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1. Introduction. Let © ( X ) be the Banach algebra of all bounded linear

transformations defined on an infinite-dimensional Banacb space X and with

range in X. Let fi ( X ) be the set of completely continuous transformations con-

tained in ® ( X ) . It is well known that $ ( X ) is a closed two-sided ideal in

© ( X). Thus, under the usual definitions, the difference algebra *5 ( X ) - JE ( X )

is again a Banach algebra. Let π be the canonical homomorphism of S ( X) onto

( S ( X ) - R ( X ) .

The algebraie nature of P ( X) - S ( X) differs from that of S ( X). In particular

S ( X ) is semi-simple while § ( X ) — S ( X ) need not be semi-simple. An example

of this is provided by taking for X the Banach space L{S) of Lebesgue-integra-

ble numerical functions defined on, say, the unit interval 5. If T and U are in

S ( X) and are weakly completely continuous then TU is completely continuous

as shown by Dunford and P e t t i s [ 5 , p. 370]. From this it follows readily that

the image of the set of weakly completely continuous transformations in (5 ( X)

under π i s contained in the radical f)χ of ® ( X ) - S ( 1 ) . ϊ ience <§ ( X ) - K ( X )

is not semi-simple for this X. On the other hand if X is ( s e p a r a b l e ) Hubert

space, then S ( X ) - & ( X ) is semi-simple.

In this paper we begin an investigation of the algebra ® ( X ) — $ (3£). In

particular its radical and its se t of regular elements are examined. This turns

out to be useful in the study of certain properties of transformations in δ ( X ).

In § 3 the inverse image π~ιC$ι) of the radical is characterized. One formula-

tion for this is that T Γ ' H ^ I ) is the set of all U G & ( I ) such that (T + ϋ) ( X )

i s closed and ( T + U ) " 1 ( 0 ) is finite-dimensional for all T which are regular in

(?(X).

A well-known result of Schauder [ 1 3 ] asser t s that if / is the identity in

S ( X), and V E S ( X), then / + V and its adjoint /* + £/* have the same ( f ini te)

nullity. In § 4 we obtain a generalization of this result as a reflection of the

internal structure of & ( X) - π"ι(^χ). Let G be any subset of ® ( X ) containing
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/ such that ( 1 ) 7r(G) is a multiplicative group and ( 2 ) the closure of the com-

ponent of G containing / intersects 7 r " ι ( ^ i ) . Then there is a subring Gt of & ( X)

where the images of S and Gj are geometrically related in (S ( X ) — π"ι( V>χ)

such that ( a ) S 1 3 77" ι ( 5S1), ( b ) π(Qι) is a group under the circle operation

( s e e § 4 ) where for each T G S, (/ E S t the quantities nul Γ, nul T*, and

nul ( Γ + Ό), nul ( Γ* + ί/*) are all finite and

nul ( T* + ϋ* ) - nul ( T + U) = nul ( T*) - nul ( T).

For δ the set of nonzero scalar multiples of / this result already improves

Schauder's, for there

and since

nul (/) = nul (/*) = 0

we have

nul (/* + i / * ) = nul ( / + £ / )

for every U G π'ιC§ι).

Let

This is known [ 1 , 15] to be defined (f inite) for the inverse image under π of

the set of regular elements of S ( X ) — Sΐ(X). Atkinson [ l ] has shown that the

equation f (TU) = f {T) + f (U) is satisfied. In § 5 this is obtained as an

application of the theory of functionals on an abstract semi-group. These con-

siderations lead in § 6 to a detailed study of the relation of the se t s in ® (X )

of elements with a one-sided or two-sided inverse to the corresponding s e t s ,

2. Notation and preliminaries. Let X be an infinite-dimensional Banach

space and let S ( X ) be the algebra of all bounded linear transformations defined

on X into X made into a Banach algebra by the usual definition of the norm of a

transformation [ 7 , p. 32] and with identity /. Let ® ( X ) be the subset of ® ( X )

consisting of the completely continuous transformations in 5 ( X ) . It is well

known [ 2 , p . 96] that ® ( X ) is a closed two-sided ideal in S ( X ) . Thus under

the usual definitions [7 , p . 472] the difference algebra S ( X ) - f ? ( X ) is a
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B a n a c h a l g e b r a . L e t π be t h e c a n o n i c a l homomorphism of C? ( X ) i n t o © ( 3 6 ) —

S ( X ) . L e t ^ be the r a d i c a l of ( S ( X ) - S ( X ) [ 7 , p . 4 7 6 ] , a n d l e t 32 ( X ) be

any c l o s e d t w o - s i d e d i d e a l of S ( X ) c o n t a i n e d in T Γ Ή ^ I ) a n c ^ c o n t a i n i n g f ? ( X ) .

L e t τ be t h e c a n o n i c a l homomorphism of 6 ( X ) o n t o ( § ( X ) - 3 S ( X ) .

2 . 1 . LEMMA. Γ G S ( X ) has a left (right) inverse modulo 5£(36) if and

only if T has a left {right) inverse modulo H ( X ).

Proof. Suppose that T has a left inverse modulo 552(36). Thus there exis ts

t / G ® ( X ) , F G S ( X ) such that ί/Γ = / + F. Now F G τ 7 " ι ( ^ ) SO that / + F has

a two-sided inverse W modulo S ( 36 ). Hence WU is the desired left inverse of

T modulo ® ( X ) .

It may be noted that since ^ is closed in ® ( X ) - ® ( X ) then π"i{^>ί) i s a

closed two-sided ideal in © (X ).

2.2. LEMMA. Γ G S ( X ) Aαs ίλe properties that T (X) is closed and its

null-space is finite-dimensional if and only if T takes each bounded set which

is not conditionally compact onto a set which is not conditionally compact.

Lemma 2.2 is a rewording of [ 15, Lemma 3.1].

If the null-space of T is finite-dimensional, its dimension is designated by

nul T. A transformation with the properties of Lemma 2.2 is said in [15] to

have property A.

2.3. LEMMA. T G S ( X ) has a two-sided inverse modulo SB ( X ) if and only

if both T and Γ* have property A.

Proof. By Lemma 2.1 we may take S (X) for 1 (X ). The result then follows

immediately from the results of [ 15, § 5] (see also [ 1, Theorem 1] and [ β ] ) .

If both T and Γ* have property A we define

/ C Γ ) = n u l Γ * - n u l T.

Here Γ* is the adjoint of T Let ξ> be the set of all such transformations. By

Lemma 2.3, § is a semi-group.

