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1. Our main purpose here is to extract and formulate explicitly the general

principle underlying the construction of Herzog and Piranian. The results in

this note are implicitly contained in the computations on pp. 535 and 537 of their

paper, and the full credit belongs to them.

2. We use the notation M(r,f) = max | / (z ) | on = r.

T H E O R E M 1. Let f be analytic in \z\ < 1, let rn be increasing, 0 < rn

as n —> oc, let an > 0,

let R(t) - Σ α ^ over all k such that r^ >^ t9 and let g — Σ n = \ f . //

(a) M{rm fn + ι) < ani

and

(b) M{l,{'n) <an(l-rnY
ι

for all n% then g is analytic in \ z \ < 1, and for \z \ <^ 1, rn. \ < r <_ rnf we have

(1)

(rnz)-g(rn.ιZ)-fn(z)\ <2A(l-rn.ιΫ
A

Proof. We have
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I 4 ( r 2 ) - 4 ( * ) | < a k ( l - r ) / ( I - r k )

ak{l-r)% if rk < l - ( l - r ) 1 / 2

ak if k <^ n - 1,

and I fΛrz ) | <_ ak.\ for k > n. Inequality ( 1 ) now follows from

n-l n~l °o

k = ί /c = l k=n+l

We now apply ( 1 ) with r = rn and r = rn.\ to estimate

Λ ( z ) = g{rnz) - g(rn.ιz) -fn(rnz) + f B ( r n . ι z ) ,

and obtain (2) from

3. We d e n o t e by E (g) t h e s e t of r a d i a l c o n t i n u i t y of g.

C O R O L L A R Y l a . // | z0 \ = 1, l im s u p ^ ^ ^ \fn(z0) \ > 0, then z0 £ E (g).

COROLLARY lb . // I zol - 1* an(^ lim fn^
rzo ) exists as r —> 1 and n —> oo

simultaneously, then

oo

l i m r ^oo g(rzo) and ^ ^ f ( ZQ ) = g ( z 0 )

either both exist or both do not exist. If l im / ( r z 0 ) = 0» ί^eri

lim g(rz0) = g{z0)

if either exists. Hence if M{l,fn) — > 0 as n — » o c ί then E(g) is the set of

convergence of Σ,n = ι fn(z) on \z\ = 1.

4. We now establish:

The weaker condition that fn(rzo) has a limit as n—> -f oo and r—>1 in such
way that rn_ι <^ r <_rn for all n is sufficient for this corollary.
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T H E O R E M 2. If Fn is analytic in \z\ < 1, M(l,Fn) <Mn9 M(1,F^) < Mn

for all n$ and an > 0 (all n), Σ n = i an < + oc, then there exist sequences rn and

kn such that fn(z) = z n Fn(z) satisfies ( a ) and ( b ) of Theorem 1.

Proof. L e t kι = 0 a n d s u p p o s e t h a t A;2> ••• ? A Λ , Γi ,••• , rn.\ a r e d e f i n e d .

T h e n ( b ) i s s a t i s f i e d i f

Choose any rn such that

1 > rn > max

Then ( a ) is satisfied if

log (a

5. As a consequence, we have:

C O R O L L A R Y 2a. //

lim sup I an I > 0, lim sup k"n log | dn | = 0 ,

α Λ > 0, Σ α π < + oo, and >_ log

K an

for all n, then E (g) = 0, where g(z ) = Σ α R z ra .

If an = 0(1), lim supπ^oo | α β | > 0, A;π increasing, and

2^ log — < + oo,

then E (g ) = 0.

C O R O L L A R Y 2b. Suppose that f is analytic in the circle \z\ < 1, / ( 1 ) = 1,

M(l9 / ' ) < 1, and that an > 0 (all n),
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Let

if

> 0,

then z = e i θ £ E ( g ) if | θ - θn \ < U / 3 ) ~ h, 0<h< π/3, for infinitely many n.

In particular, E(g) - 0 if the set { 0n \ is dense in the interval [ 0 , 277].

6. The discussion of Cn(z) on pp. 534, 535 of the preceding paper shows

that they are constructed essential ly in accordance with Theorem 2 above. The

gap theorem in Corollary 2a is very crude, and can certainly be improved. The

high-indices theorem of Hardy and Littlewood and Tauberian methods ( s e e [Z]

and [ 3 ] ) yield much sharper resul t s .

7. The construction on p. 537 of Ilerzog and Piranian can also be carried

out as follows.

LEMMA. If A and B are disjoint closed sets in the plane and B is bounded

and has a simply connected compliment, and e > 0, then there is a polynomial

P(z) such that \P(z)\ <eonBand\P(z)\ > 1 on A.

Proof. L e t Tn(z) be the C h e b y s h e v polynomial of degree n for B; t h a t i s ,

Tn i s the polynomial of degree n with h i g h e s t coeff icient 1 whose maximum

modulus on B i s the l e a s t p o s s i b l e . T h e n Tn{z)lAn—>φ(z) in the exter ior

of B, where φiz) i s the function which m a p s the exter ior of B onto the exter ior

of a c i rc le | w \ > c and w h o s e Tay lor expans ion at 00 b e g i n s t h u s : φiz)—

z + . L e t c < C < R be such t h a t | < £ ( z ) | > / ? + € o n / 4 . Then there i s an

n such that

\Tniz)\ί/n > R on A and | Tn iz ) \ ι / n < C on B.

If n is chosen such that eiR/C)n >_ 1, then R"n Tn is a polynomial with the

desired properties.
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There are, of course, many other ways of constructing such a polynomial.

Now in the construction on p. 537, take a convergent double series ΣL a^n

with afch > C. Choose A — l^h and let B be the sector z ~ re1 with 0 <̂  r <_ 1

and θ in the closed interval complimentary to //^ and its two adjacent intervals

in G/j . Let Pfrh be a polynomial such that \Pkh^z^\ > 1 on l^n and | ^/^(z ) | <

ajςh on β. Arrange the pairs ik,h) in a sequence by the diagonal process, and

apply Theorem 2, then Theorem 1.

8. The polynomials Cn used by Herzog and Piranian are of the desired type

for the sets A and B considered in the preceding paragraph. They provide a

simple explicit construction and enjoy other interesting properties which seem

to be useful in a number of problems. The fact that they are small on the whole

set B above follows from the following remark which is surely known:

If

<*> n

f ( z ) = ^ a n z n and sniz) = ^ auz ,

71=0 /C=O

and 0 < r < 1, | z \ < 1, then \f(rz)\ < sup^ | s ^ ( z ) | .

This is a trivial consequence of the identity f(rz) = 0 ( 1 - r ) Σ 0 rn sn{z).
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