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THE BEHAVIOR OF SOLUTIONS OF A LINEAR DIFFERENTIAL
EQUATION OF SECOND ORDER

RICHARD A. MOORE

Introduction. This paper is a study of the oscillation and boundedness of

solutions of the self-adjoint differential equation

(1) ( r ( % ) y ' ) ' +

on the infinite half-axis /, a < x < + oo. We shall assume throughout that r(x)

and p(x) are real, continuous functions and that r{x) is positive on /. A non-

null solution of equation (1) is said to be oscillatory if it has an infinity of

zeros on /.

It will be noted that the results given here are of the "integral te s t " variety.

Although the problem goes back at least to Kneser [5 ,6] ; probably the first

"integral" condition for oscillation is due to Fite [1] , His criterion is that

all solutions of the even order equation

(2) y py

oscillate provided p{x) > 0 and

0

p (x) dx = + oc.Γ
Ja

A similar result for the case n ~ 1 is due to Wintner [14] in which there is no

restriction on the sign of p(x). Simultaneously Leighton [8] noted the ana-

logous result for equation (1) (see Theorem 1 in this paper).

Hille [ 2 ] studied the nonoscillation of solutions of (1) for the case r{x) Ξ 1

and p(x) nonnegative and established the roles of the functions

[* ξp(ξ)dξ and x Γp(ξ)dξ
Ja Jx
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126 RICHARD A. MOORE

(see Theorems 3 and 4, and the remarks preceding Theorem 6 in this paper).

The chief purpose of this paper is to extend the results of Hille and Leighton,

1. Oscillation theorems. We shall recall first the theorem due to Leighton.

THEOREM 1. If both

dx[°o dx Γ°° t \
I = + oo and I p \x)dx - + oo

Ja r\x) Ja

hold9 then the solutions of equation ( 1 ) are oscillatory.

It has been pointed out [10] that if the conditions of the theorem fail to

hold, an oscillation-preserving substitution

y = u(x)z, u(x) > 0,

will frequently transform equation ( 1 ) into a form in which the conditions are

applicable. Indeed, under the assumption that {r{x)u' ( % ) ) ' be continuous,

z sat i s f ies the self-adjoint equation

( 1 . 1 ) ( r ( x ) u 2 ( x ) z ' ) ' + [ u ( x ) ( r ( x ) u ' ( x ) V + u 2 ( x ) p ( x ) ] z = 0.

We make the observation that solutions oscillate if and only if there is an ad-

missible u(x) such that

= + oo, f°°[u(x) (I ( * ) B ' ( * ) ) ' + u
° r{x)u2(x)

This follows from Theorem 1 and the fact that a function uι(x) can be exhibited

(see, for example, [ lθ]) which satisfies the identity

Ξ ιn(*) {r(x)u'ι(x)V + u2(x)p{x).
Ax)uf(x)

In this case, a particular solution of (1.1) is clearly

If* dt \
sin I / I ,

y« r ( ξ ) u 2 ( ξ ) j
which oscillates only if /~ (r ( ξ) u\ ( ̂ ) ) " 1 dξ ^ + OD .
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We proceed with the proof of the following result.

THEOREM 2, Solutions of equation ( 1 ) are oscillatory provided conditions

(A) or ( B) are satisfied:

f<χ> dx
( A ) f —-—- = + oo, and9 for s ome n < 1

Ja r(x)

f°° fx dζ
I p(x) gn(x)dx = + oo, where g (x ) = 1 + / .

Ja Ja r(ξ)

Γoo dx
( B ) / —-— < + oo, and9 for s ome m > 1

Ja r(x)

/•oo / c» c/f
/ p(%)Λm(Λ;)c?Λ; = + oo, where h\x) = I .

^ α Jx r(ς)

T o p r o v e t h e t h e o r e m , n o t e t h a t if ( A ) h o l d s , e q u a t i o n ( 1 ) may be t r a n s -

formed by t h e s u b s t i t u t i o n

y = gn/2(x)z.

