
Pacific Journal of
Mathematics

WEAK AND STRONG LIMITS OF SPECTRAL OPERATORS

WILLIAM GEORGE BADE

Vol. 4, No. 3 July 1954



WEAK AND STRONG LIMITS OF SPECTRAL OPERATORS

WILLIAM G. BADE

The present paper is a contribution to the theory of spectral operators in

Banach spaces developed by N. Dunford in [8] and [ 9 ] . A bounded operator S

is a spectral operator of scalar type if, roughly speaking, it has a representation

5= / λE(dλ)
•Ms)

where E ( ) is a resolution of the identity similar to that possessed by a normal

operator in Hubert space. The initial problem we are concerned with is to find

conditions under which a weak or strong limit of scalar type spectral operators

is again in this class. The results are then applied to the study of certain weak-

ly closed algebras of spectral operators.

Section 1 contains a brief summary of definitions and results from [8] and

[ 9 ] . In §2 conditions are found under which a strong limit of scalar type spectral

operators is a scalar type spectral operator, the principal restriction imposed in

the limiting operators being on the nature of their spectra. The operators need

not commute.

Suppose that the underlying space X is reflexive. If 21 is an algebra generated

by a bounded Boolean algebra 33 of projections, then by a theorem of Dunford

[ 9 ] , each operator in 21 is a scalar type spectral operator. We show (Theorem

4.1) that every operator in the weak closure K of 21 is a scalar type operator,

and characterize 32 as the algebra generated (in the uniform topology) by the

strong closure of S. The principal tool used is the equivalence (due to Dunford

[ 7 ] ) of strong closure and lattice completeness for bounded Boolean algebras

of projections. We give a new proof of this theorem.

The paper concludes with a characterization of the weakly closed algebra

generated by a single scalar type spectral operator with real spectrum. Our proof

of this theorem gives a more direct proof of the corresponding result of Segal

[22] for Hubert space.
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1. Preliminaries. In this section we collect certain definitions and results,

principally taken from [ 9 ] .

Two projections in a Banach space X are said to be ordered in their natural

order% Eί <^ E2 if EιE2 ~ E2Eι = Et. This is equivalent to the conditions

and

The natural order partially orders the set of all projections in X, and any pair

of commuting projections Eι and E2 has a least upper bound

Eγ v E2 = Eγ + E2 - EiE2

and greatest lower bound

E^ Λ E2 — Eγ hi2

If { Ea \ is an arbitrary set of projections and X admits the direct sum de-

composition X = IU©H where

ϊϊi=Ί^ίuα£αxι, n = n α u - £ α ) x,

then the projection with range lU defined by this decomposition is denoted by

Vα Ea and is the least upper bound of the set {Ea }. Correspondingly the greatest

lower bound ΛaEa with range ITl1 is defined by the decomposition X = 1T11© ίl 1

where

if it exists.

Throughout much of this paper we will be concerned with Boolean algebras

of projections; that is, sets of commuting projections containing 0 and the

identity / which are Boolean algebras under the operations E± v E2 and E± Λ E2.

A Boolean algebra δ of projections is bounded if there is a constant M such

that I £ I < M for E G δ. δ is complete if it contains Vα Ea and Λ α £ α for every

subset {Ea \ C δ . We remark that δ may be complete as a lattice but not com-

plete as a Boolean algebra of projections in X in the present sense.

Let § be a σ-field of subsets of a set Ω. A homomorphic map E ( ) of £ξ onto

a bounded Boolean algebra of projections in X will be called a spectral measure.

Thus



WEAK AND STRONG LIMITS OF SPECTRAL OPERATORS 395

£ ( σ u δ ) = £ ( σ ) v £ ( S ) , £ ( σ n S ) = £ ( σ ) Λ £ ( S ) ,

(1.1)
£ ( Ω ) = /, E ( σ ' ) = I - E ( σ ) , \ E ( σ ) \ < M

σ, 8 £ g .

The set function x*£( )xs x € X, x* £ 36*, satisfies (see proof of [9, Theorem

17])

(1 .2 ) v a r x * E ( - ) x < 4 M \ x \ \ x * \ .

The spectral measure E( ) is countably additive if x* E ( )% is countably

additive for each x G X, %* G X . Countable additivity of £ ( ) implies that the

vector valued set functions E ( )x are countably additive for x G X [8, page

579].

If F( ) is a spectral measure in the conjugate space X of X we say F( )

is (yi)-countably additive if F ( )#*% is countably additive for all x* G X and

Λ G X.

