Pacific Journal of Mathematics

AN EXAMPLE CONCERNING UNIFORM BOUNDEDNESS OF SPECTRAL MEASURES

SHIZUO KAKUTANI

Vol. 4, No. 3 July 1954

AN EXAMPLE CONCERNING UNIFORM BOUNDEDNESS OF SPECTRAL MEASURES

SHIZUO KAKUTANI

1. Introduction. Let $\mathfrak{X} = \{x\}$ be a Banach space with a norm ||x||. A bounded linear operator E which maps \mathfrak{X} into itself is called a *projection* if $E^2 = E$. We do not require that $||E|| \leq 1$, where

$$||E|| = \sup_{||x|| \le 1} ||Ex||.$$

Let $\mathbb{B} = \{\sigma\}$ be a Boolean algebra with a unit element 1. We denote the zero element of \mathbb{B} by 0, and two fundamental operations in \mathbb{B} by $\sigma_1 \cup \sigma_2$ and $\sigma_1 \cap \sigma_2$. A family $\{E(\sigma) \mid \sigma \in \mathbb{B}\}$ of projections $E(\sigma)$ of \mathbb{X} into itself is called an \mathbb{X} -spectral measure on \mathbb{B} if the following conditions are satisfied: (i) E(0) = 0 (= zero operator), (ii) E(1) = 1 (= unit operator), (iii) $E(\sigma_1 \cap \sigma_2) = E(\sigma_1) E(\sigma_2)$ for any $\sigma_1, \sigma_2 \in \mathbb{B}$, (iv) $\sigma_1 \cap \sigma_2 = 0$ implies $E(\sigma_1 \cup \sigma_2) = E(\sigma_1) + E(\sigma_2)$. An \mathbb{X} -spectral measure $\{E(\sigma) \mid \sigma \in \mathbb{B}\}$ is said to be uniformly bounded if there exists a constant $K < \infty$ such that $||E(\sigma)|| \leq K$ for all $\sigma \in \mathbb{B}$.

Let $\mathcal{B} = \{\sigma\}$, $\mathcal{B}' = \{\sigma'\}$ be two Boolean algebras with a unit element, and let $\mathcal{B}^* = \mathcal{B} \otimes \mathcal{B}'$ be the Kronecker product of \mathcal{B} and \mathcal{B}' . Now \mathcal{B}^* may be considered as the Boolean algebra of all open-closed subsets σ^* of S^* , where $S^* = S \times S'$ is the topological Cartesian product of two Stone representation spaces S, S' of \mathcal{B} , \mathcal{B}' , respectively. Every element $\sigma^* \in \mathcal{B}^*$ is expressible in the form:

(1.1)
$$\sigma^* = \bigcup_{i=1}^n \sigma_i \times \sigma_i',$$

where $\sigma_i \in \mathbb{B}$, $\sigma_i' \in \mathbb{B}'$ $(i = 1, \dots, n)$.

Let $\{E(\sigma) \mid \sigma \in \mathcal{B}\}$ and $\{E'(\sigma') \mid \sigma' \in \mathcal{B}'\}$ be two X-spectral measures on \mathcal{B} , \mathcal{B}' , respectively, which are commutative with each other; that is,

$$E(\sigma)E'(\sigma') = E'(\sigma')E(\sigma)$$

Received March 4, 1953.

Pacific J. Math. 4 (1954), 363-372

for any $\sigma \in \mathbb{B}$, $\sigma' \in \mathbb{B}'$. Let us put

(1.2)
$$F(\sigma^*) = \sum_{i=1}^n E(\sigma_i) E'(\sigma_i')$$

if $\sigma^* \in \mathbb{B}^*$ is of the form (1.1) and if $\sigma_i \times \sigma_i'$ $(i=1,\cdots,n)$ are disjoint. Then it is easy to see that $F(\sigma^*)$ is uniquely determined (although the expression (1.1) with disjoint $\sigma_i \times \sigma_i'$ is not necessarily unique), and $\{F(\sigma^*) \mid \sigma^* \in \mathbb{B}^*\}$ is an X-spectral measure on \mathbb{B}^* ; $\{F(\sigma^*) \mid \sigma^* \in \mathbb{B}^*\}$ is called the direct product X-spectral measure of $\{E(\sigma) \mid \sigma \in \mathbb{B}\}$ and $\{E'(\sigma') \mid \sigma' \in \mathbb{B}'\}$.

