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ON THE DISTRIBUTION OF PYTHAGOREAN TRIANGLES

J. LAMBEK AND L. MOSER

1. Introduction. This paper was conceived with the object of estimating

the number P (n) of primitive Pythagorean triangles with area less than n. The

problem seemed of interest, since F. L. Miksa [ δ ] recently tabulated all primi-

tive Pythagorean triangles with area less than 109, in order of increasing area.

The method employed here also yields known estimates for the numbers P/^ra)

and Pp(n) of primitive Pythagorean triangles with hypotenuse and perimeter,

respectively, less than n; we use Pin) as generic notation for all of these.

D. N. Lehmer [4] had shown in 1900 that

PhU) ~ - π'ln, Pp(n) ~ log 2 . π~2n.

In 1948, D.H. Lehmer [3] obtained

P p U ) = log 2 π-2n + G(nl/2 logra),

pointing out that this disproved a conjecture of Krishnaswami [2] that Ppin) ~

n/7. For primitive Pythagorean triangles with area less than 2.106, W. P.

Whitlock [6] found that

\Pa(n)~ - τ / 2 + 5 | < 2.

However, Miksa's table, which goes 500 times as far as Whitlock's, suggested

that Pa(n) is not asymptotic to (1/2)n .

In ξ 2 we reduce the problem of approximating P (n) to that of estimating

the number of lattice points in certain regions of the Cartesian plane. The

latter problem is treated in § 3 , with some attempt at generality. In § 4 we

obtain the following asymptotic formulae for P(n)ι

Ph(n)= -ττ-ιn + O(nA log n),
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P p U ) = l o g 2 . *'2n + 0{nA log n),

where c = Γ ( 1/4) 2 2 " 1 / 2 τ τ " 5 / 2 = . 5 3 1 3 4 0 . . . .

Let E (n) = en ~ Pa(n). The following table, constructed on the bas is of

Miksa's tabulations, gives an idea of the possible constant suggested by E(n)~

0{nι/3):
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9

10

PaU)

5157

7342

9007

10405

11644

12778

13800

14755

15655

16513

cn
ί/2

5313.4

7514.3

9203.1

10627

11908

13015

14058

15029

15940

16802

E(n)

138

172

196

222

237

237

258

274

285

289

E(n)n'
ί/3

.298

.294

.295

.301

.299

.282

.291

.296

.295

.289

For the foregoing data, the average value of E (n)n"ί/3 is .295 with a

standard deviation of .00405. We are led to conjecture that E (n) ~ c'nl/3

9

where c ' is approximately .295.

2. Pythagorean triangles. A Pythagorean triangle

Δ = (α, b, c) = (ό, α, c)

is determined by three positive integers o, ί>, c such that a + b2 = c 2 . If their

greatest common divisor (α, 6, c) = 1, then Δ is called primitive. If (α, b9 c) < 2,

we shall call Δ quasi-primitive. An integral lattice point \x9 y) on the Cartesian

plane will be called primitive if (re, y) = 1.

LEMMA 1. The equations

(1) α=2xy, b = x2-y2, c = x2 + y2

determine a one-to-one correspondence between all quasi-primitive Pythagorean
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triangles Δ = \a9b9c) and all primitive lattice points (x$y) of the region

x > y > 0 of the Cartesian plane.

Proof. If a, b9 c are given by (1), then clearly Δ is a Pythagorean triangle.

Moreover, if ix9y) = 1, Δ will be quasi-primitive. It is known [ l , p. 189] that

all primitive Pythagorean triangles are uniquely expressible in the form (1) with

(x9 y) = 1 and x φ γ (mod 2). It remains to consider the case {a9 b9 c) - 2.

Then (α/2, 6/2, c/2) is primitive, and we may write

a/2 = x* 2 - y ' 2, b/2 = 2x'y'$ c/2 = x'2 + y ' 2 ,

where

%' > y' > 0, (%',y') = l, % ' ^ y '

If we now let x — x' + y'9 y = x' — y' and eliminate x'9 y' in favor of x9 y, we

may easily verify (1) and x > y > 0, (x9 γ) = 1. This completes the proof.

In the following, let F (Δ) == F (a, b, c ) be homogeneous of degree k > 0 in

α, b9 c, such that there are only finitely many Δ with F ( Δ ) < n. Without loss

in generality we may assume that F has been normalized so that

( 2 ) F ( Δ ) > 1 .

In this paper, we are interested in three special cases :

Case 1. F ( Δ ) = c (hypotenuse), k = 1.

Case 2. F ( Δ ) = α + 6 + c ( p e r i m e t e r ) , k = 1.

Case 3. F ( Δ ) = a6/2 ( a r e a ) , A = 2 .

It is seen that Condition ( 2 ) is satisfied in these cases .

