vr,za AR v;j-l) # 0.

It follows that Gy, Gy, eee, Ujy € F.

In F]* we have

G('Urlg‘l)rz,-.-,vrj-l)=|aim12 (i’m=1,2’---,j—-]_)’
G(vrl’ Urg 2=t oVrjoys Urj)= \.’Bim‘2 (t,m=1,2, <+, i)y
with

By =0, (ym=1,2,0ee,j=1) B;;=0 (i=1,2,+00,j=1),
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and hence

2
G(vr, vryyeeey vr;) = o G(vry, vryyoee,y U’j-x)'
But the two Gram determinants in this relation are different from zero, and are

squares of elements of F. Consequently ¢j € F and the theorem is proved in
this case.

Case Il. G (v, vrys e, v,-]._l)= 0. Then G(v,l, Vrys oty v,]._z) # 0, and,
as in Case I, the points p, Pr s Py, are imbeddable in F]?“ with the respec-
i

tive image points
p; = (0,0, ,0),

pr'i=(ail,-oc, O(i,i_2’0’0) (i:l’z,-.-,j_z)’

ﬁ1=(a1’.'.’a

pr']. = (Bl’ M ’B]')’

22 %jers )

where %, EF (iy,m=1,2,.4+,j-2), and P C(j, Biseees Bj are
elements of F*, The argument used in Case I may be applied here to show that
Uy prees o(]._2.and‘[’3l NN :,8]._2 are elements of F. Hence (O(l, Uysoeesy U‘j-z)e
Fi_ along with pg and Pr, (i=1,2, 000, 2), and it is easy to show that

2 2
o+ U =0
J-1 ]

follows from the vanishing of G (v;, vr,, <+, vriy ). We may suppose that

G(vry, vryy soey vr v,}.): 0,

j-2?

for in the contrary case the argument of Case I may be applied with vr; taking

the place of Vrjy e Hence we have

B].Z_l + BZ = 0.

]

Putting «._ = A, we take &; = Ay/~1. Then from Bj-1= p it follows that
B]. =-puV-1, since G(vy, vr,,ee, vr].) vanishes (contrary to hypothesis)

if,Bj =puyV/-1.

The scalar product (”fj-v v,-].) € F; that is,
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0(1,81+012[32+---+O(]._2[3]._2+Ap+ML€F,

and so Ap € F since « , ees Oy and B, .-, Bj-z belong to F. Further
G(Urlg VUrys**s "rj)=_4)\2 #2 * G(Url, Urgs ** s Ur,-_z)s

and since these nonvanishing Gramians are squares of elements of F then
~A?p? is the square of an element of F. It follows that \/—1 is the square of
an element of F, contrary to the assumed character of the field F. This con-

tradition shows that Case 1l is impossible.

Now let j be an integer such that G (v,, vy, +++, vj) # O (with appropriate
labelling of the vectors), while the Gram determinant of every j+ 1 of the

vectors vanishes. Let

cee ,0) (i=1,2, 0, k)

Pg=1(0,0,.--,0), p/=(at;, & ij

i2?

be points of F¥ congruent (in the ‘“‘squared-distance’ sense) to py, py» =+ Py,
with p. and p/ corresponding (i =0, 1, .-+, k). By the previous part of the
proof, Pgs Pys ey p; are imbeddable in Fj;, and the imbedding in F]f“ can be
done so that o, (i, m=1,2, .+, j) are elements of F. The proof is completed

by showing that also for ¢t > j, o, , &, , ¢+, o, € F. The system of linear

t1’ “t2?

equations
C/Lil o

“+OLL-2C(t2+---+0(i].0.tj=(vi,vt) (i=1,2,04,))

has nonvanishing determinant |o, | (i, m=1,2,++.,) (the square of this

determinant is G(vy, vy, -+-, v;)) and all coefficients, together with (v, v¢)

(i=1,2,+++,j) are in F. Tt follows that o, , & ey Uy € F, and the

t1? Tt

theorem is proved.
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