The function z{x) sat is f ies the equation

( 1 . 2 ) ( n ( x ) z ' ) ' + P l ( x ) 2 = 0 ,

where

Theorem 1 is now applicable, for

/•oo rfΛ gUn(x) I*

/ -7—x = l i m —Λ =
Ja rι\x) χ->°o I- - n \ a

+ 00 ,

and

τι —

t h e r e f o r e , s o l u t i o n s of ( 1 . 2 ) ( a n d , t h u s , t h o s e of ( 1 ) ) o s c i l l a t e .
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If conditions ( B ) hold, the substitution y - hn (x)z leads to the following

equation for z

( 1 . 2 ) ' ( r 2 ( * ) z ' ) ' + p 2 ( * ) z = 0 ,

where

U ) < > , P a U ) +

r{x)h2-mU)

An application of Theorem 1 completes the proof.

If the conditions of Theorem 2 are not satisfied, we shall see later that

some results can be obtained by studying the functions

The following result, due to Hille [2, p. 238], is given for completeness. It

has been reformulated here so that it applies to equation ( 1 ) .

T H E O R E M 3. //

/•oo

/ I p(x) I g(x)dx < + oo,
Ja

the general solution of equation (1) is

eι(x)) + c2 g(x) (1 + e2(x)),

where c\ and c2 are arbitrary and lim^^oo βi(x) = 0 (i = 1, 2).

An obvious modification of Hille's proof of Theorem 3 yields the following

result.

T H E O R E M 4. //

/ | p U ) | h(x)dx < + oo ,
Ja

the general solution of equation (1) is



LINEAR DIFFERENTIAL EQUATION OF SECOND ORDER 129

where liuix^oo e((x) ~ 0 ( i = l , 2 ) .

This theorem trivially implies that all solutions of equation (1) are both

nonoscillatory and bounded.

The following is a similar nonoscillation test, applicable to a broader class

of equations than those covered by the two preceding theorems.

THEOREM 5. Solutions of equation (1) are nonoscillatory if either of the

following conditions is satisfied:

(A) There exists a finite number A such that, for x >_ b >_ a,

0<A~ fX

 P(ξ)g(ξ)dξ < 1.

Jo

(B) There exists a finite number B such that for x >_ b >_ α,

0 < β + / * p(ξ)h(ξ)dξ < 1.
Jb

Suppose that Condition (A) is satisfied and consider the differential equa-

tion

(1.3)

where

p{ξ)g(ξ)dξ].

We have, according to Condition (A), that 0 < rι(x) < r(x) lor b <% < + oo.

According to the Sturm comparison theorem, solutions of equation (1) are non-

oscilatory if those of equation (1.3) are. We see, however, that g(x) is a

particular solution of equation (1.3). Since g(x) is nonoscillatory, all solutions

of (1.3) are, and the proof of the result is completed.

To prove the theorem in the case where Condition (B) holds, note that the

equation

(1.3)' lr(x)\β + fX p{ξ)h{ξ)dξ\y'Y +p(x)y-0

has the particular solution h(x). The proof is completed by the use of the same
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argument as that employed in case (A).

We include an example which shows that the theorem is not valid under

either of the less restrictive assumptions:

(A') max [* p(ξ)g(ξ)dξ - min fXp(ξ)g(ξ)dξ<M,

( B ' ) m a x [X p ( ξ ) h ( ξ ) d ξ - m i n Λ p { ξ ) h { ξ ) d ξ < M,
x > a J a x > J

where M is any finite number.