2.4. L E M M A . T h e function f ( T ) is a continuous function on § . If T and U

lie in the same component o / ' § , then f { T ) = / ( U ) .
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Proof. The continuity of / follows from the work of Dieudonne' [ 4 , propo-

sition 4 ] ; see also [ 15, Theorem 3.8] and [ 1, Theorem 4 ] . Since / is integer-

valued, the second statement follows.

2.5. LEMMA. // T E § and if ϋ - T G S ( Ϊ ) then ϋ G'S and f (T) = / (£/).

Proof. It is clear that U has a two-sided inverse modulo f? (X ) if T does,

by Lemma 2 .1 . That f (T) - f(U) follows from Lemma 2.4 since the set

T + 32 ( X ) is a connected subset of § .

We adopt the following notation used by Rickart [ 1 2 ] for a Banach algebra.

An element is left {right) regular provided that it p o s s e s s e s a left ( r ight)

inverse in the algebra. If the element is both left and right regular then it pos-

s e s s e s a unique two-sided inverse and is said to be regular. For (5 ( X ) we

designate the se t s of left regular, right regular, and regular elements by ® ,

@Γ, and (3, respectively. The corresponding s e t s in ® (3C) — 38 ( X ) are designated

by S r , ®|", and @1, respectively. In the foregoing notation, S3 = τ~ι(® ) .

Thus, by Lemmas 2.3 and 2.4, / defines a mapping of ®L into the se t of

integers. This mapping will also be designated by /.

2.6. L E M M A . Let T G " § , f{T) = O. Then T can be expressed as the sum

U + V where U G @, F G S Ϊ ( X ) .

Proof. This is given in [ 15, Corollary 3.11].

3. On the radical of ® (X) - 32 (X). In view of Lemma 2.1 and the definition

of the radical of ® (X) — ffi(X), the inverse image under T of the radical of

( S ( X ) - l ( X ) is the same set as π"ι{^ι\ where ^ is the radical of ® (X) -

S(X). In this section we determine the nature of π"ι{^ι).

3.1. LEMMA. Let Γ G ® ( X ) be an isomorphism between X and a proper

closed linear manifold of X. Then there exists a sphere in (§(X) with center

T each of whose elements have this property.

Proof. By [4, proposition 1] there is a sphere S about T such that for all

U in S, U is bi-continuous. But T is in the interior of the set of elements of

©(X) which are not regular [14, Corollary 2.2]. Hence for each U G S there

is a proper closed linear manifold ϊl of X such that U is an isomorphism of X

onto 5ί if the radius of S i s sufficiently small.

3.2. LEMMA. Let j G δ ( X ) have range X where T is not one-to-one. Then
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there is a sphere in © ( X ) with center T each of whose elements has these

properties.

Proof. This is shown in the same way by use of [4, Theorem l ] and [ 14,

Corollary 3.12].

3.3. LEMMA. Let Γ e S ( X ) . Suppose that T(T*) has property A while

T*{T) does not. Then T can be expressed in the form 7\ + V where V G K (X )

and Tγ is bi-continuous ( Tι (X ) = X ) .

Proof. This is contained in [15, Theorem 3.13].

3.4. THEOREM. Let Te®. Suppose that for each Cί ( 0 < α <_1) either

T + aϋ or Γ* + aϋ* has property A. Then T + Cί U G § ( 0 < Gt < 1) and

/ ( Γ + ί / ) = 0 .

Proof. Note that / ( T) = 0. The set '§ = ττ" ι (@i) is open in S (X ). Thus

either all the T + OiU ( 0 < _ C ( < _ l ) are in § or there is a smallest number β

(0 < β < 1) such that T + β ϋ £ S). In the latter case one of T + βί/, 71* 4- βU*

has property /4 but not the other. Suppose that T + βJJ has property A. Then,

by Lemma 3.3, T + βU can be written in the form Tι + F, where Tί G © ( X ) is

bi-continuous and F G S ( X ) . If Tt ( X ) = X then 7\ G ® and thus Γ + j8 ί/G'§,

contrary to the above. Thus 7\ = T + βU - V an isomorphism between X and a

proper closed linear manifold of X. Consequently, by Lemma 3.1, if 0 < OC < β,

and β - α is sufficiently small, then T + dU - V has this property. But for such

α, T + aϋ G'ίρ. Also, by Lemma 2.5, T + aϋ - V G '§ and

f ( T +

Since

nul ( Γ + α67 - V) = 0, nul (71* + αί/* - F*) > 0,

then

/ ( Γ + αί/) > 0.

However, since f (Γ) = 0, by Lemma 2.4 we have

/ ( Γ + αt/) = 0.

This contradiction establishes the result iί T + βU has property ,4. If Γ* +

has property 4̂ then we proceed in a same way using dual results (Lemmas 3.2



620 BERTRAM YOOD

and 3.3) to see that for Cί < β and close to 8,

/ ( Γ + αί/) = 0, f ( Γ + αί/) < 0 .

Thus we conclude thaj; T + OίU G 6 (0 < (X < 1). That

/ ( Γ + U) = f ( T ) = 0

follows from Lemma 2.4.

3.5. THEOREM. The following formulas for π"1 {^>ι ) hold:

( a ) 7 r " 1 ( Ώ 1 ) = { ί / G ( ξ ( X ) | for each T G 0 eiiAer T + V or T* + U* has

property A }

( b ) 77"1 ( ^ ) = ί U G ® ( X ) I T + U has property A for each T G & }

( c ) TΓ" ι ( S i ) = ί U G S ( 1 ) I Γ* + U* has property A for each T G @ }.

P r o o / . If Γ G @ a n d ί / G TΓ"1 ( S t ) t h e n τr( Γ ) G @ t a n d

by the definition of 5j3ι# Then Γ + ί/ G '§ and it follows that 77"ι (^i) is contained

in each of the sets on the right.

Let the set on the right side of ( a ) be denoted by S. Then if T G ©, U G S,

α ^ 0 a scalar, then G.T + ί/ or αΓ* + ί/* has property /4. Hence, for each

scalar α, T + αί/ or J * + αί/* has property 4. Theorem 3.4 shows that T + aΌ G §

for all scalars α. Next we show that if W G @, ί/ G S then UW G δ . Both IF and

W* have property /4. Hence, by the nature of S and [15, Theorem 3.4], for each

T G @ either

(7TF-1 + i/)IΓ = Γ + ί/ίF

has property 4̂ or

ψ*[(TW'1)* + [ / * ] = 7* + ( W ) *

has property A. Hence UW G S.