We wish to find the number P {n) of primitive and the number Qin) of quasi-

primitive Pythagorean triangles Δ for which F ( Δ ) < n. Now F ( 2 α , 2b9 2c) < n

if and only if F (α, b9 c ) < n/2 hence

This formula may be inverted to give

(3) PU)= £ (-lΫQ(n/2ki).
i > 0
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It should be noted that this is a finite sum, since, by (2), Q( 1) = 0.

The calculation of Pin) is thus reduced to that of Q(n). By Lemma 1,

Q(n) is the number of primitive lattice points in the region of the Cartesian

plane defined by the inequalities

(4) G(x9y) = F(2χy9 x2 - y 2 , x2 + y 2 ) < n9 x > y > 0.

If we write n = t2 , this is the same as the region

G(x/t9 γ/t) < 1, x > γ > 0,

that is, the set of all points (xfy) for which (x/t9 y/t) lies in the region R

defined by

(5) G(X9 Y) < 1, X > Y > 0.

If R is any subset of the Cartesian plane, and t any positive real number,

we define Rt to be the region obtained from R by radial magnification in the

ratio t: 1, so that (x9 y) lies in Rt if and only if (x/t, y/t) lies in R. Further-

more, let L(R) denote the number of integral lattice points in R, L'(R) the

number of primitive lattice points in R.

In particular, if R is the region defined by (5), it follows that (4) is the

region Rt, so that

(6) Q(n) = L'(Rt\n = t2k.

For any R, { χ9 y) is an integral lattice point in Rt with {χ9 y) - i if and

only if (x/i9 y/i) is a primitive lattice point in Rt/i. Hence

(7) L(Λί)= £ L'{Rt/i).
i> l

To avoid questions of convergence, we shall confine our attention to the case

(8) L(Λ) = 0, L

these two conditions being clearly equivalent. In particular, if R i s the region

defined by ( 5 ) , then ( 8 ) follows from ( 2 ) . The expression on the right of ( 7 )

is now a finite sum, and may be inverted with the help of the well-known Mδbius

function μ(i) [ 1 , p. 236] to give
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This again is a finite sum.

In view of ( 3 ) , ( 6 ) , and ( 9 ) , the problem of calculating P (n) has been re-

duced to that of counting the number of latt ice points in the region Rt, where

R is given by ( 5 ) .

3. On the number of lattice points in a region. Let R be an open set in the

Cartesian plane. We wish to approximate the number L(Rt) of integral lattice

points in Rt by the measure

of Rt. Here, as before, Rt denotes the region obtained from R by radial magnifi-

cation in the ratio t: 1.

Instead of fixing the lattice and magnifying R in the ratio t: 1, we may keep

R fixed and shrink the mesh of the lattice in the ratio 1: ί. Let Lt denote the

lattice thus contracted, with mesh length 1/ί. Then L(Rt) is also the number

of vertices of Lt in R.

LEMMA 2. // R is the open region enclosed by a simple closed Jordan

curve in the Cartesian plane, whose total horizontal plus vertical variation is

V, then

\L(Rt)-M(Rt)\ < Vt.

• *

Proof. Let Lt be the lattice conjugate to Lt, that is, the square lattice

whose vertices are the midpoints of the squares of L^. Then each vertex of Lt in

R lies in a square of L% which has a part in common with R, and each square

of Lt contained in R contains a vertex of Lt. Let st(R) denote the number of

closed squares of Lt contained in R, and St(R) the number of open squares of

Lt having a part in common with R; then

st(R) <L(Rt) <St(R).

Moreover, comparing areas, we obtain

st(R)r2 <M(R) <st(R)r2,

so that



78 J. LAMBEK AND L. MOSER

\L(Rt)-M{R)t2\ <St(R)-st(R).

Now this is the number of open squares of hi which contain portions of the

given Jordan curve /, hence does not exceed the number of horizontal and

vertical lines of Lt crossed by /. As there are t mesh lengths of L^ per unit

interval, the latter number is bounded by Fί, where V is the total horizontal

plus vertical variation of /. This completes the proof.

We wish to obtain a result analogous to Lemma 2 for unbounded regions. It

seems difficult to state the most general result of this kind. Here we confine

our attention to the following:

LEMMA 3. Let R be the region in the Cartesian plane defined in polar co-

ordinates p9 # by the inequalities

0 < p < / ( # ) , 0 < α < # < / 3 < τ τ / 2 ,

subject to:

( i ) / ( # ) is continuous9 increasing^ and positive for (X <_ # < β,

( i i ) f ( # ) ~ ( j 8 - ι ? ) μ - 1 \ 1 > μ> 1/2,

(i i i) tan β is rational.

Then

Proof, The distance from a point on the curve p — f ( $ ) to the line $ = β

is given by

(10) g{#)

which tends to 0 as $ —> β, since μ >_ 0. On the other hand,

tends to infinity, since μ < 1. Hence the line l? = β is an asymptote of the

curve.