EXAMPLE 1. Consider the equation

(1.4) (x2y'V- Ax cos (2 log x)y = 0

on the interval [ 1, +oo), where Aγ is a parameter. A computation shows that

max
x>

/

x tx

ph dς — min I pk dζ - A ι .
x> ιJι

On the other hand the substitution y = x" 2 z and the subsequent transformation

t - log x yield a function w(t) = z (x(t)), which satisfies the Mathieu equation

d2w I 1 \
(1.4)' + Ax cos 2ί U ; = 0.

dt2 \ 4 /

We assert that solutions of equation (1 .4) ' (and thus those of equation (1.4))

are oscillatory if \Aχ \ is larger than a critical constant A2 where the approxi-

mate value of A2 is 1.5. To show this we recall several properties of the solu-

tions of the general Mathieu equation

( 1 . 4 ) " y" +(c-q cos 2*)y = 0,

where c and q are real parameters. It is known (for example, Ince [3]) that for

number pairs (c,q), which satisfy the equation

equation ( 1 . 4 ) " has a periodic nonoscillating solution, which we denote by

Uq(x). The function fQ(q) has the properties that it is continuous and single



LINEAR DIFFERENTIAL EQUATION OF SECOND ORDER 131

valued for - oc < q < + oc. In addition / 0 (0) = 0, fQ(q) is an even function

of q, and fQ(q) is monotone decreasing for q > 0. It follows that, if | qχ \ > qQ,

solutions of

( 1 . 4 ) ' " y " + ( / o ( ? o ) - ? i c o s 2%)y = 0

are oscillatory. To see this, we transform equation ( 1 . 4 ) ' " by the substitution

y = Uq (x) z, i n t o

( 1 . 4 ) " "

Since / 0 ( α 0 ) - / 0 ( ^ ι ) is a positive constant, the application of Theorem 1

shows that solutions of ( 1 . 4 ) " ' are oscillatory.

(Note that, if \qχ\ <_ q0 in equation ( 1 . 4 ) " ' , the above technique estab-

lishes the fact that solutions of equation ( 1 . 4 ) ' " are nonoscillatory. The in-

vestigation of Example 1 has thus led to a complete description of the oscillat-

ing and nonoscillating cases for the Mathieu equation.)

We complete the proof of the assertion by noting that

h a s t h e s o l u t i o n s g = ± i 4 2 [ 4 ] .

H i l l e h a s p r o v e d the fo l lowing r e s u l t [ 2 , p . 2 4 6 ] for t h e c a s e w h e r e r{x) = 1

a n d p(x) >_ 0 in e q u a t i o n ( 1 ) .

if

* /
Jx

1
-
4

solutions of equation (1) are nonoscillatory. If, on the other hand,

1
l

Jx

> c > -
4

solutions of (1) oscillate.

We obtain a generalization of this result, valid for any admissible r(x) and

free of the assumption that p{x) be nonnegative. It f™ p(ζ)dζ exists, we de-

fine
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G(x) = gU)[°° p(ξ)dξ,

and if f™ (l/r(ξ))dξ exists, we define

H(x) = h{χ) [* p(ξ)dξ.
Ja

THEOREM 6. If there exists a real number k such that either of the follow-

ing inequalities holds for a<Lb<Lx<+oo,

-k-y/ϊ <G{χ) <-k+ yjk < - ,
4

-k-y/ϊ < H(x)<-k+ yfk < - ,

then solutions of equation (1) are nonosdilatory.

If k is such that the first inequalities hold, we prove the result by forming

the function

(x) e x p l / — — / p(s)dsdξ\.
[Ja r(ξ) Jξ J

A computation shows that u(x) is a solution of the differential equation

(1.5) ( r ( * ) i ί ' ) ' + p1(*)i» = 0,

where

pΛx) = p (x) -
r(x)g

2(x)

The function pχ(x) is continuous; moreover, by hypothesis, for x >_ b >_ α,

G(Λ ) assumes only values on the closed interval determined by the two roots

of the quadratic equation

It follows that

l)+ 2kG(x) + G2(x) < 0;
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hence, for x >_b9 pι(x) >_p(x). Since solutions of equation (1.5) are non-

oscillatory, an application of the Sturm comparison theorem completes the result.