Next let Ut G G, i = 1,2. For each TG®, by the above Γ + Gtί^G'ίρ for

0 < a < 1 and, by Theorem 3.4, / ( T + Uγ) = 0. By Lemma 2.6, T + Uγ can be

expressed in the form 7\ + F, where ^ G © and F G fi(3G). Likewise 7\ + ί/2 G §

and so, by Lemma 2.5,
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is in :SS. This shows that G is a linear manifold in (5 ( X ) with the further property

that if TUT2£® and U G δ then U ( 7\ - T2) G G. However, s ince 5 (X ) is

a Banach algebra, an arbitrary element W G (§ ( X ) can be expressed as the dif-

ference of two regular elements. Thus G is a right ideal in © ( X ) . Consequently

π (G ) has the property that, for each π(U) G 77 ( 6 ) and each V in S (X ) - ® ( X ),

τr(/) + 7 r ( T ) F G ® r Thus τ r ( S ) C 5βt. This completes the proof for formula

( a ) .

The same argument shows that the right s ides of ( b ) and ( c ) are contained

i r i T Γ - H ^ ) .

3.6. COROLLARY. Let Q be a {left or right) ideal in $ ( X). Suppose that

for each T G 3, either I + T or I* + T* has property A. Then for each T G C,

nul (I + T) and nul (/* + 71*) are finite and equal.

Proof. By Theorem 3.5, 2 C T Γ ' H ^ ) . Thus / + 7 G '§ for each 7 G 2. Since

Q is a linear manifold,

by Lemma 2.4.

This is a direct generalization of Schauder's well-known result [13, p. 189]

that if U is completely continuous then

nul (/+ ί/)= nul (/* + ί/*)

since the two-sided ideal $ ( X ) fulfills the conditions of Corollary 3.6.

3.7. COROLLARY. The following statements are equivalent:

(1) S ( X ) — ff ( X ) is semi-simple;

(2) /or ί/€ ® (X ), U eft(l) if and only if {T + V) {!) is closed in 1 and

either nul ( Γ + Ό) or nul ( Γ* + £/* ) is finite for each T regular in S (X ).

Proo/. Note that ® ( X ) - S ( X ) is semi-simple if and only if π'ι{ \ ) = ® ( X ).

Also (Γ + ί/) (X) is closed if and only if (Γ* + £/*) (X*) is closed in X*

[2, Chapt. 10]. Then Corollary 3.7 follows from Theorem 3.5 and Lemma 2.3.

If X is a separable Hilbert space then since, as shown by Calkin [3, Theo-

rem 1.4], $ ( X ) is a maximal, two-sided ideal in S (X), (1) holds. For spaces

satisfying (1), (2) gives a necessary and sufficient condition for complete
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continuity which seems to be new (for sufficiency) even in the Hubert space

case.

4. A generalized Schauder nullity theorem. We give here the result (Theo-

rem 4.5) discussed in § 1. The preliminary material, it is felt, is of independent

interest and is presented in greater generality than is absolutely necessary for

our purposes.

We adopt the following notation. B is a ring with an identity element e. G

is the set of regular elements of B (the elements with a two-sided inverse). For

each subgroup Go of G let 3 ( G 0 ) be the set of "invariant translations" of

Go, namely the set of x G B such that Go + x = G o . It is clear that

9f( Go) = { x G B I y ± x G Go for every y G Go ].

In the ring B we consider along with the usual algebraic operations also the

"circle operation''

X o y — x + y — xγ.

For information on this operation see [7, Chapter 22]. It is evident that Go n

3 (G o ) is empty.

4.1. THEOREM. For any subgroup Go of G9 3 ( G 0 ) is a subring of B which

is a group under the circle operation. Conversely if R is a subring of B which

is a group under the circle operation then there exists a subgroup Go of G such

that R = 3 (G o ). If B is a Banach algebra then 3 (G) is the radical of B.

Proof. It is clear that if x G 3 (G o ) then so does — x. Thus if xx and x2 lie

in 3 (G o ), and γ G G o, then both

(y + xx) + x2 and ( y - ^ i ) - ^ 2

lie in G o, so that xx + x2 G 3 (G o ). Next we show if x G 3 (G o ), y G G o, then

yx G 3 ( G 0 ) . For let z eG0. Then

* ± Ύz =y(y~ιz ± x) eG0.

Similarly xγ G 3 (G o ). Since

γ + x{x2 = (y + * i ) (e + %2 ) + yx2 - * ι

it follows from the above that xγx2 G 3 (G o ) if # t and Λ;2 G 3 (G o ). Thus 3 (G o )

is a subring of B.
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To see that 3 ( G 0 ) is a group under the circle operation note first that for

xl9 x2 E 3 (G o ) we have

%ι o x2 ~ xt + x2 - x>\%2 € 3 (Go ) .

Now the set of all elements of B with an inverse under the circle operation is

a group with the zero element 0 of B as the identity element [7, p. 456]. Thus

it is sufficient to show that xί has an inverse in 3 ( G 0 ) under this operation.

Since e — xι GG 0 C G there exists an element w E B such that

(e -xγ) {e -w) = ( e ~w) ( e ~ Xχ) = e.

Then clearly w is the inverse of xx under this operation. Let y E G o . Then,

since

X γW ~ WX ι = Xι + W

we have that

( y ± w ) ( e - % ! ) ~ y ± w - y x x + w x ι = y ( e — x ι ) + x ι

is an element of G o . Since (e - xL ) E Go it follows that w; E 3( Go ).

Next consider a subring R which is a group under the circle operation. Let

Go be the set of all elements of the form e - x, x E R. If xu x2 E R then

( e — X γ ) ( e — x 2 ) = e — Xι o x2 £ Go ,

There exists z E R such that

xχ o z = z o %χ = θ.

Then

so that Go is a group. We show that 3(G 0 ) = /?. Take x E 3 ( G 0 ) . Then e -x E G o ,

and, by the definition of Go, Λ; E /?. On the other hand if x E /?, y GG 0 then we

may write y ~ e — xx, where

xt E β and y +_ % = e — x t + x E G 0

since R is a ring. Thus x e%(G0) and 3 (G o ) = R.
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Finally let B be a Banach algebra. If z is an arbitrary element of B then

since, for a sufficiently small scalar λ,

e - λz = w G G*

we may write z as the sum of two elements in G. By the above we see that for

x G 3 ( G ) , we have zx G 3 ( G ) and thus e - zx EG. Hence x lies in the

(Jacobson) radical Q of B. Conversely if x E Q$ then for each w E G,

w ± x = w {e ± w'ιx) E G,

so that x G 3 (G). This completes the proof.