It was asked by N. Dunford [2] whether the uniform boundedness of $\{E(\sigma) \mid \sigma \in \mathbb{B}\}$ and $\{E'(\sigma') \mid \sigma' \in \mathbb{B}'\}$ implies that of $\{F(\sigma^*) \mid \sigma^* \in \mathbb{B}^*\}$. This question was answered in the affirmative by J. Wermer [5] in case \mathfrak{X} is a Hilbert space. The main purpose of this note is to show that the answer is negative if \mathfrak{X} is a general Banach space; that is, we want to prove the following proposition:

PROPOSITION. There exists a Banach space X and a commutative pair of uniformly bounded X-spectral measures for which the direct product X-spectral measure is not uniformly bounded.

Such an example will be given in § 3. In our example, the Banach space \mathfrak{X} is given as a cross product space $C(S) \circledast C(S')$ of two Banach spaces of continuous functions which will be defined in § 2. This Banach space is not reflexive and hence it remains open to decide whether the answer to the question is positive or negative in case \mathfrak{X} is a reflexive Banach space.

2. The Banach space $C(S) \circledast C(S')$. Let $S = \{s\}$, $S' = \{s'\}$ be two compact Hausdorff spaces. Let C(S), C(S') be the Banach spaces of all complex-valued continuous functions y(s), z(s') defined on S, S' with the norms

$$||y||_{\infty} = \max_{s \in S} |y(s)|, \quad ||z||_{\infty} = \max_{s' \in S'} |z(s')|.$$

Let

$$S^* = S \times S' = \{ s^* = (s, s') | s \in S, s' \in S' \}$$

be the topological Cartesian product of S and S', and let $C(S^*)$ be the Banach space of all complex-valued continuous functions

$$x(s^*) = x(s,s')$$

defined on S* with the norm

$$||x||_{\infty} = \max_{s^* \in S^*} |x(s^*)|.$$

Now C(S), C(S') may be considered as closed linear subspaces of $C(S^*)$ by identifying $y(s) \in C(S)$, $z(s') \in C(S')$ with $x(s,s') \in C(S^*)$ defined by

$$x(s,s') = y(s), x(s,s') = z(s'),$$

respectively.

Consider $C(S^*)$ as a normed ring with the norm $||x||_{\infty}$. Then C(S) and C(S') are closed subrings of $C(S^*)$. Let $C(S) \otimes C(S')$ be the subring of $C(S^*)$ algebraically generated by C(S) and C(S'); that is, the set of all functions $x(s,s') \in C(S^*)$ of the form:

(2.1)
$$x(s,s') = \sum_{i=1}^{n} y_{i}(s) z_{i}(s'),$$

where $y_i(s) \in C(S)$, $z_i(s') \in C(S')$ $(i = 1, \dots, n)$. From the Stone-Weierstrass theorem it follows that $C(S) \otimes C(S')$ is dense in $C(S^*)$.

Let us now introduce a new norm on $C(S) \otimes C(S')$ defined by

(2.2)
$$|||x||| = \inf \sum_{i=1}^{n} ||y_i||_{\infty} \cdot ||z_i||_{\infty},$$

where inf is taken for all possible representations of $x(s, s') \in C(S) \otimes C(S')$ in the form (2.1).