In case the second inequality holds, we form, for the appropriate k9 the

function

- f* - 2 — [ ξ p ( t ) d t d ξ \ .
Ja r(ξ) Ja J

This function is a solution of the differential equation

( 1 . 5 ) ' {r(x)w'V +p2(x)w = 0,

where

" 4 ( 4 - 1 ) + 2kH(x) + H2(x)
pΛx)

r(x)h2(x)

The remaining details of the proof are identical with those of the first case.

Corresponding to the second half of Hille's theorem we have the following,

T H E O R E M 7. If either

- < c <G{χ) < d < + oo
4

- < c <H(x)
4

holds, then solutions of equation ( 1 ) are oscillatory. Ifp(x) > 0, G(x) need

not be bounded from above.

Note first that if G(x) >_ c > 0, then

Γoo dx

Ja r(x)

We consider the following identities:

ί*p(ξ)g(ξ)dξ = [* - T T Γ T T ; d ξ - G ( x ) + Γ P(x)dχ
Ja Ja r\ς)g\ς) Ja
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[
a r

It follows from the conditions of the theorem that either

Γ P(ξ)gU)dξ>c Γ -
Ja Ja T (ξ)gu)

p(ξ)h{ξ)dξ >c
a * * * - Ja r(ξ)h(ξ)

E q u a t i o n ( 1 ) for t h e s u b s t i t u t i o n s , y — g (x) z9 or y = ft *(x)z, r e s p e c t i v e -

ly, i s t rans formed in to

(1.6) {r{x)g{x)z'Y Λ 1 ] t χ + p(x)g(x)]z = 0
I 4,r(x)g{x) J

or

(1.6)' {r{x)h{x)z'Y + U

respectively. We can now apply Theorem 1. We have for equation (1.6)

dxf "
Ja r(

= + 00
•ix)g(x)

and

r% dξ

In similar fashion Theorem 1 is applicable to equation ( 1 . 6 ) ' to show that, in

either case, solutions of (1) oscillate.

If p(x) >_ 0 and /o°° (l/r(x))dx = + oo an obvious modification of Hille's

proof [2, p. 242] yields the result.
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COROLLARY 1. Solutions of equation ( 1 ) are nonosdilatory if both

dxΓ°o dx I Γx
I ——- < + oo and lim sup I p{ξ)dξ

Ja r(x) r ->oo I Ja

The proof follows immediately from the fact that lim^^oo H(x) = 0.

This result is a refinement of a theorem due to Leighton [9, p. 657] which

states that the result holds if r(x)p(x) is a positive, monotone function and

both p(x) and l/r(x) have convergent infinite integrals.

That the constant 1/4 is sharp is shown by the example of the Euler equation

y " + - L - y = 0 .
X

The following example shows that the condition

1
- oo < Lo < G(x) < Lι < -

4

is not sufficient for nonoscillation.

EXAMPLE 2. Consider the equation

( /TO

on the interval [ 1, oo). The substitutions y = x z and t — log x show that

equation (1.7) is only the transformed Mathieu equation

( 1 . 7 ) ' — + / - - + A cos 2t\z = 0.
dt2 \ 4 /

It was established in Example 1 that this equation (and hence equation (1.7))

has oscillating solutions if, for example A = 2 > A2. A computation of G{x)

for equation (1.7) shows that

-63 /256\ /sin ( 2 log x ) cos ( 2 log x ) \ , x
G(χ)= 8 ^ + oil).

4 \257/\ 2 32 /

For this A we have the desired result; that is,
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1
-oo < Lo <G(x) <Lι < - .

4

If in equation ( 1 ) r(x) = 1, we make the substitution y = xmz9 m < 1/2;

thus, z satisfies the equation

( 1 . 8 ) (x2mz'V +(m(m-l)x2m-2

 +x2m

P(x))z=0.

Computing G(x) for this equation, we find

Gix) + ^

( 2 m - I ) 2 l - 2

We d e f i n e

Gm(x) = xi-2m [~ P(ξ)dξ,
Jx

and obtain the following extension of Hille's theorem.