4.2. COROLLARY. In the notation of Theorem 4 .1, 3 ( G 0 ) is a two-sided

ideal in the subring R(G0) of B generated by G o and lies in the radical Q of

R ( G o ). Examples exist for which 3 ( G o ) = Q and also for which 3 ( G o ) Φ- Q

Proof. By the arguments of Theorem 4.1, if y G R (G o ) fefeen yx9 xy G 3 (G o )

for each % G 3 ( G 0 ) so that 3 ( G 0 ) is a two-sided ideal of R(G0). Since

e - yx E Go for every γ E R(G0), and Go is contained in the set of regular

elements of R(GQ), 3 ( G 0 ) C <?. By Theorem 4.1, if B is a Banach algebra

then 3 ( G ) = Q. Take next for B the ring of integers modulo 9. For Go take the

set consisting of 1 and 8. Here R(G0) = B and the radical Q of B is the set

ί 0, 3, 6 ! . On the other hand 3 (Go ) consists of the zero element alone.

Following Kaplansky [8, p. 153] we call B a metric ring if to each element

x there is associated a real number | x | such that

I # I = 0 r I > O i f r ^ f l I - JC I = I r I I Λ; + v I < I r I + I v I I Λ V I < I Λ; I I v I

Here | x — y | is the metric of B. In this context the sets 3 (G o ) possesses

certain topological properties. (The metric ring to which the theory is applied

is S (X ) - S

4.3. LEMMA. // G o is open then 3 ( G 0 ) is closed. The following statements

are equivalent.

( 1 ) 3 ( G 0 ) c G 0 .

( 2 ) 0 = i n f | y | , y € Go .

(3 ) 3 ( G 0 ) n G 0 is nonempty.

Proof. Let Go be open. Suppose that % e S ( G 0 ) ( n = l , 2 , 3 , ) and
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that xn —» x. Given any y G G o there exis ts a sphere S of radius, say, r > 0

about y such that S C G o . Consequently S -ι- %„ C G 0 for each rc. Take n so large

that I x — xn I < r. Then for such an integer n, y ±{x — xn) G S and thus

y ± x = y + (x -χn) + % e Go .

Hence % G 3 ( G 0 ) .

If ( 1 ) holds then so does ( 2 ) s ince 6> G 3 ( G o ). If ( 2 ) holds then ( 3 ) is

clear for the same reason. Suppose that ( 3 ) holds. Let

w G 3 ( G o ) n G o , w = lim yn$ yn G G o .

By Theorem 4.1, w o * G 3 ( G 0 ) for each Λ G 3 ( G o ). But

w o x - lim (# + γn - y^Λ;),

and by Theorem 4.1, yn+x-ynxEG0. Hence woχ£G0. By Theorem 4.1

again there exists an element z in ^(Go) such that w o z = θ. Inasmuch as

z ox G 3 ( G o ), by the above

M; o (z o Λ ) = {w o z) o x — x

l ies in G o

For the group G o in the metric ring B let GOp be the principal component,

that is , that which contains e. Arguments of Hille [7 , p. 93] show that Gop is

a subgroup of G o .

4.4. LEMMA. // 3 (G O p ) C Gop then 3 ( G o ) is connected and 3 ( G o ) C G O p .

// 3 ( G o ) is connected, then 3 ( G o ) C 3 ( G o p ).

Proof. Suppose that 3 ( G o p ) c G O p . Then by Lemma 4.3, 0 G G O p . Take

% G 3 ( G 0 ) . The set Λ;GOp, being a continuous image of a connected set, is

connected; moreover, xGOp l ies in 3 ( G 0 ) by Corollary 4.2. Since θ l ies in the

closure of # G o p , the set

is a connected subset of 3 ( G 0 ) which contains x and θ. Hence each element

of 3 ( G o ) l ies in a connected subset containing θ. Thus 3 ( G o ) is connected.

Suppose that 3 ( G 0 ) is connected. Then for each z £GOp, z + 3 ( G 0 ) is a

connected subset of G o containing z. Hence
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z + 3 ( G o ) c G o p and S ( G o ) c S ( C o p ) .

In the statement of the following theorem, the group to which the symbol 2 is

applied lies in the Banach algebra S (X ) - π'l( ^ ).

4.5. THEOREM. Let S be any set in © ( X ) containing the identity I. Let

π and τ be the canonical homomorphisms of © ( X ) onto ® ( X ) - $ ( X ) and

© ( X ) - π"l(^ι), respectively. Suppose that π ( S ) is a multiplicative group in

© ( X ) - $ ( X ) and that the closure of the component of S containing I contains

an element of z r ' H ^ ) . Then for each T G S , f/ G τ " 1 3 [ τ ( S ) ] we Ziαt e

Furthermore^ τ~ι 3 [ r ( S ) ] 3 77"1 (5βt), α ώ zs ίΛe inverse image under π of a

subring 0/ © ( X ) - ffi (X) which is a group under the circle operation.

Proof. Consider τ ( S ) . By Lemma 2.1 it is a subgroup of the se t of regular

elements ® t of © ( X ) - 77"ι ( ^ ). Since r is continuous, by our hypothesis the

principal component of r ( S ) contains the zero element of (S(X) — 77*I(S51) in

its closure. Hence in this algebra, by Lemmas 4.3 and 4.4, 3 [ τ ( 6 ) ] is con-

nected. By Lemma 2.4, / is continuous on @ t; and if 7\ G r ( S ) , Ut G 3 [ r ( S ) ]

then s ince 71! and 7^ + ί/χ lie in the same component of ®ί9 we have

T h u s / ( Γ + ί / ) = / ( 7 1 ) i f T G δ and t / G T - H 3 ( T ( S ) ] .

L e t

τ - 1 3 [ τ ( b ) ] = S 1 and W ( S 1 ) = S 2 .

C l e a r l y 7 r " ι ( δ 2 ) = S ι s i n c e S x D S ( X ) which i s the kerne l of 77. By T h e o r e m

4 . 1 , 3 [ r ( G ) ] i s a subr ing of ® (X ) - 7r"1 (S3X ) which i s a group under the c i r c l e

O p e r a t i o n . T h e n S 1 i s a s u b r i n g of © ( X ) , and S 2 a s u b r i n g of © ( X ) - & ( X ) .

We next show t h a t S 2 i s a group under the c i r c l e o p e r a t i o n . As 6 2 i s a s u b r i n g ,

i t i s c l o s e d under that o p e r a t i o n . L e t Tι G S 2 , Tγ = π(T), T E S P T h e n t h e r e

e x i s t s F G S x s u c h t h a t

T h e n by Lemma 2 . 1 , I—T h a s a two-s ided i n v e r s e I-W modulo K ( X ) . S i n c e

7 r ( I f ' ) o Γ ι = 0



LINEAR TRANSFORMATIONS ON A BANACH SPACE 627

it suffices to show that π(W) G δ 2 . Now τ{W)-τ{V) s ince the two-sided

inverse of τ ( / - Γ ) in ® (3£ ) - π " 1 ( ? i ) is unique. Therefore W G G t and thus

π(W)eQ2.