It is easy to see that |||x||| is a norm on $C(S) \otimes C(S')$ and satisfies

$$||x||_{\infty} \leq |||x|||$$

for all $x(s,s') \in C(S) \otimes C(S')$. Let $C(S) \circledast C(S')$ be the completion of $C(S) \otimes C(S')$ with respect to the norm |||x||||. The completion $C(S) \circledast C(S')$ is obtained from $C(S) \otimes C(S')$ by means of Cauchy sequences in $C(S) \otimes C(S')$ with respect to the norm |||x||||. Since a Cauchy sequence with respect to |||x||| is a Cauchy sequence with respect to |||x||| as a subset of $C(S^*)$:

LEMMA 1. Let $C(S) \circledast C(S')$ be the set of all functions $x_0(s^*) \in C(S^*)$ for which there exists a sequence $\{x_n(s^*) | n = 1, 2, \dots \}$ of functions from

 $C(S) \otimes C(S')$ with the following properties:

(i)
$$\lim_{n\to\infty} ||x_n-x_0||_{\infty} = 0$$
, that is $\lim_{n\to\infty} x_n(s^*) = x_0^*(s)$ uniformly on S^* ;

(ii)
$$\lim_{m,n\to\infty} |||x_m - x_n||| = 0, \text{ that is, } \{x_n | n = 1, 2, \cdots \}$$

is a Cauchy sequence with respect to the norm |||x|||.

If we put

$$|||x_0||| = \lim_{n \to \infty} |||x_n|||,$$

then $C(S) \circledast C(S')$ is a Banach space with respect to the norm |||x||| and contains $C(S) \otimes C(S')$ as a dense subset.

The proof is easy and so it is omitted. It is interesting to observe that $C(S) \circledast C(S')$ is a normed ring with respect to the norm |||x|||.

 $C(S) \circledast C(S')$ is called the *minimal cross product Banach space* of C(S) and C(S'). It is easy to see that the minimal cross product Banach space $\mathfrak{Y} \circledast \mathfrak{Z}$ of any two Banach spaces \mathfrak{Y} and \mathfrak{Z} can be defined in a similar way. $\mathfrak{Y} \circledast \mathfrak{Z}$ is one of the cross product Banach spaces defined and discussed by R. Schatten and J. von Neumann [3; 4].

3. Construction of an example. Let us now consider the case when both S and S' are Cantor sets. Let S=S' be the set of all real numbers s of the form

$$(3.1) s = 2 \left\{ \frac{\epsilon_1(s)}{3} + \frac{\epsilon_2(s)}{3^2} + \cdots + \frac{\epsilon_n(s)}{3^n} + \cdots \right\},$$

where $\epsilon_n(s) = 0$ or $1(n = 1, 2, \dots)$. I et $\beta = \{\sigma\}$ be the Boolean algebra of all open-closed subsets σ of S.

Let $S^* = S \times S$ be the Cartesian product of S with itself, and let $\mathbb{B}^* = \{\sigma^*\}$ be the Boolean algebra of all open-closed subsets σ^* of S^* . It is clear that $\mathbb{B}^* = \mathbb{B} \otimes \mathbb{B}$; that is, \mathbb{B}^* consists of all subsets σ^* of S^* which are expressible in the form (1.1), where $\sigma_i, \sigma_i' \in \mathbb{B}$ $(i = 1, \dots, n)$.

For each $\sigma \in \mathbb{B}$, let $\phi_{\sigma}(s)$ be the characteristic function of σ , and put

$$E(\sigma)x(s,s') = \phi_{\sigma}(s)x(s,s'), E'(\sigma)x(s,s') = \phi_{\sigma}(s')x(s,s').$$