We shall write
tan β = p/q, (p, q) = 1, p 2 + q2 = r 2 .

The distance from a point (x9 y) below the asymptote to the asymptote is then

* The symbol of / X g is used to denote 0 < lim f/g <_ lim f/g < °°.
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p sin (β — i?) = x sin β — y cos β = {px - qγ)/r.

Hence the smallest nonzero distance which any integral lattice point can have

from the asymptote is 1/r, and the smallest nonzero distance from a vertex of

Lt to the asymptote is l/(r ί) .

For sufficiently large ί, we have

Since g(t?) —> 0, we can choose a t?j such that

( I D g ( * t ) = / ( * , ) sin ( / 3 - $ ) = — ,

and g ( # ) < l/(2rί) for I? > l?t. Let fi; be the region defined by

o < p < f i d ) , ύ t < # < .0;

then Rι contains no vertices of Lt; that is, L (Rt t) = 0. Hence

L(Rt) - M(Rt) = LiRt - Rtt) - MiRt - Rtt) - M(Rtt),

so that

(12) \ L ( R t ) - M ( R t ) \ <Vtt + M ( R t t ) ,

by Lemma 2, if Vt denotes the total (horizontal plus vertical) variation of the

boundary of R - Rt. It remains to estimate Vt t and M (Rtt).

We claim that Vt - O(f (&t)Ί For the boundary of R - Rt consists of two

straight segments of lengths /(α) and / ( #$) and the arc p = /(l?), Cί < l ? < ^ .

We need only consider the variation of the latter. Its vertical variation is the

variation of / ( # ) sin #. Now this is an increasing function of U, and hence

has variation

The horizontal variation of the arc is the variation of / ( $ ) cos U. Now this can

be expressed as the difference of two increasing functions f (u) and / ( # ) (1 -

cos $ ), both of whose variations are 0(f(vt)). Hence so is the horizontal

variation and therefore also the total variation of the arc, as was to be proved.
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From (10) and (11) we obtain

(13) (βJ/XΓ1;

hence

Vtt = O(f(#t) (β - #t) >*) = O(β - ύtY
ι) = 0(tι/μ),

as required. Finally,

M(Rtt) = M{Rt)t2= - t2tf f(d)2dΰ=
2 Jvt

by (ii). Since μ > 1/2, this is

by (13). In view of (12), this completes the proof of Lemma 3.

4. Distribution of Pythagorean triangles. We shall obtain asymptotic formu-

lae for Qin) and P (n) in the three c a s e s under consideration.

Case 1. Estimation of Pfrin). Here F {a9b9 c) = c9 k = 1; and R is given by

x2 + y2 < 1, x > y > 0.

Clearly M(R) = ττ/8. Lemma 2 yields

Hence, by (9),

(14) L'(Λf)= 21 μ(i)L(Rt/i)
i < i < t

= £ {μ(t)Λί(/?)(ίA) 2

1 < i < t

3
-7Γ- 1 « 2 + 0 ( ί l o g * ) .
4
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Then (6) becomes

Qh(n)= -π'1 n + OinA log n),
4

and ( 3 ) gives r ise to

Ph(n)= Σ ("iV^ίn/Z1')
o

-

i > o ^ i > o

as stated in § 1.

Case 2. Estimation of Pp(n). Here F ( o , 6 , c ) = a + i + c, A: = 1, and R

is given by

By integration, M(R) = (log 2)/4 Calculating as in Case 1, we obtain

(?p(n)= - log 2 . 77-2

w + 0 ( « 1 / 2 l o g π ) ,
z

and

P p U ) = log 2 . 77-2 n+ 0(n% log n),

as stated in § 1.

Case 3. Estimation of Pa(n). Here F{a§ b9 c) - ab/29 k - 2; and /ι is

given by

U 2 - y 2 ) < 1, # > y > 0.

Transformed into polar coordinates, this becomes

p 4 s i n 4 # < 4, 0 < (> < rr/4.
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By integration,

The line # = 77/8 separates R into two subregions Rt and R2, which we shall

take to be open sets, Rι with asymptote U = 0, and R2 with asymptote U = 77/4.

R2 satisfies the conditions of Lemma 3, with μ ~ 3/4. Although Lemma 3 does

not apply directly to Rχ9 it may be used for the reflection of Rt about the line

U- ττ/4. Such a reflection does not affect the area of Rι or the number of lattice

points in it. Again we have μ = 3/4. Hence

Adding these two equations, and observing that there are no vertices of Lt on

the dividing line v = 77/8, its slope being irrational, we obtain

Hence, by (9) ,

i >_ 1

μ(i)M(R)(t/i)2 +0(ί/ί)4 / 3}

Then ( 6 ) becomes

so that, by ( 3 ) ,

(15) PαU)=
0

i > o » >
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Replacing M(R) by its numerical value, we obtain the result stated in §1 .
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