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ON G R O U P S O F O R T H O N O R M A L F U N C T I O N S ( I )

N. J. FINE

1. Introduction. Recently Civin [3,4] and Chrestenson [2] have considered

three specific systems of orthornormal functions on the unit interval which form

multiplicative groups. They have shown that (subject to further restrictions)

these systems are essentially characterized by their group structure. In this

paper we propose to remove the topological restrictions on the base space and

the group-theoretic restrictions on the system of functions.

Let (Ω, c3, m) be an abstract measure space1, with m a countably-additive

measure defined on the σ-ring 3, and rn(Ω) = 1. We may, and shall, assume that

m is complete. Let

f = i / J (α = 0,1,2,...)

be a family of complex-valued measurable functions on Ω, satisfying

(2) fjβ £F («, β > 0).

We shall prove the following theorem:

THEOREM 1. //(Ω, 3,m) and F are as above, then there exists a {unique)

compact Abelian group H9 satisfying the second axiom of count ability, and a

transformation T defined almost everywhere on Ω into H9 such that

(3) the outer ^-measure of Z = T(Ω) is 1, and Z is dense in H§ where v

denotes the Haar measure on H with v{H) = 1;

(4) for every v-measurable set M C H, T'1 {M) e 3 and m(Γι {M)) = v ( M ) ;

For the general measure- and group-theoretic concepts considered here, see [ 6 ]
and [ 7 ] .
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52 N. J. FINE

(5) the functions faT~ι are single-valued on Z9 and may be extended to H to

form the character group of II,

The trans formation T is onto if and only if

(6) for every sequence \ ccn } £ Ω such that

fa(ωn) —>va ( α > 0 ) ,

there exists ω £ Ω such that

fjiύύ) =va ( α > 0 ) .

The transformation T is one-to-one almost everywhere if and only if

(7) for almost all cc E Ω, fa( ω ') = /α( cc), (α > 0 ) , implies cc ' = ω.

In the examples considered by Civin and Chrestenson, Ω = /, the unit inter-

val, and m is Lebesgue measure. In [3] , the conditions on F imply easily that

it is isomorphic with the group of Walsh functions2. H is then the dyadic group.

We have shown [5, § 2 ] that there is a mapping λ of H onto / which is one-to-

one almost everywhere, measure-preserving, and carries the characters of H

into the Walsh functions. The combined mapping XT of / onto / therefore takes

F into the Walsh functions, is one-to-one almost everywhere, and ( λ 7 ) " 1 pre-

serves measure, provided that (6) and (7) hold. This is exactly Civin's Theo-

rem 3 of [3] . In [2] , F is isomorphic to Ψ α , the group of generalized Walsh

functions of order α defined in [ l ] , H is then the Cί-adic group, the countable

direct product of cyclic groups of order Cί. A mapping λ similar to that mentioned

above obviously exists, and Chrestenson's result in [2 ] follows. In [4] , F is

infinite cyclic, so H is the group of reals mod 1, which we can map onto / in

an obvious way. The character group of H is generated by exp (2πiχ), and if

fix) is the generator of F, our results show that

/ t U ) = e x p (2πic(x)\ 0 < c(x) < 1 ,

almost everywhere, and that c(x) is equimeasurable with x.

This last result of Civin's shows that the distribution of f^x) is uniform

on the unit circle in the complex plane. We may also consider the joint distrib*

ution of the fa in the general framework of Theorem 1. We shall prove the follow-

ing result:

a treatment of the Walsh functions and for further references, see L5J.
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THEOREM 2. Under the conditions of Theorem 1, if fv , fn €F satisfy

no relations of the form

(8 ) /Γ' Γ 2 C" = ! < al™°s{ everywhere )

other than the obvious ones imposed by their orders, then they are statistically

independent functions. The marginal distribution of fa is uniform if fa has in-

finite order, and assigns measure 1/r to the rth roots of unity if fa is of finite

order r.