We will need a notion of integration of scalar functions with respect to a

spectral measure [9, Lemma 6] . Let E( ) on ( Ω , ^ ) be either a countably

additive spectral measure in X or an (X )-countably additive spectral measure

in X . Then for / an essentially bounded measurable function on Ω, the integral

/ π f (ω)E (dω) is defined as the limit

(1.3) / /(ω)£Uω)= lira ff(ω)E{dω)
Ω n -»oo Ω

in the uniform operator topology, where the functions

f n ( ω ) = Σ a in kσ.n(ω), n = 1, 2 , ,

form a sequence of finite linear combinations of characteristic functions of dis-

joint sets σ{n G % converging uniformly to / on Ω and

f fn(ω)E(dω)= ΣainE(σin).
Ώ

This integral satisfies

(1.4) — e s s Ω i n f | / (ω ) | < | J f (ω )E {dω ) \ < 4ilί ess Q sup | / ( ω ) | .

A countably additive spectral measure on the Borel sets of the complex plane
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is called a resolution of the identity. A bounded operator T in X is called a

spectral operator of scalar type if there is a resolution of the identity E ( )

such that

E(μ)T=TE(μ)

μ E Borel sets

σ(T;E(μ)X)Cμ

and

= ίT= ί λE(dλ).
Jσ{T)

Here σ (T; E (μ)X) is the spectrum of the restriction of T to the range oίE(μ).

In exactly the same way we have the notions of an (X )-countably additive

resolution of the identity and a scalar type spectral operator of class (X ) in

X . In either case E{ ) i s unique and E (σ{T)) = /. Moreover if F ( ) is a

countably additive ( ( X )-countably addit ive) spectral measure on ( Ω , ^ ) , the

operator

= J f(ω)F(dω)

defined by (1.3) is a spectral operator of scalar type (scalar type and class

(X )) whose resolution of the identity E ( S (/")) is given by

E(σ; S(f)) = F{f'ι(σ)), σ G Bore l s e t s .

Finally we will need the following specialization of a theorem of Dunford

[9, Theorem 17].

1.1 THEOREM. Let S be a bounded Boolean algebra of projections in a

reflexive space and let 21 be the algebra generated by S in the uniform operator

topology. If Sϊ denotes the compact Hausdorff space of maximal ideals in 21,

then 21 is equivalent to C(Έ) under a topological and algebraic isomorphism S.

There is a spectral measure E( ) defined on the Baire sets of ϊ ! such that if

f e C ( l ) , then

1.2 REMARKS. By the discussion above each operator in 21 is a scalar type
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spectral operator. It is easily seen that 31? may be identified with the Stone

representation space of the Boolean algebra S. Since 351 is totally disconnected,

the class $ of Baire sets of S is generated by the open and closed sets. Thus

\E(σ) I σ E 2 ! is an extension of δ and lies in the strong closure of δ by the

strong countable additivity of E ( )x9 x E X.

2. Strong limits of operators with restricted spectra. In this section we

determine conditions under which a limit in the strong operator topology of

scalar type spectral operators is again in this class. The principal restriction

imposed on the limiting operators is on the distribution of their spectra. For

application in later sections our principal result (Theorem 2.3) is stated in

terms of Moore-Smith convergence, or convergence of nets in the terminology of

Kelley [15]. We recall that the strong operator topology for S ( X ) is generated

by neighborhoods of the form

the weak operator topology by neighborhoods of the form

N{T0 ; * ! , . . . , * „ , * * , . . . , * * , e) = {T\\xf(T-T0)xi\<e9i = l,-.-9n\.

A net ί Ta I, CC E A9 converges strongly to T E B ( X ) if

lim Ta x — Tx9

 χ E X .

a

It converges weakly to T if

lim x*Tαx = x*Tx, x e X, x* E X* .
a

If V is an unbounded closed subset of the complex plane we denote by

Coo ( y ) the β-space of complex valued continuous functions on V which vanish

at infinity (A function / vanishes at infinity on V if given e > 0 there is a

number K with \f(λ)\<ei{λeV,\λ\>K.)lίV is bounded we let C*, (F ) =

C(V).

2.1. DEFINITION. A closed nowhere dense set V in the complex plane

will be called an R-set if the set of functions

μ - λ
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is a fundamental in C^ (V).

It is easily shown that V is an fi-set if and only if rational functions are

dense in C^ (V). To approximate a rational function q in C^ (V) by linear

combinations of functions of the prescribed type when V is unbounded, one

approximates by Riemann sums the integral in the representation

? ( λ ) = — f ^ l dμ, λeV.