C OR O L L A R Y 2. If in equation ( l ) r ( % ) = l , and for x >_ XQ >_ a and m < 1/2

we have

0 < Gm{χ) < 2 m ,

then solutions of equation ( 1 ) are nonos dilatory.

Since

m(m - 1) -m 2

m

( 2 m - l ) 2 ( l - 2 m ) 2 1 - 2m

and

m(m — 1) 2m —m

l -2m ( l - 2 m ) 2 l -2m
- k+

under the assumptions on Gm(%), the function G(%) for equation (1.8) satisfies

- k - \ f k <G(x) < ~ A + y[k .

The corollary now follows from Theorem 6.
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Gy^(x) is defined only if lim^^oo JJ* ξ ρ(ξ)dζ exists and is finite, and

thus, according to Theorem 5, the solutions are nonoscillatory. In any case,

this result is a natural link between Hille's theorem and Theorem 5.

We shall denote by Ny(xι,x2) the number of zeros of a solution y(x) of

equation (1) on the interval [xχ,x2]. According to the Sturm separation theorem,

for any other solution u(x) of (1)

N u ( * i , * 2 ) = Ny{xux2) + 0(1);

therefore, there will be no ambiguity in calling N (xι, x2) the number of zeros

on [xi$x2 ] of any solution of equation (1).

In order to place estimates on N(xί$x2), we note that equation (1) is

equivalent to the system of equations

a(x) , -p(x) a'(x)

r\x) a\x) a(x)

where a(x) > 0 and has a continuous derivative. In terms of polar coordinates

R and β in the yt>plane, we have

dβ a(x) 9 p(x) 9 a'(x)
(1.9) = s in 2Θ + cos2Θ + • sin Θ cos Θ

dx r(x) a(x) a(x)

d(logR) \a(x) p(x)] a'(x)
(1.10) Ξ = 1 cos Θ sin Θ — - sin2Θ.

dx I r(x) a(x) I a(x)

Every solution y{x) of equation (1) can be uniquely represented by

y(x) = R(x) COSΘ(Λ )

where [R(x), Θ(#)] is a solution of the system (1.9) (1.10). These equations

can be exploited for oscillation and boundedness theorems, typical of which is

the following.

THEOREM 8. For any constant A > 0,

N(xux2) < - f*2 max [—— , £-H</% + 0 ( 1 )
πJχt lr(x) A J

1 p 2 ϊ A p(x)] , x

u x 2 ) > - / min - 7 — * —Γ \dx + 0(l).
π Jχι ir(x) A J

N{ xu
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To see this, we set a(x) = A; thus, equation (1.9) becomes

d® A p(χ)
sin Θ + cos Θ.

dx r(x) A

It is clear that

1 Γ*2 / d®\
N(xux2)= - / )dx + 0 ( 1 ) .

π J%ι \ dx I

The result now follows from the obvious inequalities

f A p(x)] A . p(x) Γ A p(x)
min I —•—•— I < sin Θ + cos Θ < max I ,

i r ( x ) ' A J - r ( x ) A - l r ( x ) A

THEOREM 9. Ifr(x)p(x) < M2 for a < x < + ex: then

lim sup / p(ξ)dξ =

is a sufficient, and

4- 00

dx

la r"ΰ)Ja

a necessary condition that solutions of equation (1) oscillate. x

To prove the result note that for A = M

Γ A p ( x ) ] p ( x ) [ A p ( x ) ] M

min I , I = a n d max —•—-, I = —-—-.
l r ( x ) A J M l r ( x ) A J r ( x )

From these relations and Theorem 8, we have that

— [* p(ξ)dξ + 0 ( 1 ) < N ( a 9 x ) < - P 4 T T + 0 ( 1 ) .
πU Ja π Ja r\ξ)

The remaining details of the proof are now obvious.

We remark that

l rΓhis theorem was suggested by an unpublished theorem due to Leighton and Martin
in which the condition | r (x )p (x )\ < M replaces the analogous condition here.
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max
P (*) p(x) p(x)

hence, if for some constant, A,

/ •
Ja

p(x)
dx < 0 0 ,

then

A rx dξ
N (α, x) = — / -—

Equation (1.9) can be written as follows

0 ( 1 ) .

