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1. Introduction and notation. Let α be a positive irrational number. The

multiples of CC, the numbers α, 2θC, 3d, , are equidistributed mod 1. Suppose

fix) is a bounded function, Riemann integrable on the interval (0,1), and

periodic with period 1. It follows from WeyΓs theory of equidistribution [2] that

1 N /i

iΛ- ύ£finaUJo f(x)dx

The purpose of this paper is to determine what modifications of this result are

required when fix) is improperly Riemann integrable.

Every positive irrational number (X has an infinite continued fraction expan-

sion,

α = bo + 1

b 3 + ••• ,

where the b( are integers such that όo _̂ 0, and b{ > 0 for i — 1, 2, 3, . Let

pi/qi ii = 0, 1, 2 , . . ) be the convergents to Gt. The integers p. and q^ are rela-

tively prime, and

t b0

1,2,3,...)
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9 4 R. SHERMAN LEHMAN

Let Δj = α — p{ /<7f We shall make use of the inequalities

( - l ) * Δ j > 0 and \/±i\ < <

In our discussion we shall often omit the subscript i; thus q^q., Δ = Δ { .

Denote by Riγ) the fractional part of y, often expressed by the notation

y - [ y l .

2. Theorem. We shall establish the following result.

THEOREM 1. Suppose fix) is a periodic function with period 1, improperly

Riemann integrable on the interval (0,1), and bounded in every closed sub"

interval which excludes the points 0 and 1. Suppose further that fix) is bounded

or monotone near 0 and bounded or monotone near 1 in (0,1), Then, for N —»oo,

l n i b

(1) - £ / U c O = / fiχ)dχ+ - £

where N = bq{ + r, q{ < N < qi + ι, and 0 < r < qr

REMARKS. 1. We note that the theorem includes the case in which

lim / ( * ) = + oc and lim
x -» o + x -* u

The conclusion of the theorem can also be stated in the form

lim - Σ /Uα)= fl fix)dx,

where the sum is extended over the positive integers n < N which are not

multiples of q , where q. is the largest denominator of a convergent to (X that

is less than or equal to N. Observe that the values of n which are not summed

over are independent of the particular function fix).

2. This theorem contains a result proved by MacMillan [ l ] , who showed

that if Diy) is the absolute value of the difference between y and the nearest

integer, so that 0 < Diy) <C 1/2, and α is an irrational number for which
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t h e n

l N r%
l im — ]Γ logD(na) = - l o g 2 e = / log\x

P r o o / . F i r s t , c o n s i d e r t h e c a s e t h a t | / ( * ) | i s b o u n d e d . If | / ( % ) | < M,

w e h a v e

1 b M M
< b — < — ,
~ N - q

which tends to zero as N—> oo. It follows from this and WeyΓs result that the

conclusion ( 1 ) is valid in the special case that | / ( # ) | i s bounded.

It will be sufficient to prove the theorem in the case that for x near 0, | / ( # ) |

is monotonely decreasing as x increases; and for x near 1 is monotonely in-

creasing in ( 0 , 1) . Certainly f ix) can be written as the sum of a function with

these additional properties and a bounded integrable function. Now, ( 1 ) is

valid for a bounded integrable function; and further, if the equation ( 1 ) holds

for two functions, it must hold for their sum. Therefore, we may limit our con-

siderations as indicated.

Decompose fix) into three periodic functions fe(x), g€(x), and he{x) of

period 1, where £ is a small positive parameter to be chosen later, with

fe(x) = f(x) for € < x < 1 - 6,

fe(x) = 0 f o r * < e o r % ^ l - 6 ,

g€(x) = 0 for x > 6,

he(x) = f(x) for x > 1 - £ ,

Λ 6 U ) = 0 for x < 1~ 6.

We define A as the set composed of the positive integers n < N for which

1 1
- < R(nθi) < 1 .
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Then, for N sufficiently large, we have

(2) - Σ /(nα) = -
N

Σ,f€Uθi)

By WeyΓs result,

nβA

he(n(λ)

(3) lira — f(x)dx.

Since p and (7 are relatively prime, when τι runs through the integers 1, 2,

3, , q, R{ np/q) runs through the numbers m/q (m = 0, 1, 2, , q — 1), taking

on each value exactly once. Therefore, when n runs through the integers 1, 2,

3 , . . , N - bq + r9 each of the values m/q is assumed by R(np/q) exactly b

times if r = 0; and if r ^ 0 each value m/q is assumed either b or (6 + 1) times.