Here C is a clockwise contour consisting of small circles exterior to V which

contain the poles of q. We leave to the reader the fact that the approximation

may be made uniform on V, The case where V is bounded is treated by a similar

argument.

The characterization of /?-sets is apparently an unsolved problem of approxi-

mation theory. It is known that not every closed nowhere dense set is an /?-set.

The most important example of an /v-set is, of course, the real line. That i^-sets

form an extensive class of sets is shown by the following lemma.

2.2. LEMMA. In order for a closed nowhere dense set V to be an R-set it

is sufficient either that V has plane measure zero or that V does not separate

the plane.

The case that V is bounded follows from important theorems of approximation

theory. By a theorem of Lavrentieff [16] (see also Mergelyan [18]) polynomials

are dense in C(V) if V does not separate the plane. Hartogs and Rosenthal

[12] have shown that rational functions are dense in C(V) if V has plane

measure zero. If V is unbounded let Vx = V u { oo} have the usual topology as a

subset of the complex sphere. If β £ V the mapping Φ defined by Φ ( λ ) =

{β - λ ) " 1 maps Vγ homeomorphically onto a closed and bounded nowhere dense

set W containing zero. If feC^iV) then φ (z ) = / (Φ" 1 {z )) is in C{W) and

vanishes at zero. Moreover φ is rational if and only if / is rational, and W does

not separate the plane or has measure zero if and only if V has the same proper-

ty.

We now suppose that ί T α ! , αG/4, is a net of bounded scalar type spectral

operators with limα Tax = Tx, x G X, T eB (X). The operators Ta need not

commute or be uniformly bounded in norm. We examine the spectral properties of

T under two assumptions.

(A). If Ea( ) denotes the resolution of the identity for Ta9 then there is

a constant M such that | Ea(σ)\ < M, Ot G A9 σ G Borel sets.
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(B). There is a fixed closed (possibly unbounded) R-set V with σ ( Ta) C

V9 aeA.

2.3. THEOREM. // Γ G f i ( ϊ ) is the strong limit of a net \Ta\ of scalar

type spectral operators satisfying conditions ( A ) and ( B ) , then Γ* is a scalar

type spectral operator in X of class ( X ) . // X is reflexive, T is a scalar type

spectral operator in X.

It should be remarked that for applications in later sections we will need

only the case that V is the real line. The method of proof is a straightforward

extension of that used by Stone in [23] to prove the spectral theorem in Hubert

space. The proof will require two lemmas.

2.4. L E M M A . If λ £ V then λ G p{T)9

\R(λ; T)\ < md(λ9V)'1

{where d{λ9 V) = d i s t . (λ , V))9 and

α

Proof. Since

R(λ,Ta)= f (λ-μYlEσ(dμ)

we have from (1.4)

\*\d(λ,V) .. _ _ v
(λI-Ta)x

a)x\ > —
4M

from which it follows that

The last conclusion follows from the identity

R{λ; Ta)x-R(λ;T)x = R(λ;Ta)(T-Ta)R(λ;T)x.

2.5. LEMMA. Given x E X, x* G X , there is a unique measure p( ;x*9x)9

bilinear in x and x*9 which satisfies
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x*R(λ;T)x = /
JV λ - μ

var (p( ; * * * ) ) < 4/W | * | | ** I.

Proof. By (1.2)

var**£ σ ( O * < 4M'|%'| 1**1 .

Thus the set of measures \ x*Ea ( ) * }, α G i , is a net in the closed sphere

S about the origin of radius 4>M \ x \ \x*\ in the space R ( V) of regular measures

on the Borel sets of V. Since R ( V) is the conjugate space of Coo(V), the set

S is compact in the w*-topology [ 1 ] ; that is, the topology generated by neigh-

borhoods of the form

\ θ \ θ e R ( V ) , \J f . ( λ ) θ ( d λ ) ~ f / . ( λ ) 0 o U λ ) | < e , * = 1 , . . . , * } ,

where / t , •••,/„ ^Coo(V). It follows [ 1 5 ] that the net {x*Ea(- )x] has a cluster

point p ( x*fx); that is, given (X0EA9 every neighborhood of p contains a

measure % * £ α ( )x for some α >. C(o. In particular if λ |έ ^, 6 > 0, and α 0 eA$

then

x*Ea{dμ)x- I p(dμ;x*,x]
X a Ί / A — ιι

7

for some Cί >_ CX0. By Lemma 2.4,

lϊm**ftU; Ίa)χ = .
a

Th

•V λ - μ

The uniqueness of p( ; * * , * ) and its bilinearity in x and ** follow from the

fact V is an K-set.
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To continue the proof of the theorem, we now extend the measure ρ( x*9 x)

on V to all Borel sets of the plane in the obvious way. Since for any Borel set

\ p ( e ; x * 9 x ) \ < 4 M \ x * \ \ x \ ,

there is a unique operator A (e ) in X satisfying | A (e ) | <_ 4Λ/ and

p {e; x*9 x ) ~ A (e )x*x, x* £ X , x G X .

