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1. Introduction. A point set £ on the unitcircle C (|z]| = 1) will be called
a set of radial continuity provided there exists a function f (z), regular in the
interior of C, with the property that lim,_, , f(reie) exists if and only if el is
a point of E. From Cauchy’s criterion it follows that the set E of radial con-

tinuity of a function f (z) is given by the formula

o0 o0 . . 1
E< T1 S TTE {176 -1 e < 2,
k=1 n=1 _ ,if
where the inner intersection on the right is taken over all pairs of real values
ri, 7o with 1-1/n <r; <rp < 1. From the continuity of analytic functions it
thus follows that every set of radial continuity is a set of type Fy 5. The main

purpose of the present note is to prove the following result.
THEOREM 1. If E is a set of type F, on C, it is a set of radial continuity.

The theorem will be proved by means of a refinement of a construction which
was used by the authors in an earlier paper [ 2] to show that every set of type

F, on C is the set of convergence of some Taylor series.

2. A special function. That the set consisting of all points of C is a set of
radial continuity is trivial. In proving Theorem 1, it may therefore be assumed
that the complement of F is not empty. In order to surmount difficulties one at a
time, we begin with a new proof of the well-known fact that the empty set is a
set of radial continuity (see [1, vol. 2, pp. 152- 1551]).

Let
f(Z)E z Cn(z),
n=N
where
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here

_ _2mij/n
@, = e ,

and {k,} is a sequence of nonnegative integers which increases rapidly enough
so that no two of the polynomials C,(z) contain terms of like powers of z, and
so that a certain other requirement is met; the positive integer N, which is the

lower limit of the foregoing series, will be determined later.

If z is one of the points w,j, then [C,(z)[=1. On the other hand, let z lie
on the unit circle, and let I';(z) be any sum of consecutive terms from (1). If
z is different from each of the roots of unity w,; that enter into I',(z), and &

denotes the (positive) angular distance between z and the nearest of these

Wnjs then
Ay
(2) T, (z)| < —,
on?

where A, is a universal constant (see [ 2, Lemma A]). Now, if
w

(3) z=e'fany, 0] < =,
n

and Rp;(z) denotes the sum of the terms in the jth row of (1) (including the
factor zk" /n?), then

sin (n26/2)

(4) ll{nj(z)l= >
n? sin (6/2)

where A, is again a positive universal constant. But if the angular distance
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between z and w,; is less than 7/n?, the angular distances between z and the
remaining nth roots of unity are all greater than 1/n, and therefore (3) implies

that, for sufficiently large n, by (2) and (4),
lcn(z)‘ > A.2 —_ 2A1/n > 5A3 N

where A3 = A,/6. We now choose N so large that the second of these inequali-

ties holds whenever n > N.

Let ky = 0; let ry be a number (0 < ry < 1) such that

. . A
| Cy (reif) = Cy (9] < 22
Nt

for ry < r < 1 and all 0. Next, let ky+, be large enough so that

A3

Cy+4( 0y ¢ —
| Cy+1lryet?) ] Ty

for all 0; and let ry+1 be greater than ry, and near enough to 1 so that

. . 3
| Cyer (ret9) = Cyay (D)) < ST

for ry+; <r <1 and all 6. Let this construction be continued indefinitely.

Now let L be a line segment joining the origin to a point ' and let n be

an integer such that n > N and
(5) | Co(ei) ] > 545,
We then write

f(rneig) —f(rn_lei9)= Cn(eie) + [Cn(rneie) - C,L(eie)] - Cn(rn_leie)

+ 30 LG ™) = Gl = [ Cilryny o) = Ci(eFD)]]

1
¢
=N

~

3 4G (et = Ci (g i)}

j=nt1

and obtain from the inequalities above
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o ;0 [ A | > 1
|f(rne )"‘f(rn_le )( >A3 5——-!--——3—22 —"—2 Z —‘
nl n j=n 1! j=nt1 1!

> A3[5-2(e=1)1> 4,.