5. Functionals on semi-groups. Atkinson [ l ] has shown that on ξ> the

equation

f{TU)=f(T)+f(U)

is valid. By an entirely different analysis we show how such functionals can be

obtained in a semi-group and tfyen apply the results to 'ίo.

5.1. NOTATION. Let S be any semi-group, the product of two elements

x$ y in S being denoted by xy. Let g and g* be real-valued functions defined on

5, where

# ( * 2 ) < g ( * l * 2 ) < g U l ) + g(χ2 )

(1)

g * ( * l ) < g * ( * l * 2 ) < g*(χl ) + g*(χ2 )

for all xl9 x2 in S. Let

and let S + ( 5 . ) be the subset of S for which A ( Λ ) >̂  0 (h(x) < 0 ) . Suppose

that there is a reflexive and symmetric relation ~ on S defined for certain pairs

of elements of 5 such that x ~ γ implies h (x ) = h (y ), and where for each x G S

there exis ts y G 5, Λ; ~ y with either g (y ) = 0 or g* ( y ) = 0, The relation ~ need

not be transit ive. Since g and g* are nonnegative on S it follows that the ex-

istence of y, x ~ y, where g (y ) = 0 (g* (y ) = 0 ), is equivalent to x G S + (% G S_).

5.2. THEOREM. Suppose that, in the notation of 5.1,

(a) x ι ~ z ι ( i = l , 2 ) i m p l i e s t h a t h ( x γ X 2 ) — h ( z 1 z 2 ) h o l d s . T h e n t h e

f o r m u l a

( 2 ) A U t * 2 ) = A ( ^ ! ) + A ( Λ 2 )

is valid either for all x^ G 5 + or for all x2 £ S. . If also

( b ) there exist y., y in S9 where h(y. ) > 0 and h(y2 ) < 0, then formula

{2) is valid on S.

Formula ( 2 ) is valid on S if (a) holds and



628 BERTRAM YOOD

( c t ) for each x G S+ there exists γ G S such that xγ G 5. $

( c2 ) for each x G S . there exists y G S such that yx G S+.

Proof. We r e m a r k t h a t ( a ) i s a n e c e s s a r y c o n d i t i o n for ( 2 ) s i n c e , from ( 2 ) ,

h{xιx2 ) = h(xι ) + h(x2 ) = A U i ) + h{z2 ) = A ( z t z 2 ) .

F r o m ( 1 ) we o b t a i n

or

( 3 )

Now s u p p o s e t h a t ( a ) h o l d s . T h e n

( 4 ) h(xγ) <h(Xίx2) < A U i

( 5 ) h { x ι ) + h ( x 2 ) < h { x t x 2 )

( 6 ) h(xιx2 ) = h(xι ) + h(x2 )

To show (4) we may assume that

T h e n ( 4 ) f o l l o w s from ( 3 ) . F o r ( 5 ) w e may a s s u m e t h a t

-g{xi) = h(xi\ g*Uέ) = 0 ( i = 1 , 2 ) ,

and again use ( 3 ) . In the las t s i tuat ion, ( 3 ) yields

+ h(x2) <_h{xγx2) <^h{xχ) + h(x2).

N e x t we o b s e r v e t h a t ( c t ) a n d ( c 2 ) c a n n o t both be f a l s e . If, for e x a m p l e ,

( c t ) i s f a l s e t h e n for s o m e xγ G S + w e h a v e x ί γ G S + for a l l y E S , w h i c h y i e l d s

( c 2 ) .

S u p p o s e now t h a t ( a ) a n d ( c 2 ) h o l d . We s h o w t h a t ( 2 ) h o l d s for a l l xl9 x2

w h e r e x2 £S.. By ( 6 ) we may s u p p o s e t h a t Xι £S.» T h e r e e x i s t s w ES s u c h

t h a t hiwx^) >_ 0 . F o r c a s e 1 we t a k e w eS.. T h e n by ( 5 ) ,

h ( w ) + h { x ι ) < h ( w x x ) < h ( x x ) < 0 .
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T h i s i m p l i e s t h a t h(xι) = 0. T h e n ( 2 ) fo l lows from ( 6 ) . F o r c a s e 2 we t a k e

w E S + . T h i s g i v e s , by ( 6 ) ,

( 7 ) h(wxi) = h{w) + h{xι)9

( 8 ) h {wxίx2 ) = h {wxι ) + h {x2 ) .

Now (5) shows that x^x2 £ Sm . Then, by (6) ,

( 9 ) h(wxιx2 ) = h{w) + h(xιx2).

A c o m b i n a t i o n of ( 7 ) , ( 8 ) , and ( 9 ) y i e l d s ( 2 ) .

S u p p o s e n e x t t h a t ( a ) and ( c t ) h o l d . E n t i r e l y a n a l o g o u s a r g u m e n t s u s i n g

( 4 ) in p l a c e of ( 5 ) s h o w t h a t ( 2 ) h o l d s for a l l x u x2 w h e r e x t E S + .

Now a s s u m e ( a ) and ( b ) . We s h o w t h a t ( c t ) a n d ( c 2 ) h o l d . If ( c t ) d o e s

not h o l d t h e n ( c 2 ) m u s t h o l d and t h e r e e x i s t s x ES+ s u c h t h a t xy &S+ for a l l

y £ S. S e l e c t γ s u c h t h a t h(y) < 0. By ( a ) a n d ( c 2 ) and the a b o v e , h{yn)-

n h(y) for a n y p o s i t i v e i n t e g e r n and t h u s yn E S. . A l s o

0 < h(xγn) = h(x) + nh(y).

This is impossible if n is chosen sufficiently large. Thus ( c t ) holds. Similarly

( c 2 ) holds.

To conclude the proof we show that ( a ) , {cί ), and ( c 2 ) imply ( 2 ) . By the

above our assumptions give the validity of ( 2 ) for any pair xί9 x2 where either

Xι ES+ or x2 E S. . The remaining case involves xι £ S_ and x2 ES+. We may

select , by ( c 2 ) , w E S such that wxγ E S + . If M; E S. then, as shown above,

^ ( ^ ^ = 0 so that ( 2 ) is valid for χ u x2. Supposing that WES+, we obtain

( 7 ) , ( 8 ) , and ( 9 ) , which again yield ( 2) for xi9 x 2 .