It wi l l now be shown t h a t the family {A{ )} i s a r e s o l u t i o n of the i d e n t i t y for

T*. L e t v £ V. T h e n

(2.1) R(v; T*) A ( β 0 )x*x=f - J — A{dμ)x*x

for each Borel set e 0 for the equation

(2.2) I A ( d μ ) ( v ; ) ( λ ; ) /
V λ-μ JV λ - μ

where

θ(e) •I.
A(dμ)x*x

v-μ

is valid for every λ jέ Vs λ ^ v. Since the corresponding functions (λ — μ)"

are fundamental in Coo(V)9 forniula (2.1) follows from equating the measures

in (2.2). However,

R{v\ Γ * M ( e o ) x * x = / ^ A(dμ)A{eo)x*x,
V v-μ

and the same uniqueness argument for the measure yields

A{eo)A {eί ) = A(e0 n e t )

for arbitrary Borel s e t s e 0 and eί. Hence A(e) is a projection. In view of the

countable additivity of A( )x*x9 it remains to show that σ (T ) = I and

σ ( Γ*, /4(e)3C) C e" for arbitrary e. The second statement follows from formula

( 2 . 1 ) since R (v Γ* )/l (e )%*% has a unique analytic continuation to all of

e ', because σ ( Γ* ) n ~e i s nowhere dense. To prove the first statement let e 0 be
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any compact subset of V — σ( T ). Since

R ( λ ; T * ) A ( e o ) = A ( e o ) R ( λ ; T* ) f o r λ G p ( T * ) ,

A {e0 ) commutes with T*. Thus

σ(T*,A(eo)X*) Cσ(T*).

But again R(λ; T* )A (eo)x*x has a unique analytic continuation to βo, from

which it follows that A ( e 0 ) = 0, and hence A ( V - σ( I * ) ) = 0 as V -σ(T*)ia

the union of an ascending sequence of compact s e t s . Finally if C is any contour

enclosing the bounded set σ(T ),

χ*χ = f I /
Jσ(T*)\ 2πi JC λ - a

dλ A(dμ)x*x = A(σ(T*))x*x,

showing A(σ(T )) — I. If X is reflexive the projections E (e ) = /I* (e ) form a

resolution of the identity for T in X. This completes the proof.

2.6. T H E O R E M . Let a net { Ta \, α G A, of bounded scalar type spectral

operators satisfying conditions ( A ) and ( B ) converge strongly to a bounded

scalar type spectral operator T. Let h be a bounded Borel function on V with

set K of discontinuities. If E(K)=Q where £ ( • ) is the resolution of the

identity for T, then h (Ta) converges strongly to h(T ).

Proof. We c o n s i d e r f i rs t the c a s e t h a t h G C ^ ( F ) . By L e m m a 2.4, R(λ T),

λ jέ F , i s t h e s t r o n g l imi t of R(λ;Ta), and h e n c e l i m α g(Ta) = g{T) s t r o n g l y

for g in a d e n s e s u b s e t of 6 ^ ( F ) . If | h — g \ < £, t h e n

( λ ( λ ) ) - g ( λ ) £ α U λ ) * |

< 8 A ί e | * | + \ g ( T a ) x - f ζ ( T ) x \ , x G l ,

from which the conclusion follows for h G C^ ( F ) . In the case ή is a bounded

Borel function whose set K of discontinuities sat is f ies E {K) = 0, choose

g G CooίF) such that g ( λ ) = 0, λ G X, and g(λ) > 0 for λ G F - X. The

function g Λ is in C^ ( F ) . Moreover, the range of g ( T) is dense in X; for given

Λ; G X and e > 0 there is a closed subset σ of F disjoint from K such that
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\x — E (σ)x\ < e . T h e n

E (σ)x = g ( T)γ w h e r e γ= I
J σ

E(dλ)x

"σ g(λ)

Now if Λ; G X ,

\h{Ta)g{T)x-h(T)g{T)x\

<\h(Ta)g(T)x-h(Ta)g{Ta)x\+\{hg)(Ta)x-(hg)(T)x\

< Uί e s s sup \h(λ)\.\g(T)x-g(Ta)x\ + \(hg)(Ta)-(hg)(T)x\.