It is clear that $E(\sigma)$, $E'(\sigma)$ are projections of $\mathfrak{X} = C(S) \circledast C(S')$ into itself, and that $\{E(\sigma) | \sigma \in \mathcal{B}\}$, $\{E'(\sigma) | \sigma \in \mathcal{B}\}$ are \mathfrak{X} -spectral measures on \mathcal{B} . Both of these spectral measures are uniformly bounded since $E(\sigma)$, $E'(\sigma)$ have norm 1 for any $\sigma \in \mathcal{B}$ with $\sigma \neq 0$. Since

$$E(\sigma)E'(\sigma') = E'(\sigma')E(\sigma)$$

for any $\sigma, \sigma' \in \mathbb{B}$, we can consider the direct product \mathcal{K} -spectral measure $\{F(\sigma^*) \mid \sigma^* \in \mathbb{B}^*\}$, defined on $\mathbb{B}^* = \mathbb{B} \otimes \mathbb{B}$. We shall show that $\{F(\sigma^*) \mid \sigma^* \in \mathbb{B}^*\}$ is not uniformly bounded.

Let us define a sequence of functions $\{\rho_n(s^*) | n = 0, 1, 2, \dots\}$ defined on $S^* = S \times S$ as follows: $\rho_0(s^*) \equiv 1$ on S^* , and

(3.2)
$$\rho_n(s^*) = \rho_n(s, s') = (-1)^{\sum_{k=1}^n \epsilon_k(s) \epsilon_k(s')},$$

where $\epsilon_k(s)$ is the *k*th coefficient in the expansion (3.1) of s. It is easy to see that $\rho_n(s^*)$ takes only the values ± 1 and belongs to $C(S) \otimes C(S')$ for $n = 0, 1, 2, \cdots$. Let us put

$$\sigma_n^* = \{s^* \mid \rho_n(s^*) = 1\}$$
 $(n = 0, 1, 2, \dots).$

Then $o_n^* \in \mathbb{B}^*$ for $n = 0, 1, 2, \dots$, and it is easy to see that

$$\rho_n = (2F(\sigma_n^*) - I)\rho_0$$
 $(n = 0, 1, 2, \dots).$

Thus, in order to prove the proposition of $\S 1$, it suffices to prove the following lemma:

LEMMA 2. Let S be the Cantor set. Let $\{\rho_n(s^*) \mid n=1,2,\cdots\}$ be a sequence of functions defined on $S^* = S \times S$ by (3.2). Then

$$\lim_{n\to\infty} |||\rho_n||| = \infty,$$

where the norm $|||\rho_n|||$ of ρ_n is defined by (2.2).

In order to prove this lemma, let us put

(3.3)
$$\tau(s) = \frac{\epsilon_1(s)}{2} + \frac{\epsilon_2(s)}{2^2} + \dots + \frac{\epsilon_n(s)}{2^n} + \dots$$

Then $t = \tau(s)$ is a mapping of S onto the closed unit interval

$$I = \{t \mid 0 < t < 1\}$$

which is one-to-one except for a countable set. Let

$$\mu(\sigma) = m(\tau(\sigma))$$

be a measure defined on $B = \{\sigma\}$ which corresponds to the Lebesgue measure m on I. Let us consider the L^2 -space $L^2(S; \mu)$ on S with respect to the measure μ , where the norm is given by

(3.4)
$$||y||_2 = \left\{ \int_S |y(s)|^2 \mu(ds) \right\}^{\frac{1}{2}}.$$

Let $\sigma_i^{(n)}$ be the open-closed subset of S consisting of all $s \in S$ such that

(3.5)
$$\frac{\epsilon_1(s)}{2} + \cdots + \frac{\epsilon_n(s)}{2^n} = \frac{i-1}{2^n} \qquad (i = 1, \dots, 2^n).$$

We observe that

$$\mu(\sigma_i^{(n)}) = 2^{-n}$$
 $(i = 1, \dots, 2^n)$

and that $\rho_n(s,s')$ is constant $(=\epsilon_{ij}^{(n)}=\pm 1)$ on each $\sigma_i^{(n)}\times\sigma_j^{(n)}$ $(i,j=1,\cdots,2^n)$. Further, if we put

