Pacific Journal of Mathematics

ORTHONORMAL CYCLIC GROUPS

PAUL CIVIN

Vol. 4, No. 4

August 1954

ORTHONORMAL CYCLIC GROUPS

PAUL CIVIN

In an earlier paper [1] a characterization was given of the Walsh functions in terms of their group structure and orthogonality. The object of the present note is to present a similar result concerning the complex exponentials.

THEOREM. Let $\{A_n(x)\}$ $(n = 0, \pm 1, \dots; 0 \le x \le 1)$ be a set of complexvalued measurable functions which is a multiplicative cyclic group. A necessary and sufficient condition that $\{A_n(x)\}$ be an orthonormal system over $0 \le x \le 1$ is that the generator of the group admit a representation $\exp(2\pi i c(x))$ almost everywhere, with c(x) equimeasurable with x.

As the sufficiency is immediate, we present only the proof of the necessity. Let the notation be chosen so that the generator of the group is $A_1(x)$, and

$$A_n(x) = (A_1(x))^n \qquad (n = 0, \pm 1, \cdots).$$

The normality implies $|A_1(x)| = 1$ almost everywhere. Hence there is a measurable a(x), $0 \le a(x) < 1$, such that

$$A_1(x) = \exp\left(2\pi i a(x)\right)$$

almost everywhere. Let b(x) be a function [2, p. 207] monotonically increasing and equimeasurable with a(x). Also let

$$c(x) = m\{u: 0 \le u \le 1, b(u) \le x\}$$
 $(-\infty < x < \infty).$

The orthonormal condition becomes

$$\delta_{0,n} = \int_0^1 \exp(2\pi n i \ b(x)) dx = \int_{-\infty}^\infty \exp(2\pi n i y) dc(y),$$

where the latter integral is a Lebesgue-Stieltjes integral. Thus for any $\epsilon > 0$,

Received February 6, 1953.

Pacific J. Math. 4 (1954), 481-482

$$\delta_{0,n} = \int_{b(0)-\epsilon}^{b(1)} \exp(2\pi niy) dc(v)$$

= $\int_{b(0)}^{b(1)} \exp(2\pi niy) dc(y) + \exp(2\pi ni b(0)) m\{x : b(x) = b(0)\},$

and the latter integral is interpretable as a Riemann-Stieltjes integral.

Integration by parts yields

(1)
$$\delta_{0,n} = \exp(2\pi ni \ b(1)) - 2\pi ni \int_{b(0)}^{b(1)} c(y) \exp(2\pi niy) \, dy.$$

If f(y) = y, $0 < y \le 1$, and f(y+1) = f(y), a direct calculation shows that

(2)
$$\delta_{0,n} = \exp(2\pi ni \ b(1)) - 2\pi ni \int_0^1 f(y - b(1)) \exp(2\pi niy) dy.$$

Formulas (1) and (2), and the completeness of the complex exponentials, imply the existence of a constant k such that for almost all y, $0 < y \leq 1$,

$$f(y - b(1)) + k = \begin{cases} 0, & 0 < y \le b(0) \\ c(y), & b(0) < y \le b(1) \\ 0, & b(1) < y \le 1. \end{cases}$$

Since the supremum of c(y) is one, and f(y) has no interval of constancy, one infers that k = 0, b(0) = 0, and b(1) = 1. Thus c(y) = y, $0 < y \le 1$, which is equivalent to the proposition that was asserted.

References

1. P. Civin, Multiplicative closure and the Walsh functions, Pacific J. Math. 2 (1952), 291-296.

2. N. J. Fine, On groups of orthonormal functions, Pacific J. Math. (to appear).

3. ____, On groups of orthonormal functions, II, Pacific J. Math. (to appear).

4. D. Jackson, Proof of a theorem of Haskins, Transa. Amer. Math. Soc. 17 (1916), 178-180.

5. A. Zygmund, Trigonometrical series, Warsaw-Lvov, 1935.

THE UNIVERSITY OF OREGON

482

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

M.M. SCHIFFER*

Stanford University Stanford, California

E. HEWITT

University of Washington Seattle 5, Washington R.P. DILWORTH

California Institute of Technology Pasadena 4, California

E.F. BECKENBACH**

University of California Los Angeles 24, California

ASSOCIATE EDITORS

H. BUSEMANN	P.R. HALMOS	BØRGE JESSEN	J. J. STOKER
HERBERT FEDERER	HEINZ HOPF	PAUL LEVY	E.G. STRAUS
MARSHALL HALL	R.D. JAMES	GEORGE POLYA	KÔSAKU YOSIDA

SPONSORS

UNIVERSITY OF BRITISH COLUMBIA	UNIVERSITY OF SOUTHERN CALIFORNIA	
CALIFORNIA INSTITUTE OF TECHNOLOGY	STANFORD RESEARCH INSTITUTE	
UNIVERSITY OF CALIFORNIA, BERKELEY	STANFORD UNIVERSITY	
UNIVERSITY OF CALIFORNIA, DAVIS	WASHINGTON STATE COLLEGE	
UNIVERSITY OF CALIFORNIA, LOS ANGELES	UNIVERSITY OF WASHINGTON	
UNIVERSITY OF CALIFORNIA, SANTA BARBARA	* * *	
UNIVERSITY OF NEVADA	AMERICAN MATHEMATICAL SOCIETY	
OREGON STATE COLLEGE		
UNIVERSITY OF OREGON	HOOHED AIRCRAFT COMPART	

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any of the editors. Manuscripts intended for the outgoing editors should be sent to their successors. All other communications to the editors should be addressed to the managing editor, E.G. Straus, at the University of California Los Angeles 24, California.

50 reprints of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is \$12.00; single issues, \$3.50; back numbers (Volumes 1, 2, 3) are available at \$2.50 per copy. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues, \$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to the publishers, University of California Press, Berkeley 4, California.

Printed at Ann Arbor, Michigan. Entered as second class matter at the Post Office, Berkeley, California.

* To be succeeded in 1955, by H.L. Royden, Stanford University, Stanford, California.

** To be succeeded in 1955, by E.G. Straus, University of California, Los Angeles 24, Calif.

UNIVERSITY OF CALIFORNIA PRESS · BERKELEY AND LOS ANGELES

COPYRIGHT 1954 BY PACIFIC JOURNAL OF MATHEMATICS

Pacific Journal of Mathematics Vol. 4, No. 4 August, 1954

Paul Civin, Orthonormal cyclic groups	481
Kenneth Lloyd Cooke, The rate of increase of real continuous solutions of	
algebraic differential-difference equations of the first order	483
Philip J. Davis, <i>Linear functional equations and interpolation series</i>	503
F. Herzog and G. Piranian, Sets of radial continuity of analytic functions	533
P. C. Rosenbloom, Comments on the preceding paper by Herzog and	
Piranian	539
Donald G. Higman, Remarks on splitting extensions	
Margaret Jackson, <i>Transformations of series of the type</i> $_{3}\Psi_{3}$	557
Herman Rubin and Patrick Colonel Suppes, Transformations of systems of	
relativistic particle mechanics	563
A. Seidenberg, On the dimension theory of rings. II	603
Bertram Yood, Difference algebras of linear transformations on a Banach	
space	615