λev

By the previous case g(Ta) and (hg) (Ta) converge strongly to g(T) and

(hg) {T). Thus l im α h ( T a ) y = h(T)y ίor y in a dense set . Since the h (Γ α ) are

uniformly bounded, h ( Tα) converges strongly to h ( T).

Theorem 2.6 generalizes a theorem of Kaplansky [ 1 4 ] for the case that the

Tα are self adjoint operators on Hubert space and Kc\ σ(T) - 0. The present

theorem contains a result of Rellich [ 2 1 ] that if { Tn \ is a sequence of self

adjoint operators converging strongly to 7\ then

lim En{{ - oo, λ])x = E (( - oo, λ])x9 x E X

for each λ not in the point spectrum of T.

3. Bounded Boolean algebras of projections. It is natural to ask when a

Boolean algebra 33 of projections may be embedded in a complete Boolean

algebra of projections. Under the assumptions that X is reflexive and δ is

bounded, Dunford in [7] constructs the projection Vα Eα corresponding to any

subset ί Eα } C_ 33, and states the theorem that the least complete Boolean

algebra of projections containing 33 is the closure of 33 in the strong operator

topology. In this section we will give a proof of Dunford's theorem by showing

first that the strong closure of 33 (denoted by B s ) is complete. It will then be

required to show that a complete bounded Boolean algebra of projections is

strongly closed. Actually we will show it contains every projection in the

weakly (equivalently, strongly) closed algebra which it generates. This stronger

result will be needed in § 4.

The proofs will require the following lemma on monotone nets of projections.

3.1. LEMMA. Let \Eα\, α 6/4, be α net of projections in α reflexive space



4 0 4 WILLIAM G. BADE

X satisfying \ Ea | < U$ a G A. If Ea < Eβ whenever a < β9 then limα Ea

exists in the strong operator topology and limα Ea = V Ea. Correspondingly

if Eβ < Ea whenever Cί <_ yS, then limα Ea = Aa Ea in the strong operator

topology.

This result is due to Lorch [17] for the case of monotone sequences. A proof

of the general case has been given by J. Y. Barry [ 3 ] .

3.2. THEOREM. // δ is a bounded Boolean algebra of projections in a

reflexive space9 then 33s is a complete bounded Boolean algebra of projections

containing δ .

Proof. Clearly | £ | <M HE G B s . If £, E l9 F and Fι are in δ, | ( £ -

E \ ) x \ < e , a n d \ ( F - F ί ) x \ < e9 t h e n

| ( £ F - E x F x ) x \ < \ ( E F - E ί ^ ) * ! + | ( £ F i - E ι F ι ) x \ < 2 M e .

Thus the mapping [E9F] — > £ F is a continuous map of 33 x δ —>Z?(X) in

the strong operator topology. Thus 33s is a bounded Boolean algebra of projec-

tions. If 23O is any subset of 33 s, let Σ be the family of all finite subse t s of

33O, directed by inclusion. If σ = \ El9 , En \ C 33O let Eσ - Eγ v E2 v v En.

The net {E σ }, σ G Σ , is monotone in the natural order of projections. By

Lemma 3.1, we have

lim Eσ = Vσ £ σ G f ,
σ

The next lemma is an extension of a result of Dixmier [5] for Hubert space

(see also Michael [19]) . The proof is similar, but we give it for completeness.

3.3. LEMMA. // X is B-space9 a convex subset of B (X) has the same clo-

sure in the weak operator topology as it does in the strong operator topology.

Proof. Under either the weak or the strong operator topology β ( X ) is

a locally convex linear topological space. In view of the separation theorem for

convex se t s [ 4 ] it i s enough to show that these two spaces have the same con-

tinuous linear functionals; or, since the strong topology is stronger than the

weak, that a functional continuous in the strong topology is continuous in the

weak topology. If 0 i s continuous in the strong topology, there is a finite subset

! x ι , , xn 1 of X and an £ > 0, such that | Tx( \ < €9 i = 1 , , n, T G S ( ϊ ) ,

implies | θ ( T) | < 1. Let 3 t>e the Banach space of rc-tuples ζ=[zl9 9zn]9

zι G X with -norm | ζ\ = maxί < t < n \ z; | . If Φ is the mapping of B ( X ) into



WEAK AND STRONG LIMITS OF SPECTRAL OPERATORS 4 0 5

3 defined by Φ ( T ) = [ Txγ , , Txn ], it is easily seen that the functional

fQ on Φ ( S ( X ) ) defined by fo(ζ)=0(T) is well defined and continuous. If /

is a continuous extension of / to all of 3> then / has the form

w h e r e xf G X * . C o n s e q u e n t l y Θ { T ) = f ( Φ ( T ) ) h a s t h e f o r m

n
f) ( Ί ] > /y ̂  I γ ,
\J \ 1 ) — / ΛJ 1 JL i *

Immm/ I l

It follows that θ is continuous in the weak operator topology.