But since

where

(4)

it also is true that the intervals (m/q, (m + l)/q) each contain b values of

R (na ) if r = 0, and either 6 or ( b + 1) values if r 7̂  0.

We choose € sufficiently small so that | g e ( * ) | and \he(x)\ are monotone

functions in (0 ,1) . Then if we compare ge(nGi) with g€(m/q) when R(n<x)

lies in the interval (m/q, (m + D/q) we have \g€(nCL)\ <_ \ge(m/q)\. Hence

n€A

1 q-2- Σ
b<f m - l

Se ~ <

= 2 [€\f(x)\dx,

since ςr is large. Similarly, when R(n<x) lies in (m/q, (m + \)/q) we have

'•mi
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and hence

/V

A6Uα)
n£A

1 9
< - £ ( 6 + 1 ) \h€(χ)\dx

u e

It now follows from ( 2 ) and ( 3 ) that

f U a ) ~ fι f ( x ) d x < 3 [ e \ f ( x ) \ d x + 3 Γ
Jo Jo Jl-eN n€A

as /V —> oo Letting e tend to 0, we find

(5)
n£Λ

f(x)dx

• 0 0 .

Now, we must consider the terms of ( 1 ) for which the R(nCί) are in ( 1 -

l/q9 1 ) or ( 0 , l/q). There are different cases depending on whether i i s even

or odd. We suppose first that i is even. In this case we shall find that the sum

of the terms for which R(nθi) is in ( 1 - l/q9 1) i s o ( l ) . The sum of terms for

which R(nθi) i s in ( 0 , l/q), on the other hand, is not necessarily o ( l ) . This

accounts for the additional terms beside the integral in the right side of ( 1 ) .

We first want to find all n < N for which the R(nVί) are in ( 1 - l/q ), 1 ) .

Since i is even, we have

and therefore R{q^χ p/q) = 1 — 1/?. Then, since n<X = np/q + nΔ, Rind) will

be in ( 1 - \/q, 1 ) if and only if R(np/q) = 1 - l/q. Repeating the reasoning

preceding formula ( 4 ) , we observe that necessarily n Ξ q. 1 (mod q).

We define 6 ' = 6 — 1 if r < ςNβ l and 6 ' = b if r >̂  7/.^ Further, r can be

>̂  q.mi only in case ό < b. + i 9 for
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by assumption. Hence in any case we have b' < όι + 1 - 1.

Thus R(nθi) is in (1 - 1/q, 1) if and only if

and

R{(kq
<7

Now let

s= -
N R(na)> 1-

/ ( i i α ) .

= 0,1,2,

B e c a u s e o f t h e m o n o t o n i c i t y o f | / ( x ) \ n e a r 1, w e h a v e

i b'

where

f 1 —

1 1
λ = 1 + q.mlΔ9 μ = 1 + ( ό / + 1)qrΔ + qr. ^

Also μ < 1 because b' <_ δ. + 1 - 1, and hence

. ^ ) Δ qi + ι

By assumption the function | / ( Λ ; ) | is monotonely increasing in the interval

(1 - l/q, 1) for q sufficiently large. Its average over the interval (λ, μ) must

be less than its average over an interval closer to 1. From this it follows that

μ\f(x)\dx<Z—
.. 1 - λ

)
(b'+l)qΔ fι

/

But
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since £κ + 1 >_ 1. Hence

(bq + r)ςrΔ Jλ

\S\ < if' \f(x)\dx.

\f(x)\dx <
2^(6 + 1) / ι

bq

+ Γ \ f { χ )\dx.

o o .Since λ >̂  1 - l/q, which tends to 1 as N —> oo, S —> 0 as N

The only terms of (1) which we have not considered yet are those for which

the R(na) lie in (0, l/q). But R(nθi) will be in (0, l/q) if and only if

R (np/q ) = 0 which occurs only when n = kq (k = 1, 2, 3, . . . , b). Thus we find

1

yv Σ
R(na) < l/q

1

A : = l

(6)

Using ( 5 ) we have finally

1 N
l 1 6

f(x)dx+ - T f(kqa) + o

ίorN • 0 0 .