We return to ® ( X ) and start with the following simple resul t :

5.3. LEMMA. Let Tι E S ( X ) {i = 1, 2) have finite nullity. Then

( 1 0 ) n u l ( Γ 2 ) < nul ( 7 \ T2 ) < nul ( 7\ ) + nul ( T 2 ) .

T h i s fol lows from the fact , r e a d i l y e s t a b l i s h e d , t h a t

nul ( Γ 1 T 2 ) = n u l ( 7 1

2 ) + d i m [ Γ 2 ( X ) n T[ι(0)].

5.4. LEMMA. Suppose that T E ;ξ> ατi(/ / ( Γ ) >̂  0 ( < 0 ) . Then there exists

F G $ such that V-Te®{l),f{T) = f{V),and n u l ( F ) - 0 ( n u l ( F * ) = 0 ) .
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The existence of the transformation V with the indicated property of the

nullity follows from [ 15, Theorem 3.13]. That f{T) = f(V) follows from Lemma

2.5.

5.5. C O R O L L A R Y . Let Tt e<§ ( i = l , 2 ) . Then f (7\ T2) = / ( T ι ) + / ( Γ 2 ) ,

and f defines a homomorphism of the group of regular elements o/ ® (X ) — 5ί (X)

into the additive group of integers.

We show that this result of Atkinson follows from the above. In the notation

of 5.1, set

Since

Lemma 5.3 shows that formula (1) is valid. For the relation 7\ ~ T2 we take

Tι - T2 G f i ( ϊ ) . Lemmas 3.2, 2.4, and 5.4 and the relation

/ ( T) = nul ( Γ* ) - nul ( T )

show that Theorem 5.2 may be applied to give the first conclusion. The second

conclusion is an immediate consequence.

Following ideas of Mackey [ 10, p. 171] we shall say that the Banach space

X is stable if there exists a continuous isomorphism of X onto a closed subspace

X t of deficiency one. We say that X is stable-like if there exists a continuous

isomorphism of X onto a closed subspace Xj_ of finite deficiency.

5.6. THEOREM. The functional f is non-trivial if and only if X is stable-

like.

Proof. If X i s stable-like, consider the isomorphism T of X onto Xi of de-

ficiency n. Then nul ( T ) = n and nul ( T) = 0, so that / (T) = n.

Suppose that / is non-trivial. Then there exis ts T £ ^ such that / ( T ) £ 0.

Since T has a two-sided inverse V modulo £5 (X ), and / (V') = - / ( T ) by Corol-

lary 5.5, we may assume / (T) = n > 0. By Lemma 5.4, there exists a bi-

continuous isomorphism U where nul (£/*) = rc. Then £/(X) is a closed sub-

space of deficiency n.

Whether or not every infinite-dimensional Banach space must be stable or

even stable-like seems to be an open question ( s e e [ 10, p . 2 0 5 ] ) . This subject
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is pursued a bit further in Theorem 6.7 and 6.9.

If X is finite-dimensional then (10) can be replaced by the more specific

rule, known as Sylvester's law of nullity [9, p. 11] which states that

max [mil ( Ti), nul (T2)] < nul ( 7\ T2 ) < nul ( 7\ ) + nul ( T2 ) .

We show that the validity of Sylvester's rule for all Γj G'§ where X is infinite-

dimensional implies that X is not stable-like. For suppose otherwise. Consider

T2e^9 f(T2) = n > 0, nul ( Γ 2 ) = 0 .

Then by [ 14, Theorem 3.15] there exists 7\G(§(X) such that TιT2-l. Since

/ and T2 G !S), by [15, Theorem 5.4] we see that 7\ £'§• By Sylvester's rule,

nul ( Ίγ) = 0, so that 7\ is regular in ® (X) and therefore so is T2, which is a

contradiction.

Another generalization of Schauder's theorem may be obtained as follows.

Yosida and Kakutani [ 16] have considered the collection Ω (X ) of all quasi-

completely continuous transformations in ®(X) i.e. the class of all T G ® (X)

such that there exists V G S (X) and an integer n such that 11 Tn - V \ \ < 1.

5.7. THEOREM. Let T G § , and let V be a two-sided inverse of T modulo

® ( X ) . Suppose that there exists W G 7r" ι(5βi) and an integer m such that

VmU ~W G Q ( X ) . Then Γ m + t/G'S5, and

Proof. Let VmU = Rx and Rt - BF = /?2. By hypothesis there is an integer n

such that I - R2 is of the form S\ + S2, where Sχ G ® and S2 G®(X). Since

π'1 (SPt ) is a two-sided ideal, there exists S3 G π"1 ( ϊ! t ) such that

But, by Lemma 2.5, S t + S3 G '§. Therefore / - β " has a two-sided inverse modu-

lo fi ( X ). Since

then / - Rί G § . Since the hypothesis on U is satisfied by all α ί/, |θί | < 1, it

follows from Theorem 3.4 that
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Applying Corollary 5.5, we obtain

6. On the images of left and right regular elements. We make here a detailed

study of the images of the sets ®, ®l, and ®Γ under π. In view of Lemma 2.1,

the results also hold for the mapping r . In particular, we show the following:

6.1. THEOREM. The canonical homomorphism π has the following proper-

ties :

( 1 ) 77

( 2 ) π

( 3 ) the sets π{®)9 77 ( ® ) , and π(®r) are open and closed in the sets ® t ,

®j, and ®J, respectively;

( 4 ) π{®) is a normal subgroup of ® t ; either TT(@) = ® t or ®t/π{®) is

isomorphic9 as a topological group, to the additive group of integers in the

discrete topology.

The interest of ( 1 ) l ies in the fact that if X is stable-ίike, then π(®1) £ ®[

and π(®Γ)^®[ ( s e e Lemma 6.3) . And for ( 2 ) , even though ® = ® Z n ® Γ this

does not of itself imply that

In the course of the proof the following notation is used. 'ξ>0 is the subset

of § consisting of those T for which / ( T ) = 0 and § + ( § . ) of those T for which

f(T)>0 (/ (T) < 0 ) . The minus sign for s e t s in ® ( X ) - R ( X ) is used in

the set-theoretic sense . From the definitions we have 77('ξ>) = ® t .

The following lemmas are part of the proof of Theorem 6.1.

6.2. L E M M A . π{®) = { Tt e ® ( X ) - S ( X ) | π'1 ( T ί ) c § 0 1 , and *(©) = *(ξ> 0)

Proof. The second statement follows immediately from the first. Suppose that

Tχ!sπ(T)9 T e®. Then 7 7 " 1 ( Γ ι ) = Γ + fi(X), so that for each [/ G 77"1 ( 7\ ),

f (U) = f (T) by Lemma 2.5. Since f ( T ) = 0, we see that 77 ( ® ) i s contained in

the right-hand set . Next assume that 7\ is in the right-hand set . L e t π(T) = Tί.