3.4. THEOREM.1 A complete bounded Boolean algebra of projections in a

reflexive space contains every projection in the weakly closed algebra it gener-

ates.

Proof. Let 21 be the algebra generated by 33 in the uniform operator topology,

and let Uw be the closure of 21 in the weak operator topology. Since Uw is an

algebra, it is the weakly closed algebra generated by 33. Moreover, Uw = 21s by

Lemma 3.3. Let F2 = F, F G 2ΪS. The proof that F G 33 will be made by showing

that to each pair (y, z ) where y G lΐl = F X and z G U = (/ — F ) X there can be

associated a projection EyZ G 23 such that EyZy-y-Fy^ and EyZ z - 0 = Fz.

For if this is granted, the projection

is in 33 since 33 is complete. If x0 E I , XQ = yQ + zθ9 yQ G lΐl, z0 G Γl, then

V

y GίR £ r ^ o = ^o f o r e a c h z G i α ' a n d VyGlU £ y ^ o z o - 0. Thus EyQ = yQ,
£ z 0 = 0 and E = F.

We now construct the projections EyZ. It should be remarked that the con-

struction uses only the fact that 33 is σ-complete. Let y and z be fixed elements

of lΐl and H respectively. Then since F G 21s, elements An G 21 may be selected

such that

(3.2) | y - 4 π y | < 1/2", | Λ B z | < 1/2", n = l , 2 , . . ,

^ h i s theorem does not answer the question: if a sequence { En\ (̂  23 converges
weakly to a projection F, does { En } converge strongly to F?
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and each An is a finite linear combination of disjoint projections \Eι , , £ s }

in 33. It is now convenient to use the fact (Theorem 1.1) that 21 is equivalent

to C(ϊJί) where 35! is the space of maximal ideals in 21. Thus Λn - S (f ) where

fn is a finite linear combination of characteristic functions of disjoint open and

closed sets, and An = Jsgj fn(m) E (dm), where the integral is that of § 1. Let

e be an arbitrary positive number and

If E (σne) is the projection corresponding to σne, the remainder of the proof

consists of showing we may take

Let

Since the sequence ί Ene } is monotone decreasing,

lim Eney = E06y

by Lemma 3.1. Defining

4i6= / fn(m)E(dm)
Jorne

we have

(M + l )
+ 4 A f e | y |

2"

Thus

(3.3) \Eoey-y\ < Ule\y\.

Now
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Enez = lim γsnE{σie)z
p —» °O

by Lemma 3.1. But

= \\E(σne) + E(σ(n + ι ) e ) (1 -E(σne))

' σ ; e ) ) l z | <M £ | £ ( σ i e ) z | .

Since by (1.4)

e\E (σie)

we have

4M2

\E(σi€)z\ < , i > n.
e2ι

Thus

4M3

< e2n"1

and

(3.4) Eoez = 0

by Lemma 3.1. If 0 < δ < e then Eoe < £ 0 g so if €„ =

0 — —1 0 6 "— 11111 0 €. 9

we have Eoy - y and Eoz - 0 by (3.3), (3.4) and Lemma 3.1, Thus we may

take EyZ = Eo . This completes the proof.

3.5. COROLLARY. A bounded Boolean algebra of projections in a reflexive

space is complete if and only if it is strongly closed.

4. Weakly closed algebras. The theorems of § § 2 and 3 enable us to prove

the following result.
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4.1. THEOREM. Let S be a bounded Boolean algebra of projections in a

reflexive space9 and let S be the weakly closed algebra generated by δ. Then

S is generated in the uniform topology by 23s. Each operator in 52 is a scalar

type spectral operator whose resolution of the identity has its range in B s .