(3.6)
$$\rho_j^{(n)}(s) = \rho_n(s, s')$$

for $s \in S$ and $s' \in \sigma_j^{(n)}$ $(j = 1, \dots, 2^n)$, that is, $\rho_j^{(n)}(s) = \epsilon_{ij}^{(n)}$ if $s \in \sigma_i^{(n)}$, then the functions $\rho_j^{(n)}(s)$ $(j = 1, \dots, 2^n)$ form an ortho-normal set in $L^2(S; \mu)$. Consequently, by Bessel's inequality,

(3.7)
$$\int_{S} \left| \int_{S} \rho_{n}(s, s') y(s) \mu(ds) \right|^{2} \mu(ds')$$

$$= \frac{1}{2^{n}} \sum_{j=1}^{2^{n}} \left| \int_{S} \rho_{j}^{(n)}(s) y(s) \mu(ds) \right|^{2}$$

$$\leq \frac{1}{2^{n}} ||y||_{2}^{2}$$

for any $y(s) \in L^2(S; \mu)$. From this it follows that

$$(3.8) \left| \int_{S} \int_{S} \rho_{n}(s,s')y(s)z(s')\mu(ds)\mu(ds') \right|^{2}$$

$$\leq \left\{ \int_{S}^{*} \left| \int_{S} \rho_{n}(s,s')y(s)\mu(ds) \right| \cdot |z(s')|\mu(ds') \right\}^{2}$$

$$\leq \int_{S} \left| \int_{S} \rho_{n}(s,s')y(s)\mu(ds) \right|^{2}\mu(ds') \cdot \int_{S} |z(s')|^{2}\mu(ds')$$

$$\leq \frac{1}{2^{n}} \cdot ||y||_{2}^{2} \cdot ||z||_{2}^{2}$$

$$\leq \frac{1}{2^{n}} ||y||_{\infty}^{2} \cdot ||z||_{\infty}^{2}$$

for any y(s), $z(s) \in C(S)$. From (3.8) it follows further that

(3.9)
$$\left| \int_{S} \int_{S} \rho_{n}(s, s') x(s, s') \mu(ds) \mu(ds') \right| \leq \sqrt{\frac{1}{2^{n}}} \cdot |||x|||$$

for any $x(s, s') \in C(S) \otimes C(S')$. Since

$$\rho_n(s,s') \in C(S) \otimes C(S')$$
 and $(\rho_n(s,s'))^2 = 1$

on $S \times S'$, we obtain, by setting $x(s,s') = \rho_n(s,s')$ in (3.9), that

and hence $\lim_{n\to\infty}|\cdot|\cdot||\rho_n\cdot|\cdot||=\infty$.

4. Remarks. Let us consider the bounded linear operators T, T' defined on $C(S) \circledast C(S')$ by

(4.1)
$$Tx(s,s') = f(s)x(s,s'),$$

(4.2)
$$T'x(s,s') = f(s')x(s,s'),$$

where f(s) is a continuous function defined on S by

$$(4.3) f(s) = 3 \left\{ \frac{\epsilon_1(s)}{4} + \frac{\epsilon_2(s)}{4^2} + \dots + \frac{\epsilon_n(s)}{4^n} + \dots \right\}.$$

It is easy to see that T, T' are spectral operators of scalar type and are given by

$$(4.4) T = \int_{S} f(s)E(ds),$$

(4.5)
$$T' = \int_{S} f(s') E'(ds'),$$

where $\{E(\sigma) \mid \sigma \in \mathcal{B}\}\$ and $\{E'(\sigma) \mid \sigma \in \mathcal{B}\}\$ are a commutative pair of uniformly bounded spectral measures defined in §3.

It is possible to show that T+T' is not a spectral operator of scalar type. In order to show this we first observe that the range S^{**} of f(s)+f(s') on $S^*=S\times S'$ is a totally disconnected set. Let \mathcal{B}_0^* be the Boolean algebra of all open-closed subsets σ^* of S^* os the form:

$$\sigma^* = \{s^* = (s, s') | f(s) + f(s') \in \sigma^{**} \},$$

where σ^{**} is an open-closed subset of S^{**} . It suffices to show that the family of projections $\{F(\sigma^*) | \sigma^* \in \mathcal{B}_0^*\}$ is not uniformly bounded.