[t follows that, if there exist infinitely many integers n for which (5) is satisfied
f (z) does not approach a finite limit as z approaches el? along the line L. DBut
for each real 0 there exist infinitely many integers n with the property that, for

some integer T

(see [3, p. 48, Theorem 141), so that each z on C admits infinitely many repre-

sentations (3). It follows that lim,_ , f(reie) does not exist for any value 6.

3. Closed sets of radial continuity. Let £ be a closed set on C, and let G
denote its (nonempty) complement. Again, let f(z) be the function defined in
$2, except for the following modification. In the polynomial C,(z), let w,,
Wnas* ety Wnp, der‘lote those nth roots of unity which lie in G and have the ad-
ditional property that the angular distance of each one of them from I is greater
than n” "% The exponent of z in the factor outside of the brackets in the last row
of the right member of (1) becomes (p - 1)n?. And the p, nth roots of unity

wpj that occur in C,(z) must be so labelled that their arguments increase as the
index j increases, with arg w,; > 0 and arg wp, < 27 Then every partial

sum [, (z) of consecutive terms of C,(z) satisfies the inequality |I[},(z)]|<

Ayn~3/? for all z belonging to £, and therefore the Taylor series of f(z) con-
verges on £. On the other hand, let the exponents %, in (1) be chosen in a man-

ner similar to that of §2, and let L be a line segment joining the origin to a
point ¢? in the (open) set G. Then there exist infinitely many integers n for
which (5) is satisfied by our newly constructed polynomials C,(z), and there-

fore lim,_, f(reig) does not exist.

4. The general case. Suppose finally that £ is a set of type F; on C.Then
the complement G of E is of type Gs; that is, it can be represented as the inter-
section of open sets G;,Gz,+++, with G; D Gy+y for all k. In turn, we can
represent G, as the union of closed intervals I;; in such a way that no two
distinct intervals I, and I ;# contain common interior points, and in such a way

that no point of G, is a limit point of end points of intervals ;4. Similarly,
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each set G; can be represented as the union of closed intervals [ satisfying

similar restrictions.

et ny be any positive integer. Since the denumerable set of all open arcs

z:eig,\e—an/n\<7r/n2 (j=1,2,444,n, n > ng)

covers the entire unit circle, there exists a set of finitely many such arcs
covering the unit circle. It follows that we can choose a finite number of terms

C,(z) (see (1)), modified as in $ 3, such that their sum f,(z) has the follow-

ing properties:

i) for each 6 in I, there exist two values p” and p*;, 0 < p”" < p” < 1,
such that [fl(p'eig) —f‘(p"em)l > Ags

ii) for each point el? outside of l;1 and outside of the two neighboring
intervals I;; and I3, and for each n for which C,(z) occurs in fl(z), the

modulus of any sum of consecutive terms of Cn(ele) is less than 4, n"3/2

Next we accord a similar treatment to /,,, then to I, I3, I,5, I31, I14, and
so forth. The sum f(z) of the polynomials fl(z), fz(z),--- thus constructed
has the following properties: if e'lies in E, that is, lies in only finitely many

of the intervals I, the Taylor series of f(z) converges at z = el if ' lies

in G, there exist pairs of values p” and p” arbitrarily near to 1 and such that
[ (p et = f(p”ei®)] > 4.

It follows that £ is the set of radial continuity of f (z), and the proof of The-

orem 1 is complete.

5. Sets of uniform radial continuity. The following theorem is analogous to
Theorem 2 of [2].

THEOREM 2. If E is a closed set on C, then there exists a function f(z),
regular in |z| < 1, such that lim,_, | f(re“g) exists uniformly with respect to

all ¢'%in E and does not exist for any % not in E.

For the proof of Theorem 2, we refer to the function f(z), constructed in
$ 3. Note that |I,(z)| < A;n"3/2 for all z in E. Hence the Taylor series of
f(z) converges uniformly in L. It then follows easily, by the use of Abel’s

summation, that the convergence

lim, _, { f(reie) =f(ei6)



538 FRITZ HERZOG AND GEORGE PIRANIAN

is also uniform in E.

6. An unsolved problem. The converse of Theorem 1 is false, since a set
of radial continuity can be the complement of a denumerable set which is dense
on C. We do not know whether there exist sets of type F,s that are not sets of

radial continuity.
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