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1. Introduction. In the preceding paper Lambek and Moser have shown that
if P,(n) is the number of primitive Pythagorean triangles with area less than

n then
(1) Py(n)=cn'’?+0(n'?),

where

2(1/4)

c= W .
They conjecture that
(2) Pa(n)=cnl/2—c'nl/3+o(nl/3),
and on the basis of a table due to Miksa they find
(3) c’=.295.

Our purpose here is to show that

(4) Pon)=cn'?~c’n'2 +6(n"*Inn),

where

¢(1/3) (14 2°1/3)

- — ~.297.
£(4/3) (1+47173)

(5) ¢’ =

In the paper by Lambek and Moser, the problem of calculating P;(n) has
been reduced to that of counting the number of lattice points L(n) in the region

R, defined by
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(6) xy(y?=x%) <n, y>x >0,
They obtain

r?(1/4)
(7) L(n)=§—5—/2—”1—/—2 n1/2+0(nl/3).

We shall obtain, in place of (7),

2(1/4
(8) L(n) = -F—(i—l 2 4 (1+27V3) E(1/3) nt/3 £ O(n'/4).

25/2 ”l/Z

2. Proof of (8). I'ollowing is the graph of

(9) Kl:xy(yz—x2)=n.

g Prlenn)

From K; we obtain the curve K, by replacing ¥ in K{ by y + x to get
(10) Ky:iaylx+y) C2x +y)=n.

This transformation preserves the area and number of lattice points in R;.

So we count the lattice points in R, defined by
(11) xylx +y) Cx +y) <n, x>0, y > 0.

By Cardan’s formulas, we obtain, from (10),

n 1/3 }’8 1/21011/3 ys 1/2]11/3
(12) x=(— 1+(1~ +[1-{1- -
4y 10872 108n2

and

Nl
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n 1/3 4x8 1/211/3 4x8 1/211/3
(13) y=]— 1+(1- +11-1f1- —x.
2x 27n? 27n?

In (13) take

say, so that

64\'/% [27\!/® La
v=n=\g) \T)

thus determining the point p, : (x,,v,) on Ks.

Let square brackets denote the greatest integer function. Then from the

figure we have

[x,] [y
(14) L(n)= Z [yl+ Z [x]—-[xll[yl]—l(n),
x=1 y=1

where [(n) is the number of lattice points on K,. Now [(n) is zero unless n is
an integer N. For nonintegral n we can prove (8). For small positive ¢ we ob-

tain {8) for, say, N + € and N — ¢, so that trivially

(15) 1(n)=0(n'*) for all real n.
By definition,

(16) Lo 1= 0(a2/%), Ly, 1= 00a1*),

so that we may drop the brackets in (14) with an error O (n'/*). Then, by use
of (15) and (16), (14) becomes

%] [y.)
(17) L(n)= z y+ 2 X =%,y +0(n'%).
x=1 y=1

We shall estimate the above sums by the Euler-Maclaurin summation formula

in the form:
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b b 1 1 1
(18) kgaf(k)=fa flodder 5/ (0)+ f(a)+fa” (x—[x]~§)f'(x)dx.

We obtain from (17):

() Ly}
(19) L(n)=f‘ l ydx+/lyl xdy-x1y1+0(n1/4)

1 1 1 1
+-2-y([x1])+§y(1)+§x([yl])+§x(l)

[x,] 1\ d [yl] 1\ d
4-./‘l l (x—[x]—g);lzdx+fl (y—[y]—-E)-‘g’-dy.

X

In the first two terms of (19), we may drop brackets with an error of O(nt/%),

so that, if A represents the entire area of R,, we may replace the first three
terms of (19) by

(20) A-—flydx—/lxdy+0(nl/4).
0 0
Now from (12) and (13) we have
(21) x=(n/4y)l/3(21/3+0(y8/3/n2/3))+0(y)

—(n/2) 3 4 0y 73/ 3) £ 0(y),

and similarly

(22) y=(n/x)1/3+0(x7/3/n1/3)+0(x).