Proof. Let A be an element of 3S. Then since S = Uw = I s there is a net

\Aa\ C SI such that /I* = limα Aa x, x G X. Let 4 α = S ( / α ) , /α G C ( ϊ ί ) . Now

fa = ga + iha where gα and Aα are real, and Aa = 5 α + i Cα, B a = S ( g a ) > C a =

S{ha). Moreover,

raΛm)E(dm) {Aax - .

where

Since \raβ(m)\ < 1,

ga{m) - gβ(m)

fa(m)-{βim)

o,

1
raβ(rn) E (dm) < 4,M

Thus { Bax \ is a Cauchy net for each x G X. The operator 5 defined by

&*; = lim Bax $ x G X

is in SE since the inequality

I Bx I < 4M lim = Uί

shows B is bounded. Similarly the net {Ca\ converges strongly to a bounded

operator C G 32, and A = B + iC.

By Theorem 2.3 β and C are scalar type spectral operators. To show that A

is a scalar type spectral operator it is sufficient to prove that the resolutions

of the identity of B and C generate a bounded Boolean algebra.2 It will be

2Cf. [9, Theorem 19]. It is not known whether in a reflexive space the sum of two
commuting scalar type spectral operators is a scalar type spectral operator. An example
to the contrary has been given by Kakutani [13] in a non reflexive space.
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shown that E ( B) and E ( C) have their range in B s . Let σ be any bounded

closed subset of the real line and let { φ S be a monotone decreasing sequence

of continuous functions with

lim φ (λ) = kσ(λ)9 -co < λ < oc.

by Theorem 2.6 φn{B) E S for each n. But φn{B) converges weakly to E ( σ ; B ),

and thus E (σ; B) Ξ S. But then E (σ; B) e"Bs by Theorem 3.4. The assert ion

that the range of E ( B ) is in 33s now follows from the countable additivity

of E ( . ; / ? ) # , x G Ϊ . The operator C is treated in the same way. Theorem 1.1

may be applied to the bounded Boolean algebra S s to complete the proof.

4.2. COROLLARY. In a reflexive B-space the uniformly closed algebra

generated by a complete bounded Boolean algebra of projections is weakly

closed.

4.3. REMARK. The use of Theorem 3.4 in the proof of Theorem 4.1 to show

£ ( • B ) C 8 s can be -av^kίed if X is separable. In this case σ(B) contains

at most denumeίably many eigenvalues, and Theorem 2.6 shows

lim £ ( ( - oo, λ ] ; Ba ) * = £ ( ( - o c , λ ] ; B)x, x £ 1

a

for a dense set of numbers λ.

4.4. DEFINITION. A scalar type spectral operator will be said to be real

if σ (Λ ) is real.

Our next objective is to characterize the weakly closed algebra generated

by a single real scalar type operator and the identity. We will require certain

preliminary material.

4.5. DEFINITION. A compact lίausdorff space Ω is extremely disconnected

if the closure of every open set is open. A positive regular Borel measure μ on

Ω is normal if it vanishes on sets of the first category. An extremely discon-

nected compact Uausdorff space Ω is hyperstonian if it has sufficiently many

normal measures that the union of their supports is dense in Ω.

Stone has shown [26] that the representation space of a complete Boolean

algebra is characterized by the property of being extremely disconnected. It can

be shown [ l ϋ ] that corresponding to each Borel set e of an extremely discon-

nected space there is a unique open and closed set σ such that the symmetric

difference ( e ~ σ ) u ( σ ~ e ) i s o f the first category. The notion of a hyperstonian
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space is due to Dixmier [6] who has proved that a compact Hausdorff space

is the space of maximal ideals for a commutative tF*-algebra on Hubert space

if and only if it is hyperstonian. A hyperstonian space Ω is of countable type

if each mutually disjoint family of open and closed subsets of Ω is at most

countable. By a theorem of Dixmier [6] each hyperstonian space contains a

family Ω^ i G/ of mutually disjoint open and closed subsets whose union is

dense, with the property that each Ω; is of countable type.

Now let S be a complete bounded Boolean algebra of projections in a re-

flexive space with representation space 31!. If x G X, Λ:* E X*, the measure

x*E ( )x on SJί vanishes on sets of the first category. Thus the positive mea-

sure v ( x*9 x ) defined by

v (σ %*s x ) = tot. var. x*E(σ)x
σ

is normal. Clearly the union of the carriers of such measures is dense in 3?.

Following Segal [22] we call a projection E E 33 countably decomposable if

each mutually disjoint family of projections in 33 bounded by E is at most

countable. Thus we have proved:

4.6. THEOREM. A complete bounded Boolean algebra of projections in a

reflexive space contains a family of mutually disjoint countably decomposable

projections whose least upper bound is the identity.