For each n, let $\{\eta_i^{(n)} | i = 1, 2, \dots\}$ be a sequence of period 2^n ; thus

$$\eta_{i+2n}^{(n)} = \eta_i^{(n)} \qquad (i = 1, 2, \dots).$$

Further, let the sequence consist only of +1 and -1 such that $(\eta_i^{(n)}, \dots, \eta_{i+n-1}^{(n)})$ runs through all 2^n different sequences of length n consisting of +1 and -1 as i runs through $1, \dots, 2^n$. The existence of such a sequence was proved by N.G. de Bruijn [1]. Let us put

(4.6)
$$\pi_n(s^*) = \pi_n(s,s') = \eta_{i+j-1}^{(n)},$$

if $s \in \sigma_i^{(n)}$, $s' \in \sigma_j^{(n)}$ $(i, j = 1, \dots, 2^n)$. Then $\{\pi_n(s^*) \mid n = 1, 2, \dots\}$ is a sequence of functions from $C(S) \otimes C(S')$ taking only the values +1 and -1 such that the set

$$\sigma_n^* = \{s^* \mid \pi_n(s^*) = +1\} \in \mathbb{S}_0^*$$
 for $n = 1, 2, \dots$

Thus, by the same reason as in §3, it suffices to show that

$$\lim_{n\to\infty} |||\pi_n||| = \infty.$$

Let us put

$$\pi_j^{(n)}(s) = \pi_n(s,s')$$

if $s' \in \sigma_j^{(n)}$. Then $\{\pi_j^{(n)}(s) | j = 1, \dots, 2^n\}$ is a set of functions from $L^2(S; \mu)$ such that

$$\{\pi_i^{(n)}(s), \dots, \pi_{i+n-1}^{(n)}(s)\}\$$

is an orthonormal system for $i = 1, \dots, 2^n - n + 1$. This follows from the fact that

$$j + 1 \le k \le j + n - 1$$

implies

(4.7)
$$\int_{S} \pi_{j}^{(n)}(s) \pi_{k}^{(n)}(s) \mu(ds)$$

$$= \frac{1}{2^{n}} \sum_{i=1}^{2^{n}} \eta_{i+j-1}^{(n)} \cdot \eta_{i+k-1}^{(n)} = 0.$$

(The last equality holds because

$$\eta_{i+j-1}^{(n)} \cdot \eta_{i+k-1}^{(n)} = + 1$$

happens 2^{n-1} times and

$$\eta_{i+j-1}^{(n)} \cdot \eta_{i+k-1}^{(n)} = -1$$

happens 2^{n-1} times as *i* runs through $1, \dots, 2^n$.)

Thus, for any $y \in L^2(S; \mu)$, Bessel's inequality

(4.8)
$$\sum_{j=i}^{i+n-1} \left| \int_{S} \pi_{j}^{(n)}(s) y(s) \mu(ds) \right|^{2} \leq ||y||_{2}^{2}$$

holds for $i = 1, \dots, 2^n - n + 1$, and hence

(4.9)
$$\int_{S} \left| \int_{S} \pi_{n}(s, s') y(s) \mu(ds) \right|^{2} \mu(ds')$$

$$= \frac{1}{2^{n}} \sum_{j=1}^{2^{n}} \left| \int_{S} \pi_{j}^{(n)}(s) y(s) \mu(ds) \right|^{2}$$

$$\leq \frac{1}{2^{n}} \left(\left[\frac{2^{n}}{n} \right] + 1 \right) ||y||_{2}^{2}$$

$$\leq \left(\frac{1}{n} + \frac{1}{2^{n}} \right) ||y||_{2}^{2} \leq \frac{2}{n} ||y||_{2}^{2}.$$

From this follows, exactly as in § 3, that

(4.10)
$$\left| \int_{S} \int_{S} \pi_{n}(s, s') x(s, s') \mu(ds) \mu(ds') \right| \leq \sqrt{\frac{2}{n}} |||x|||$$

for any $x(s, s') \in C(S) \otimes C(S')$, and hence

(4.11)
$$|||\pi_n||| \ge \sqrt{\frac{n}{2}}$$

for $n = 1, 2, \cdots$.

