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WILLIAM M. WHYBURN

1. Introduction. Studies of nonlinear differential systems have become in-

creasingly important with recent advances in all areas of applied mathematics.

Linear systems, and methods based upon these, are inadequate to describe and

investigate many of the phenomena associated with physical, chemical, and

other systems. In many cases, linearizing processes applied to the equations

impose properties of existence, uniqueness, oscillation character, or other

nature, which effectively eliminate the phenomenon of prime concern from the

investigation. New methods for studying nonlinear systems which avoid re-

strictions of the type just suggested are needed and are in process of develop-

ment.

The present paper is concerned with a second-order nonlinear ordinary dif-

ferential system in the real domain, with which are associated linear boundary

conditions at two points. The methods used, and the results obtained, general-

ize and extend those given in an earlier paper [3] , In particular, the boundary

conditions treated in the present paper fail to be self-adjoint when they are

associated with linear differential equations. The paper establishes the exist-

ence of sets of characteristic numbers (eigenvalues) for the nonlinear systems,

and gives oscillation theorems for the associated solutions.

2. Results. In the differential system,

dy/dx ~ K{x9γ9 z; λ) z ,

(1)
dz/dx - G (x9 y, z; λ) y ,

let K(x9 y, z λ), -G{x9 γ9 z; λ) be real positive functions that are continuous

in (γ9 z; λ) on

SL
S: —oo < y, z < + oo,

L:Lι < λ < L2 ,

Received July 31, 1953.
Pacific /. Math. 5 (1955), 147-160

147



148 WILLIAM M. WHYBURN

for each fixed x on X: a <^x < b; measurable in % on λ7 for each fixed (y9 z; λ)

on SL; and bounded numerically on XSL by a function M(x) that is summable

(in the Lebesgue sense ) on X, Let

φ(x, λ) = γ(x, λ) x (x, λ) - 8(χ, λ)y{x, λ),

φ(x, λ) . <χ(x, λ) z{x, λ) - /S(«, λ) y(x, λ),

where α(%, λ), β(x, λ), y(χ, λ), δ(x, λ) are continuous on AX, jS(«, λ) does

not change sign on XL, 8(a, λ) ^ 0 on L, and

Δ(λ) = α(α,λ) δ(α,λ)-iS(α,λ)y(o,λ) φ 0

on L.

The boundary conditions

(a) <A(α,λ):=0,
(2)

(b) φ(a,λ) = φ(b9λ)

are associated with system (1).

T H E O R E M l There exists at least one solution y(x9λ)9 z{x9 λ ) of {I)

on XL such that

γ(a9 λ) = γ(a9 λ), ^ (α, λ) = δ(α, λ),

hence φ(a9 λ) = 0 /or α/Z λ on L.

Proof. Since \K\ < Mix), \G\ < Mix) on XSL, we have

Hence

[ K 2 z 2 + G 2 y 2 l 1 / 2 < M(x)(y2+z2)y> <M{x

< M(x)/g(y2 +z2), w h e r e g(t) = l / ( ί ^ 4 - 1 ) .

T h e f u n c t i o n s K(x9 γ9 z; λ ) z, G{x9γ9 z;λ)γ t h u s s a t i s f y t h e h y p o t h e s e s of a

1 A pair of functions y (x, λ ), z (x, λ ) each of which is continuous in (x, λ ) on XL

and absolutely continuous in x on X for each fixed λ on L, i s a solution of system ( 1 )
if this pair sat isf ies ( 1 ) almost everywhere on X for each fixed λ on L.
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fundamental exis tence theorem for differential sys tems. An application of this

theorem yields Theorem 1.

Let y(x9 λ ) , z(x9 λ) be a solution of system ( 1 ) as described in Theorem

1. This solution then sat is f ies boundary Condition ( 2 ) ( a ) for all values of λ

on L. We now investigate conditions under which this solution will, for specific

values of λ, also satisfy Condition ( 2 ) ( b ) . Apply the transformation 3

y (x9 λ ) = u(χ9 λ) sin v{x9 λ ) ,

( 3 )

z (x 9 λ) = u (x 9 λ) cos v (x 9 λ) ,

where

υ(a, λ)=tan"1 [γ(a,λ)/S{a, λ)] (-ιτ/2 < v ( α , λ) < π/2).