(1.11)
d® 1

Ihc 2 [r(x)

p(x) p(x)

A J 2 l r U )

THEOREM 10. If for some A

A p(χ)

cos 2Θ.

lim
A p(x)Vι

—)+ —\ = 0 '

then

l + e ( % ) fx I f /4
/ V ( a i % ) = — / -

7Γ Ja 2 L r ( ξ ) A

where l im^^oo e (x) = 0.

The proof follows immediately from equation ( 1 . 1 1 ) .

2. Theorems on boundednes. We derive 'here a number of resul ts by suit-

able choices of a(x) in equation ( 1 . 1 0 ) .

THEOREM 11. For every A > 0 we have

x A p \ R(x) x A

The proof is obvious.

THEOREM 12. If r(x)p(x) is positive and has a continuous derivative,

then2

2[f(x ) ] + = max [fix ), 0], [fix )]_ = - min [fix ), θ ] .



140 RICHARD A. MOORE

- Ria) - r l 2 Ja [ irp)

For a(x) = (r(x)p(x)) 2, equation ( 1 . 1 0 ) becomes

dilogR) 1 [(rU)pU))Ί -
= - - sin Θ.

dx 2 I r\x)p\x) J

The inequalities of the theorem now follow from the inequalities

[ irix)pix))'] irix)pix))' # 2 Γ irix)p ix ))'Λ

rix)pix) J + ~~ r(x)pix) "" I rix)pix) J_

Theorem 12 is a more general statement of a theorem due to Leighton [ 7 ,

p. 190] in which it is assumed that rix)pix) is a posit ive, monotone function.

THEOREM 13. If p ix) — — f ix), and rix) f ix) is positive and has a con-

tinuous derivative, then

and

Λ V r !/α | rf ] ,

S e t t i n g a ( % ) = {r{x) f ( x ) ) , w e h a v e

d(logΛ) /7ΰ) 1 (r(x)f(x))'
1 s i n 2 Θ 1 s i n 2 Θ .dx \ rix) 2 r(x)f(x)

T h e p r o o f of t h e t h e o r e m i s n o w o b v i o u s .

In t h e s p e c i a l c a s e , w h e r e (rix)fix))' >_ 0 , i t f o l l o w s t h a t

R(x) <R(a)ex

T h i s i n e q u a l i t y i s s h a r p a s t h e e x a m p l e Γ ( Λ ) = 1 a n d p(x) = - a2 s h o w s .
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Theorem 11 shows that

dx/•oo dx Γoo
I •——- < + oo, / \p\x)\dx < +

Ja r\x) Ja
00

are sufficient conditions that all solutions of equation ( 1 ) be bounded. The

following result covers the case where p(x) <^ 0.

THEOREM 14. If p(x) < 0, in order that all solutions of equation ( 1 ) be

bounded in /, it is necessary that

Ja

dx

fa r ( x )

and it is sufficient that both

dx?°o dx /• oo
/ ——- < + oo I p(x)dx > - oo .

Ja r\x) Ja

The proof of the sufficiency follows from Theorem 11.

To prove the necess i ty , consider the particular solution y(x) of equation

( 1 ) which sat is f ies the initial conditions y ( 6 ) = 0, y ' ( 6 ) = 1 for some b >_ a.

According to the Sturm comparison theorem γ(x) > 0 for all x > b. It follows

that for x >_ b we have

( r ( x ) y ' ( * ) ) ' > 0 ;

hence, integrating both s ides of this inequality, we have

r(b)y'(b) rib)
y'(x) >

•(*) rix)

Since all solutions of (1) are assumed to be bounded, γ{x), in particular, is

bounded by M. We have, therefore

M > y(x) >r(b) ,
Jb r(ξ)

for all x, and the theorem is proved.