The general situation is only slightly more complicated. We have:

THEOREM 3. Under the conditions of Theorem 1, for any set of functions

fι>'*'>fn Ξ F, there exists a statistically independent set fa > >/α £ F

such that almost everywhere

9)

The matrix (cdj) has integer elements and determinant 1. It can be constructed

as soon as all the relations of the form (8) are given.

2. Proof of Theorem 1. First we show that | fj. ω) | = 1 for almost all a C O .

By (2) , \{a\
2ZF, so | / α | 2 π e F U = l ,2 , > Hence, by (1) ,

JJ4ndm~l U = l , 2 , . . ) .

Tlierefore

i f j { ω : | / α ( ω ) | > 1 I = 0 .

If

then

l = Jdm+j \fa\
4ndm—>m(A),

s o m ( Λ ) = l . We r e d e f i n e t h e / s o t h a t | / ( ω ) | = l e v e r y w h e r e . N o w t h e
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function (say) fQ = 1 E F, so for every jβ ,

Hence F is a multiplicative group.

Now define an equivalence relation on Ω by

(10) ωx ~ ύ j 2 < = > / α ( α ; 1 ) = / α U 2 ) {alia).

Let X denote the set of equivalence classes χ9 and let p be the natural mapping

of Ω on X. Define

and for A E &, set μ{A ) - mpmί (A ). Then {X,&, μ) is also a complete measure-

space, with μ{X) = 1. Every function f on Ω which is constant on each equiva-

lence class yields a function g on X, defined by

g{x)=f(p-ι(x)),

and conversely. If one is measurable so is the other, and

(11) J f(ω)dm-f g(x)dμ.

In particular, the system

satisfies (1) and (2) with respect to (X, J®, μ), and G and F are isomorphic.

In addition, G separates A; that is,

(12) %! £ x2

 = r r=>gα(^ι) ^ ^ J % 2 ^ for some a.

This follows directly from (10). We assign to G the discrete topology.

Now let H be the character group of G. Since G is discrete and countable,

H is compact and satisfies the second axiom of countability. To each x £ X

there corresponds in H an element h = φ(x)9 defined by

(13) h(gj=ga(x) ( α > 0 ) .

The mapping φ is one-to-one, in view of (12). If we assign to X the topology
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defined by neighborhoods

(14) (V,J)={x:xeX,ga{χ)eU for (X E / ί ,

where U is an open set on the unit circle in the complex plane, and / is a finite

set, then φ becomes a homeomorphism of X into //. We denote by Z the image

φ(X). If w is a continuous function on //, then w, defined by

w{x) = w(φ(x)),

is continuous on X. We shall now show that w is measurable and that

(15) I wdμ = wdv,

where v is the normalized Haar measure on //.

By the duality theorem, G is isomorphic with the character group of H, the

correspondence gα«-»Xα being given by

χ o ( λ ) - λ ( g α ) , h€H.

We observe that Xa- gα Now the continuous function w may be approximated

uniformly by linear combinations of characters:

α=0

Hence, by the orthonormality of the χ α ,

(16) C[n) = / Pn{h)dv—>] w{h)dv.

But

Λι(*)=Σ:ctΛ )gαu)^s;u

a-0

also uniformly. Therefore w is measurable on X, and

(17) / Pn(x)dμ—>j wix)dμ.
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Since the ga are orthonormal on X, the left side of (17) is C^ . Our assertion

(15) then follows from (16) and (17).

We shall now prove that φ'ι(M) £ & for every v-measurable set M C H, and

that

Suppose first that U is closed. There exists a decreasing sequence \Vn\ of

neighborhoods of the identity e, with intersection { e }• The open sets UVn have

M as their intersection, and

AMVJ -*v(M).

The set Cn = H — MVn is closed and disjoint from M By Urysohn's lemma, there

exists a continuous function wn satisfying

= 0, hecn,

0 < wn(h) < 1, h EH.

The corresponding function wn satisfies

= 0, xeφ-\Cn),

0 <wn(x) < 1, x € X .