4.7. DEFINITION. Let A be a real scalar type operator. We denote by

3£ (A ) the weakly closed algebra generated by A and /. An operator B is an

extended bounded Baire function of A if for every countably decomposable pro-

jection E in SE(i4), B commutes with E and the contraction Bg of B to E X is

a bounded Baire function (in the usual sense) of the contraction Ag of A.

The concept of an extended bounded Baire function is due to Segal [22].

One verifies easily that the contraction of A to EX is a real scalar type spectral

operator.

4.8. THEOREM. The algebra S (A ) generated in the weak operator topology

by a real scalar type operator A and 1 consists of all extended bounded Baire

functions of A.

Note that since A is real 3E(/4 ) is also the weakly closed algebra generated

by the resolution of the identity E ( A ) of A. (Cf. the discussion in the proof

of Theorem 4.1.) Let S3 be the Boolean algebra of projections in 3£(/4). Then

E ( A ) is strongly dense in 33 by Theorem 4.1. Clearly each extended bounded
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Baire function of A lies in ΊH(A ) since it lies in the uniformly closed span of

S by (1.3). Conversely, let 33 e 5 U ) and let £ E E U ) be countably decom-

posable. Since Bj? is in %{Aj?) it is sufficient for the rest of the proof to

suppose the identity / is countably decomposable. We next show that the al-

gebra 21 generated in the uniform operator topology by £ ( A) consists of all

bounded Baire functions of A. If

n

f=Σ, «ikn
ΐ = l

where the sets μ. are disjoint Baire sets, then

If E (μ.)x = x9 \x\ = 1, then \f{A)x\ = | Cί;- | . Thus the inequality

£ ( . ,A)~ e s s sup | / ( λ ) I = \f{A)\ < 4M(E( . , , 4) - e s s sup | / ( λ ) | )

is established for finitely valued functions. From this follows a result of

Dunford [9 ; Theorem 15] that 21 is equivalent to the algebra of all £ ( , A )-

essential ly bounded Baire functions on σ{A), But each bounded Baire function

is a uniform limit of finitely valued functions. It remains to show 21 is weakly

closed. However, this follows from Corollary 4.2 and the next lemma (which is

valid for arbitrary Boolean algebras ).

4.9. LEMMA. A σ-complete bounded Boolean algebra of projections in a

reflexive space with the property that each mutually disjoint subset is countable

is complete.

If 33 is not complete it contains a monotone net whose least upper bound

does not belong to 33. By transfinite induction one may construct from the net a

family of mutually disjoint projections of cardinality > ftQ.

Theorem 4.8 is due to von Neumann [27] for the case of a self adjoint

operator on a separable Hubert space. The generalization to the case of an

arbitrary Hubert space is proved by Segal [22] as a corollary of his treatment of

multiplicity theory. Our proof of Theorem 4.8, via Corollary 4.2, yields a more

direct proof of Segal's theorem.

It is important to know when an algebra 3? is 32(^4) for some A G 52. An

answer is given by the following theorem.
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4.10. THEOREM. For a bounded Boolean algebra S3 of projections in a re-

flexive space the following conditions are equivalent.

( a ) . 33 is separable in the strong operator topology.

(b) . SS is separable in the weak operator topology.

(c ). % is generated in the weak operator topology by an element A G 3S and

the identity.

Clearly ( c ) implies (b) . Let \An\ be weakly dense in 52. Since each An may

be approximated in the uniform topology by a linear combination of projections,

there is a sequence {Em \ C 33 which generates 5S in the weak topology. By

Theorems 4.1 and 3.4 the countable Boolean algebra δ 0 generated by { Em \ is

strongly dense in 33, proving ( a ) .

The proof that ( a ) implies ( c ) follows a well known argument. Let 210 be the

algebra generated by 33O in the uniform operator topology and let ϊ ϊ 0 be its space

of maximal ideals. By a theorem of Gelfand [11] 35! 0 i s separable metric. Since

ϊ)?0 is totally disconnected, it is homeomorphic to a subset of the Cantor dis-

continuum [2; p. 121], and thus C(3J1O) contains a real function h which dis-

tinguishes points in 3H0. By the Stone-Weierstrass theorem [25] and Theorem

1.1, A = S{h) and / generate 2I0. But 2I0 is weakly dense in 52.

When X is separable every subset of B (X ) is separable in the strong operator

topology. This fact for Hubert space is due to von Neumann [27]. However, the

proof in [20, p. 12] extends in a natural way to any Banach space.
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