That

dxCoo dx

I a rΊxl
00
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is not sufficient for boundedness is shown by the Euler equation

2 , . 3

x y ~ 4 y ~ '

of which x 2 is a particular solution.

We obtain the following theorem, particularly applicable to the case where

p(x) £ 0, by writing equation (1) in the following form

(2.1) (r(x)y')' + [ - - L + p(χ) + _ L 1 y = 0
L r\x) r\x)\

THEOREM 15. //

Γ°° Γ ! 1
/ \p(x) + -T—r \dx < + oo

Ja I r ( % ) J

then the general solution of equation ( 1 ) is given by

where lim^^oo e t(#) = 0 (i = 1, 2).

Transforming equation (2.1) successively by means of the substitutions

y = exp { -g(x)\z,

and

y = exp {g(*)}α;,

we have, respectively,

(2.1)' [Γ(Λ?) exp f-2g(*) } * ' ! ' + [ - — + p U ) l exp { -2g(*) }z = 0

and

(2 .1)" [r(Λ;)exp{2g(Λ;)}M;Ί /+ [—— + p(x)] exp { 2g(Λ)\w = 0

According to Theorem 3, equation (2.1)' has the particular solution 1 + β2(#),

"m%-»oo e2(x)-09 and according to Theorem 4, equation ( 2 . 1 ) " has the
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particular solution 1 + eχ(x), lim^^oo e1(%) = 0. The result now follows from

the fact that (1 + e t (%)) exp { g(x)\ and (1 + e2^x)) exp {—g(x) \ are clearly

linearly independent solutions of equation (1) .

The following result, due to Kneser, [6] (see also, Morse and Leighton

[11] and Wintner [13]) is included here in order to complete the results given

in this paper. Consider the equation

(2.2) y " - p ( * ) y = 0

where p(x) is a nonnegative, continuous function on the interval /.

T H E O R E M 1 6 . There exists a principal solution y(x) of equation ( 2 . 2 )

such that

lim y ( x ) — m,
X-+OO

where m is finite. All solutions linearly independent of γ(x) are unbounded. If

I p(x)dx = + oo,
J a

then m vanishes.

This result can be applied to equation (1) .

THEOREM 17. // in equation ( 1 ) p(x) is nonpositive, then there is a

principal solution y(x) such that

l i m y ( x ) = 772,

where m is finite. All solutions linearly independent of y(x) are unbounded

provided

/•oo dx

la ~Λx)
dx

+ 00.

The limit m is zero if

/•oo

/ p ( x ) dx = - oo,
Ja

or if
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dx
Γ -τ-τ< oo.

Jafa r ( x )

If

dx

a
— — - = + oo

a r (x )

w e t r a n s f o r m e q u a t i o n ( 1 ) b y t h e c h a n g e o f v a r i a b l e t = g ( x ) . E q u a t i o n ( 1 ) t h e n

g o e s i n t o

(2.3) £ l + P U ( ί ) ) r U ( ί ) ) y = 0,
dt2

on the interval 1 < t < + oo. The proof of the theorem now follows immediately

from the preceding theorem and the remark that

limim fl r(x(τ))p(x(τ))dτ= lim fXp(ξ)dξ.

If

dx
< + 00,Ja 7U)

w e p r o c e e d a s f o l l o w s . F o r t h e s u b s t i t u t i o n y ~h 2{x)z, e q u a t i o n ( 1 ) i s t r a n s -

f o r m e d i n t o

/ I \
(2.4) ( Λ ( * ) r ( * ) z ' ) ' + ( - τ - 7 - r " 7 - T + p ( * ) A U ) | « * 0 .

Introduce the change of variable t = - log h{x). Equation ( 2 . 4 ) thus becomes

(2.5) — + [ - i + p ( x ( t ) ) r ( x ( t ) ) e - 2 t ] z

Theorem 16 is now applicable to show that there is a solution z(x) of equation

( 2 . 5 ) which has a finite limit. The relation between solutions of equation ( 2 . 5 )

and those of equation ( 1 ) concludes the proof of the theorem.
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