Substitution from (3) into (1) followed by simple reductions yields:

dv/dx = K cos 2υ — G s in 2 v,

(4)

du/dx = u[(K + G ) / 2 ] sin 2v,

where

u(a, λ) = [y(α, λ) 2 + δ(α, λ) 2 ]1/z, v (α, λ) = tan'1 [y(α, λ)/δ(α, λ) ],

(-77/2 < ι;(α,λ) < τr/2),

for all λ on L.

Existence of solutions u{x9λ)9 v(x9 λ) for system (4) follows from a repeti-

tion of the proof given for Theorem 1 when it is noted that

K cos2 v ~ G sin2 v and [(K + G)/2] sin 2v

are uniformly bounded on XSL by the summable function 2M(x). Such solutions

need not be uniquely determined by the given initial conditions.

2 See [ 2 , p. 349, Theorem 69.1 ] .

3 For use of this transformation in the study of nonlinear, and linear, differential
systems, see [3J .
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T H E O R E M 2. u(x9 λ) > C at all points of XL.

Proof. u(a9λ) > 0 for all λ on L. Suppose u(c9d) = 0. Since u(a9d) > 0,

we let c be the first point of X for which u(x9d) = 0. From ( 4 ) we have

u(c - e,d) = u(a9d) expj j [K + G] sin 2v dt/2\ ,

where e > 0 is arbitrary. Clearly the limit of the right side of this equation as

e goes to zero exists and is greater than zero. This limit, however, must be

u(c9d) since u(xf λ) is continuous at (c, d). This contradicts the assumption

that u(c9d) vanishes, and thus yields the theorem.

In view of Theorem 2, all zeros of γ(x9 λ) occur at points where v(x9 λ) =nπ,

and those of z(x9 λ) occur where v(x9 λ) = (2n + 1)77/2, where n is an integer

or zero.

Let

ί/U,λ)=w(%, λ)(0C 2 +j8 2 ) 1 / 2 , τ U , λ ) = t a n - ι U U , λ)/j8(* t λ ) ] f

where — τr/2 < τ(x9 λ) < 77/2. Then

(5) φ(x9λ) = - [ / ( * , λ) sin (v-τ).

Since α and β do not vanish simultaneously, U{x9 λ) > 0 on XL. Boundary

Condition ( 2 ) ( b ) becomes

( 6) Ua sin (v a - ra) = Ub sin (vb - Tfc),

where ί/α = ί/(α, λ), va = f (α, λ), and, in general, fc = f (c, λ).

THEOREM 3. Under the hypothesis that β(x9λ) does not change signs on

XL9 the function v(x9 λ) — τ(x9 λ) is continuous on XL. In particular9 then9

VL — T, and va — τa are continuous functions of λ on L.

Proof. Since a(x9 λ) and β(x9λ) are continuous and do not vanish simul-

taneously, <x(x9 λ) ^ 0 and of fixed sign in a neighborhood of a point where

β(x9 λ) = 0. When jB(^, λ) = 0 , T(Λ;, λ) has the value 7r/2 or -ττ/2 according as

α(%, λ) is positive or negative at this point. Under the hypothesis on β(x9 λ),

the ratio Oi(x9 λ)/β(x9 λ) does not change sign in a neighborhood of a point of

vanishing for β(x, λ); hence τ(%, λ), the inverse tangent of this ratio, is con-

tinuous at such point. The theorem follows from this continuity and the con-

tinuity of v(x9 λ), a(x9 λ), and β(x9 λ) .
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COROLLARY. If β(x9λ) changed signs in passing through zero at (c9d),

then τ(c9 λ) and v(c9 λ ) — τ(c9 λ ) would have discontinuities of magnitude π at

this point.

THEOREM 4. sin (v — T ) does not vanish on L.

Proof. Since

-π/2 < va < π/2 and -77/2 < τa < π/2,

we have

-77 < va ~τa < π.