We have assumed that i is even, but the case in which i is odd is similar

and can be treated in a corresponding manner. In this case, however, it is the

sum of the terms for which R(nCί) is in (0, l/q) which is o ( l ) , and the terms

for which R(n(λ) is in (1 - l/q, 1) which account for the additional terms

beside the integral in the right side of (1) . The result obtained is the same as

(6) . The proof of Theorem 1 is then complete.

3. Further results. We start with two remarks.

1. It is not difficult to determine for what choice of N for q. < N <

the sum term in the right side of formula (1) is largest. We have

(7)
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We see that the sum term is largest in absolute value when N = q., the de-

nominator of a continued fraction convergent, for then

— / f \n<X) = I f(x)dx + — f (a. Δ.) + o( 1 ) .
q. ~ J Jo 1i

On the other hand, it follows from this that if TV = qi - 1,

1 q£ 7j Γi Z i

Thus, we see Weyl's result holds without omitting terms from the sum if N —> oo

over the sequence of numbers qγ — 1, q2 — 1, q3 - 1, . MacMillan [ l ] proved

this result in the case

/ (x ) = log I x I for < : * £ . " " •

2. If there exists a constant c > 0 such that

IΔ, I > Λ

for all q., then

1 1

q q \cq

which tends to 0 as q —»oo. Such a constant c exists if the quotients b^ of

the continued fraction for Cί are bounded.

THEOREM 2. For all irrational GL > 0 with the property that the quotients

of the continued fraction for Cί are bounded,

1 Λ Λ .
lim -~ 2^ / (rcOt) = / f\x)dx.

In particular this formula holds for all OC which are quadratic irrationals.

For almost all α Weyl's result holds without omitting terms from the sum.

\
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THEOREM 3. Suppose fix) satisfies the hypothesis of Theorem 1. Then,

for almost all α ,

1 N Γi

lim - ]Γ /( r a α)= / f(x)dx.

Proof. From Theorem 1 and (7) one can see that it will be sufficient to

prove that

-/Uα)—*0

n

as n —> oo, for almost all OC.

Let Efς be the set of (X for which 0 < α < 1 and | / ( c θ | > k/v9 where

v is a positive integer. Interpreting fQ \ f (x) \dx as a Lebesgue integral we
h a v e l °°

< Γ\f(χ)\dx,
Jo

where m(£/ς) is the measure of E^ The measure of E^ is equal to 1/k times

the measure of the set of CC for which

0 < α < k and - | / ( c θ | > -
k v

because of the periodicity of fix). It follows that miE^) ~ miF^), where

Fjς is the set of OC for which

0 < α < 1 and - | / U α ) | > - .
k v

Hence Σ £ = 1 miF^) converges.

Let Gv be the set of all Ot for which 0 < α < 1 and for which there are

infinitely many n such that

- | / U α ) | > - ,
n v

Thus Gv is the set consisting of all Gt which belong to an infinite number of

the sets Fi9 F 2 , F 3 , . Any open set which covers the union of the sets
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u Fk+29*** w iH a l s o cover Gv no matter how large k is. But this union

will have arbitrarily small measure if k is chosen sufficiently large, because

L,'=i m(Fι ) converges. It follows that m iGv) = 0.

Now let G be the set of all (X for which 0 < α < 1 and f (nd)/n does not

tend to 0 as n —» oo. The set G is the union of the sets Gi9 G 2, G 3, . Since

each of the sets Gv has measure zero, G has measure 0, which was to be proved.

If fix) becomes infinite at points other than the end points, a result which

corresponds to (5) can be proved. Again the sum tends to the integral provided

certain terms are omitted. The terms omitted depend on the positions of the

singularities of fix) but otherwise do not depend on the particular function

fix). We omit the proof of the following theorem because it is similar to the

proof of (5) .

THEOREM 4. Suppose f ix) is a periodic function with period 1, improperly

Riemann integrable on the interval (0,1), and bounded except in the neighbor-

hood of a finite number of exceptional points in the interior of iθ, 1). Suppose9

furthermore, that in the fialf-neighborhood to the right of an exceptional point

X9 fix) is bounded or monotone; and also in the half-neighborhood to the left

of X9 f ix) is bounded or monotone. Let N - bq^ + r, q^ < N < qi + i9 and define

the set Λ composed of positive integers < N in the following way. If Rind)

is in the interval i m/q, i m + 1 )/q) put n in A if and only if there is no ex-

ceptional point X such that im — \)/q < X < (m + 2)/ςr. Then

lim - Σ, f(na)=fl f (x)dx.
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