The set φ"l(M) is measurable in X, since its characteristic function is the

limit of wn, and similarly for φ" (Cn). Also,

=lim J
H

J wndv,
H

= l i m y ^ Λ o ? μ .

The equality of these measures follows from (15). Thus our assertion is true

for closed sets, hence for all Borel sets. If M is now any measurable set in //,

there exist Borel sets A and B, such that

A C M C B a n d i / { A ) = v { B ) ,
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by the regularity of Haar measure. Hence

φ-l(A)Cφ-l(M)Cψ-ι(B) a n d μ(φ-l(A))=μ(φ-

The measurability of φ'ι(M) follows from the completeness of μ, and the equal-

ity of the measures is then obvious.

If we take for M any measurable set containing Z, then we have

Hence the outer measure of Z is 1. Since a nonempty open set in H has positive

measure, it follows that Z is dense in H. The condition that Z = H is equi-

valent, therefore, to the compactness of X. Recalling (14), we see that this

condition may be expressed in terms of the fa by (6) . Condition (7) is equi-

valent to the mapping p being one-to-one almost everywhere. Hence, if we put

T = φp, and recall that φ is one-to-one, we see that Theorem 1 is proved. (The

uniqueness of H follows from (5) and the duality theorem.)

If (6) and (7) are satisfied, we can say somewhat more about Γ. Since φ is

now a homeomorphism onto H, the image of a Borel set is also a Borel set, and

therefore belongs to lΐl, the class of v-measurable sets. If c30 is the σ-ring of

Borel sets in X, and μQ is the completion of the restriction of μ to c30, then φ

is a measure-preserving transformation from (X9<^o$μQ) to (//, lίl, v). If c30 is

the least σ-ring for which all the fa are measurable, and m0 is the completion

of the restriction of m to 3o> it * s easily verified that p is a measure-preserving

transformation from ( Ω, 3o>^o) to (Λ', c30, μQ). Finally, T is a measure-preserv-

ing transformation from (.fi, c30, mo ) to (H, lΐl, v).

2. Proofs of Theorems 2 and 3. Let fι^'"ffn satisfy the conditions of

Theorem 2. By Theorem 1, it is sufficient to consider the distribution of the

corresponding characters \ χ, , \ n Writing

χα(A) =exp (2πiAa(h)),

where the Aa(h) are reals mod 1, we see that the combined mapping

is a homomorphism of H into the ^-dimensional torus Tn, realized as ^-tuples

(Xχ9 ,Xn ), the Xa being reals mod 1. The image H''= A{H) is a closed sub-

group of Tn

9 and is therefore definable by a system of relations
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α = 0 ( m o d i ) ,

α = l

where the bKa are integers. The corresponding relations, with Xa replaced by

Aa(h), must hold on //. By assumption, the only such relations are of the form

n

(19) Σ daAa(h)^0(modl),

where the da are multiples of the orders pa of χα, if finite, and 0 otherwise.

Thus // ' decomposes into a direct product of copies of Tι and cyclic groups of

order p > 0, given by

(20) paXa^0(mod 1).

The normalized Haar measure on H' is the product measure v\ It is easily ver-

ified that vA" is also a normalized Haar measure on // ' . By the uniqueness

theorem, we have vA" — v'f and Theorem 2 is proved.

The proof of Theorem 3 is exactly the same up to (18). But now nontrivial

relations may exist. Equations (18) may be brought to canonical form (see

[7, § 6 ] ) by an integral unimodular substitution carrying the coordinates \Xa\

into ί Yj j , say:

(21) djYj^O (mod 1),

where

(22) Yj=Σ ei«X«

α = l

The corresponding functions

n

(23) /α. = Π / α ; α (; = 1, . , B )
7 α = l

satisfy the conditions of Theorem 2 and are therefore statistically independent.

If (caj) is the inverse of the matrix (eyα), equations (9) hold, and Theorem 3

is proved.
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