Then Γ G ' § 0 , and / ( Γ ) = 0. By Lemma 2.6 there exis ts F G S ( X ) such that

Γ + F G Θ . But 77(7+ F ) = 71!.
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6 . 3 . L E M M A . π(®1) = ®[ - π{'$.).

Proof. Clearly π( ®l) C ®[. We shall show that π{®1) n 77( S . ) is empty. Sup-

pose contrariwise that 7\ Eπ(® )n 7r('ίξ).). Then there exis ts Γ G @̂ , # £ ' § . such

that 7r(Γ) = τ r ( ί 7 ) = 7\. Then there exis ts IF £ £ ( X ) such that Γ = U + W. Hence,

by Lemma 2.5, / ( 7 ) = / (U ) < 0. But from the definition of / , mil (T) > 0.

Therefore T cannot be one-to-one and this contradicts T G ® . We conclude that

Suppose that 7\ G ©[ - π ( S - ) and 77 ( T) = Γ l β By [ 15, Theorem 5.4], T has

property A. Since T ^ 'ξ>., either nul ( Γ * ) is not finite or nul ( Γ*) < oc and

f(T) >_0. Then by [ 15, Theorem 3.13] there exis ts V G S ( X ) such that Γ + F

is a bi-continuous mapping of X into X. Moreover, by [ 15, Theorems 5.3 aad

5.4], there exists a projection of X onto (T + V) ( X ) . Therefore, by [ 14, Theo-

rem 3.15], T + Ve®1. However, π( T + V ) = ττ( T) = 7\. Thus ®ι-π{§-)C

(®1)

6.4. L E M M A . T Γ ( O Γ ) = ®[ - τ r ( § + ).

In references cited in the proof of Lemma 6.3, dual results exist to those

used in 6.3 which enable one to conduct the proof in the same way.

6.5. LEMMA. * ( ' £ . ) C π(®Γ) and π(§ + ) C π(®1).

Proof. S u p p o s e t h a t T G § . . By [ 1 5 , T h e o r e m 3 . 1 3 ] t h e r e e x i s t s V G S Ϊ ( X )

s u c h t h a t ( I + F ) ( X ) = X. A l s o , by Lemma 2.4, nul ( Γ + V) < 00. H e n c e

[14, Theorem 3 . 1 8 ] s h o w s t h a t T+Ve®r. However , π{ T + V) = π( 7 ) . T h e

other s t a t e m e n t i s proved u s i n g dual r e s u l t s .

6.6. LEMMA. ίθ0> §+, S- are open and closed as subsets of ίξ>. These sets

are disjoint.

Proof. Since f (T), by Lemma 2.5, is a continuous integral-valued function

on ξ), the se t s are open and closed subsets of § .

We turn now to the statements of Theorem 6.1.

Consider ( 1 ) . By Lemmas 6.3 and 6.4,

π{®1 υ @Γ) = π(®1) u π(®r) =

By Lemma 6.5,
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SO that

As for (2) , note first that π(®) = 77 ( S o ) by Lemma 6.2. By Lemmas 6.3 and

6.4,

But ®[ n ®r

ι =@ i = τ τ ( ξ ) . Also the sets 77 ("§ + ), 77 ( § . ) and 7r(§ 0 )are disjoint

since if, for example, 7\ e 77(§ + ) n 77 ( ξ . ), Γ ι S = τ r ( T ) , T 6 § + and Γ1 = τ7(F),

J / e f x , then 77(Γ-ί/) = O so that T - F G S ( 1 ) ; whence, by Lemma 2.4,

f (T ) ~ f (V) which is impossible. Uence

The mapping 77 is a continuous linear mapping of the Banach algebra S (X)

onto the Banach algebra S(3C)-ffi(3C). Consequently it takes open sets into

open sets. Since (3, ® , ®r, ®ι9 Sr and 0^ are open (see, for example, [12])

the statement of (3) on openness follows. Likewise, from Lemma 6.6, π('§-)

is open in ® C ® . Since

by Lemma 6.3, π{® ) is closed in ®|. Similarly 77(®Γ) is open and closed in

®Γ. Now

and (as noted above) the latter sets are disjoint and also open by Lemma 6.6.

But 77 (®) = 77(§o) by Lemma 6.2. Thus π{®) is open and closed in ®ι and the

proof of (3) is complete.

Only (4) remains to be shown. Either 77 (@ ) = @i or 77(®) is properly con-

tained in ®ι. Suppose that the latter holds. By Lemma 6.2, 77(ξ o) = π(®). But

τ r ( ' § ) = ® 1 . Thus § ^ § 0 a n ( l t n e function / defined on ξ> (and on π(§)) is

not identically zero. Since / is integral valued there is an integer m > 0 and

T e ' ξ such that \f (T)\ = m and m is minimal with respect to this property.

By Corollary 5.5, / is a homomorphism of π(§) = ®x into the additive group /

of integers. If we define / on ® t by the rule fχ = m*1/then fχ is a homomorphism
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of ® t onto /. The kernel of this homomorphism is π(ξ)0 ) = π(®) (Lemma 6.2).

If / is given the discrete topology then f is an open mapping. Since the kernel

is open in ® t by ( 3 ) , the inverse image under / of any subset of / is open in

@ι# Hence, [ l l , p. 64] , ®ι/π(®) is isomorphic, as a topological group, to / .

This completes the proof of Theorem 6.1.

6.7. THEOREM. The following statements are equivalent:

(1) X is not stable-like; (2) ' § = ' § 0 ; (3) τr(@) = ® 1 .

Proof. The equivalence of (1) and (2) is given by Theorem 5.9. In the

course of the proof of Theorem 6.1 it was shown that if 7r(®) φ- ®χ then if) ^ § 0

so that (2) implies (3) . If π{®) = ® t then, by Lemma 6.2, π(§0) = π{'§). This

shows that any element T of § differs from an element of §o by a completely

continuous transformation in ® (3C). Therefore, from Lemma 2.4, '§ = §o

6.8. DEFINITION. We say that X is projection-stable if there exists an

isomorphism in ®(X) of X onto a proper closed linear manifold ?l where there

is a ( continuous ) projection of X on ϊl.

Clearly if X is stable-like then X is projection-stable. Whether or not the

converse is true is an open question. The notion just defined is connected

with the notions of Theorem 6.1 by the following result.

6.9. THEOREM. The following statements are equivalent:

(1) X is not projection-stable;

( 2 ) ® Z = ® Γ = ® ;

( 3 ) τ r ( @ ) = @! and ® x = ®[ = ® [ .