REFERENCES

- 1. N.G. de Bruijn, A combinatorial problem, Nederl. Akad. Wetensch., Proc. 49, (1946), 758-764, Indagationes Math. 8 (1946), 461-467.
 - 2. N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354.
- 3. R. Schatten and R. Schatten-J. von Neumann, The cross space of linear transformations I, II, III, Annals of Math. 47 (1946), 73-84, 608-630; 49 (1948), 557-582.
- 4. R. Schatten, A Theory of cross spaces, Annals of Math. Studies, No. 26, Princeton, 1950.
- 5. J. Wermer, Commuting spectral measures in a Hilbert space, Pacific J. Math. 4 (1954), 355-361.

YALE UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

M.M. SCHIFFER*

Stanford University Stanford, California

E. HEWITT

University of Washington Seattle 5, Washington

R.P. DILWORTH

California Institute of Technology

Pasadena 4, California

E.F. BECKENBACH**

University of California Los Angeles 24, California

ASSOCIATE EDITORS

H. BUSEMANN

P.R. HALMOS

BØRGE JESSEN

J. J. STOKER

HERBERT FEDERER

HEINZ HOPF

PAUL LÉVY

E.G. STRAUS

MARSHALL HALL

R.D. JAMES

GEORGE POLYA

KÔSAKU YOSIDA

SPONSORS

UNIVERSITY OF BRITISH COLUMBIA

CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA, BERKELEY

UNIVERSITY OF CALIFORNIA, DAVIS

UNIVERSITY OF CALIFORNIA, LOS ANGELES

UNIVERSITY OF CALIFORNIA, SANTA BARBARA

UNIVERSITY OF NEVADA

OREGON STATE COLLEGE

UNIVERSITY OF OREGON

UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD RESEARCH INSTITUTE

STANFORD UNIVERSITY
WASHINGTON STATE COLLEGE

UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY
HUGHES AIRCRAFT COMPANY

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any of the editors. Manuscripts intended for the outgoing editors should be sent to their successors. All other communications to the editors should be addressed to the managing editor, E.G. Straus, at the University of California Los Angeles 24, California.

50 reprints of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is \$12.00; single issues, \$3.50; back numbers (Volumes 1,2,3) are available at \$2.50 per copy. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues, \$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to the publishers, University of California Press, Berkeley 4, California.

Printed at Ann Arbor, Michigan. Entered as second class matter at the Post Office, Berkeley, California.

- *To be succeeded in 1955, by H.L. Royden, Stanford University, Stanford, California.
- ** To be succeeded in 1955, by E.G. Straus, University of California, Los Angeles 24, Calif.

UNIVERSITY OF CALIFORNIA PRESS . BERKELEY AND LOS ANGELES

COPYRIGHT 1954 BY PACIFIC JOURNAL OF MATHEMATICS

Pacific Journal of Mathematics

Vol. 4, No. 3

July, 1954

Nelson Dunford, Spectral operators	321
John Wermer, Commuting spectral measures on Hilbert space	355
Shizuo Kakutani, An example concerning uniform boundedness of spectral	
measures	363
William George Bade, Unbounded spectral operators	373
William George Bade, Weak and strong limits of spectral operators	393
Jacob T. Schwartz, Perturbations of spectral operators, and applications. I.	
Bounded perturbations	415
Mischa Cotlar, On a theorem of Beurling and Kaplansky	459
George E. Forsythe, Asymptotic lower bounds for the frequencies of certain	
polygonal membranes	467