Substituting in (20), we obtain
(23) A4-32%2+0(*)+0(D)
—3n173/9473 L 0"V + 0(1) + O(n'/Y)
3 1/3y.1/3 1/4
=A—-2-(1+2‘ Yal/3 40V,

The fifth and seventh terms of (19) are 0(n'’*). Also
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1 1 1
-y(1) = §n1/3+0(1) and Ex(1)=n”3/24/3+0(1).

2

Differentiating the expansions of x and y in (21) and (22) we obtain
(24) dx/dy =—nl/3y'4/3/3 L2l/3 0(y4/3,/n1/3) +0(1),
(25) dy/dx =—n'3x7%/3/3 + 0(x*3/n'3) + O(1).

We now rewrite the last two terms of (19) as

nl/8 1 dy [xl] 1 dy
(26) /; (x-—[x]—-i)d—;dx +'/r;l/8 (x—[x]—é-)-&; dx

n'/® 1\ dx [y:] 1\ dx
+4/‘1 (}’—[}’]-—E)d—y-dy +fn1/8(y_[y]_§)2; dy.

Since |dy/dx| is monotonic decreasing, we have, by the second mean value

theorem for integrals, and (25),

[x,]
(27) f ' (x—[x]—l)ﬁ.dx_—.i}:
n1/8 2/ dx dx

h 1
T 1__)01
nus]rnvs (x )

=0(n'®)0(1)=0(n'°).

x=

Similarly

(] 1\ dx e
(28) ./;1/8 (y—[y]—i)&—y dy=0(n""°).

Substituting (24) and (25) in the remaining terms of (26) yields

1/8 1\ d 1/3 1/8 1
(29)fn (x—[x]——)—zdx=—n fn (x—[x]——\)x'4/3dx+0(1)
1 2/ dx 3 1 2
1/3 o0 1 1/3 00 1
- f x—[x]-—)x'4/3dx+n f (x—[x]——)x'4/3dx+0(1)
3 N1 2 3 J,1/8 2

1/3
nt/

o0 1 -4/3 1/6
-2 /l(x_[x]_g)x dx +0(n'9),
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and similarly

nl/8 1\ dx ﬂl/s o0 1
S S YR IR S

+0(n'®),

Collecting the preceding results, we have

3
(31) L(n)=4 _-2-(1+2-‘/3)n‘/3+O(n‘/")+0(n‘/“)+n‘/3/2+0(1)

#3243 Lo+ (1 4+ 223 en' 2 £ 0(11%)

=A-(1+273) (1 =c)n'3 4+ 0%,

where
00 1
(32) cl=fl <x~[x]—§)dx-‘/3=4(1/3)+1.

Now A4 is the area of R, and therefore the area of R;. Its value as calculated

by Lambek and Moser is

r2(1/4)

_ 1/2 _
(33) A—-02n ’ 02—-—-———25/2"1/2 .

Substitution from (32) and (33) in (31) yields (8).

3. Derivation of (4). Let cz3 =—(1+ 2°1/3) ¢(1/3), so that (31) becomes
(34) L(n)=con'? —c5n'/2 + 0(n'/*).

Following the notation of Lambek and Moser, we can write (34) as
(35) L(Rt)=cyt?—c3t?’3+0(2).

From their equation (14) we have

t2 t4/3
(36) L’(Rt) = Z [.L(i) (3] -3—(,‘3
i> 1 i i

+0(t/i)

4/3
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=160,/ + 0(1/t) 3% ~1es/C(4/3) + O(1/¢Y3)}4*3 2 O(t In ¢t)

602 2 c3 4/3
= — - t*2 4+ 0@t 1ne).
2 Z(4/3) "

Then from their equations (6), (15), and our (36), we have

{602711/2 c3n1/3

P £(4/3) 4473

(37) P(n)= 2 (1)

i>0
nt/* n
+ 0 - In -_
4L/4 4t
Ve
=4deont’?/n? — +0(rY*Inn)

£(4/3) (1 4 4717%)
=en'?—¢c’ '+ 0(Y* Inn).

This is (4).
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