Proof. If X is not projection-stable then, by [ 14, Theorem 3.15], ® C ® so

that ®l = ®. But then also ® = ®Γ; for if T G ®Γ, TU = /, then U G ® and

T =U~ι £®. Thus ( 1 ) implies ( 2 ) . Assume ( 2 ) . By Theorem 6.1 we see that

But 7 7 ( ® ) C ® 1 . Hence

®{ =®[ = ® ! and τr(

Assume (3) . If X were projection-stable then by [ 14, Theorem 3.15] there
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e x i s t s T E ®l, T £ <S. But π(T) e ®[= @ t . H e n c e T G § . By i t s n a t u r e

f (T) > 0. H o w e v e r , from T h e o r e m 6 .7 , ξ> = ί § 0 , w h i c h i s a c o n t r a d i c t i o n .

REFERENCES

1. F. V. Atkinson, The normal solubility of linear equations in normed spaces.
Mat. Sbornik 28 (1951), 3-14. (Russian).

2. S. Banach, Theorie des operations lineaires, Monografje Matematyczna, T.I.
Warsaw, 1932.

3. J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators

in Hilbert space, Ann. of Math. 42 (1941), 839-873.

4. J . D i e u d o n n e , Sur les homomorphisms d'espaces normes, B u l l . S c i . M a t h . ( 2 )

67(1943), 72-84.

5. N. Dunford and B. J. Pettis, Linear operations on summable functions, Trans.

Amer. Math. Soc. 47 (1940), 323-392.

6. I. C. Gohberg, On linear equations in normed spaces, Doklady Akad. Nauk SSSR

(N.S. ) 76(1951), 477-480. (Russian).

7. E. Hille, Functional analysis and semi-groups, Amer. Math. Soc. Colloquium

Publications, vol. 31, New York, 1948.

8. I. Kaplansky, Topological rings, Amer. J. Math. 69 (1947), 153-183.

9. C. C. MacDuffee, The theory of matrices, Chelsea Publishing Company, New

York, 1946.

10. G. W. Mackey, On infinite-dimensional linear spaces, Trans. Amer. Math. Soc.

57(1945), 155-207.

11. L. Pontrjagin, Topological groups, Princeton University Press, 1939.

12. C. E. Rickart, The singular elements of a Banach algebra, Duke Math. J. 14

(1947), 1063-1077.

13. J. Schauder, Uber lineare vollstetige Funktionaloperationen, Studia Math. 2

(1930), 183-196.

14. B. Yood, Transformations between Banach spaces in the uniform topology,

Ann. of Math. 50 (1949), 486-503.

15. , Properties of linear transformations invariant under addition of a

completely continuous transformation, Duke Math. J. 18(1951), 599-612.

16. K. Yosida and S. Kakutani, Operator-theoretic treatment of Markoff's process

and mean ergodic theorem, Ann. of Math., 42 (1941), 188-228.

UNIVERSITY OF OREGON



PACIFIC JOURNAL OF MATHEMATICS

EDITORS

M.M. SCHIFFER*

Stanford University
Stanford, California

E. HEWITT

University of Washington
Seattle 5, Washington

R.P . DILWORTH

California Institute of Technology
Pasadena 4, California

E.F. BECKENBACH**

University of California
Los Angeles 24, California

ASSOCIATE EDITORS

H. BUSEMANN

HERBERT FEDERER

MARSHALL HALL

P. R. HALMOS

HEINZ HOPF

R.D. JAMES

B0RGE JESSEN

PAUL LEVY

GEORGE POLYA

J.J. STOKER

E.G. STRAUS

KOSAKU YOSIDA

SPONSORS

UNIVERSITY OF BRITISH COLUMBIA

CALIFORNIA INSTITUTE OF TECHNOLOGY

UNIVERSITY OF CALIFORNIA, BERKELEY

UNIVERSITY OF CALIFORNIA, DAVIS

UNIVERSITY OF CALIFORNIA, LOS ANGELES

UNIVERSITY OF CALIFORNIA, SANTA BARBARA

UNIVERSITY OF NEVADA

OREGON STATE COLLEGE

UNIVERSITY OF OREGON

UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD RESEARCH INSTITUTE

STANFORD UNIVERSITY

WASHINGTON STATE COLLEGE

UNIVERSITY OF WASHINGTON
* • •

AMERICAN MATHEMATICAL SOCIETY
HUGHES AIRCRAFT COMPANY

Mathematical papers intended for publication in the Pacific Journal of Mathematics
should be typewritten (double spaced), and the author should keep a complete copy.
Manuscripts may be sent to any of the editors. Manuscripts intended for the outgoing
editors should be sent to their successors. All other communications to the editors
should be addressed to the managing editor, E.G. Straus, at the University of California
Los Angeles 24, California.

50 reprints of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September,
and December. The price per volume (4 numbers) is $12.00; single issues, $3.50; back
numbers (Volumes 1,2,3) are available at $2.50 per copy. Special price to individual
faculty members of supporting institutions and to individual members of the American
Mathematical Society: $4.00 per volume; single issues, $ 1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to the
publishers, University of California Press, Berkeley 4, California.

Printed at Ann Arbor, Michigan. Entered as second class matter at the Post Office,
Berkeley, California.

*To be succeeded in 1955, by H.L. Royden, Stanford University, Stanford, California.

**To be succeeded in 1955, by E.G. Straus, University of California, Los Angeles 24, Calif.

UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES

COPYRIGHT 1954 BY PACIFIC JOURNAL OF MATHEMATICS



Pacific Journal of Mathematics
Vol. 4, No. 4 August, 1954

Paul Civin, Orthonormal cyclic groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
Kenneth Lloyd Cooke, The rate of increase of real continuous solutions of

algebraic differential-difference equations of the first order . . . . . . . . . . . 483
Philip J. Davis, Linear functional equations and interpolation series . . . . . . . 503
F. Herzog and G. Piranian, Sets of radial continuity of analytic functions . . . 533
P. C. Rosenbloom, Comments on the preceding paper by Herzog and

Piranian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
Donald G. Higman, Remarks on splitting extensions . . . . . . . . . . . . . . . . . . . . . . 545
Margaret Jackson, Transformations of series of the type 393 . . . . . . . . . . . . . . 557
Herman Rubin and Patrick Colonel Suppes, Transformations of systems of

relativistic particle mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
A. Seidenberg, On the dimension theory of rings. II . . . . . . . . . . . . . . . . . . . . . . 603
Bertram Yood, Difference algebras of linear transformations on a Banach

space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615

Pacific
JournalofM

athem
atics

1954
Vol.4,N

o.4


	
	
	