Hence the vanishing of sin (va — τa) would require

va = τa or = tan'^y/δ),

and hence α δ — β y = 0. Thi s , however, i s contrary to the hypothesis M X ) ^ 0

on L.

DEFINITION 1. Let mif9 g; λ) and M{fsg; λ ) , respectively, be the greatest

lower bound and leas t upper bound of K [x, f ix), gix); λ ] and -G[x9 f (x),

g(x);λ] on X for each fixed λ on L, where fix) and gix) are arbi trary 4 abso-

lutely continuous functions on X. For each λ on L, let m ( λ ) and M ( λ ) , re*

spectively, be the greatest lower bound of the set {mif9g;λ)\ and the leas t

upper bound of the se t \Mif9g; λ) \ obtained when fix) and gix) range over the

class of absolutely continuous functions on λ .

THEOREM 5. m ( λ ) is the greatest lower bound9 and M(λ) is the least

upper bound, of the functions Kix9y9 z; λ) and -Gix9 y9 z λ) on XS for each

fixed λ on L.

Proof. Let (p, q, r; λ) be any point of XSL. The functions

fix) = q9 gix) = r

are absolutely continuous on X. Hence

4 The class of functions used here may be narrowed considerably for any given
system (1) . In particular, known properties of the particular solution y(%, λ ) , z (%, λ )
may be used to restrict the class. For example, bounds for these functions may be
known and used. Actually, the case / U ) = y U , λ ) , g U ) = z U, λ ) , λ fixed, is of
interest here, and we apply the hypotheses as nearly as possible to this case.
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miλ) <miq9r;λ) <K(p,q9r;λ), -G(p9q,r;λ) <Miq,r;λ) < J/(λ).

Also, let fix) and gix) be any two absolutely continuous functions on X, and

let x=p be a point of A7. The point ipffip)9 g(p) λ) belongs to XSL, and

hence values of K and —G at all such points lie between the greatest lower

bound and the least upper bound of these functions over XSL. Hence

glb{£,-G} < m(λ) <M(λ) < lubίK.-G]

for each λ on L. The theorem follows from these inequalities and those given

above,

THE ORE M 6. For each λ on L,

(9) -π + ib~a)miλ) < vib$ λ) - τ(6, λ) < π + ib - a) M{ λ).

Proof. Integrate the first equation in (4) and subtract τ{bfλ) from each

side to obtain

v ibt λ) - τ(b9 λ) =t>(α,λ) - τ(6, λ) + / [£ COS2 V - G sin2i;]flfo;

= via9λ)-τib9λ) + fb\[K-miλ)] cos2v

+ [ - G ~ m ( λ ) ] s i n 2 t ; \dx + f miλ)dx9

where / miλ)dx has been added and subtracted on the right side Since

/ϊ--m(λ) > 0, - G - m ( λ ) > 0, and | via, λ) - r(fc, λ) | < π,

we have

v(b9λ)~τ(b9λ) > - ί r + m ( λ ) ( 6 - α ) .

A similar procedure, which adds and subtracts J β M(λ)cίίc and makes use of

K-M(λ) < 0, - G - Λ ί ( λ ) < 0,

shows that

v(b,λ)-τib9λ) < π + ib-a)Miλ).
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DEFINITION 2. If such integers exist, we let h be the smallest integer such

that

M(λ) < ( λ - 3 / 2 ) n / U - α )

for some λ on L, and let / be any integer such that

m(λ) > (/ + l / 2 ) ι r / U - α )

holds for at least one value of λ on L. We note that infinite values for M(λ)

and m ( λ) have not been excluded.

THEOREM 7. The inequalities

v ( 6 f λ ι ) - τ ( 6 , λ ι ) < U-l/2) ι r ,

v(b,λ2)-τ{b,λ2) > ( / - l / 2 ) τ 7

hold for some λj and λ2 on L whenever integers h and j exist.

Proof. In keeping with the definitions of h and /, let λ^ and λ2 be chosen

so that

( Λ - 3 / 2 ) » / ( i - α ) , m(λ 2) > (/ + 1/2) π/(b - o) .

It follows from Theorem 6 that

υ ( b , λ x ) - τ ( b , λ x ) < n + ( b - a ) M ( X t ) < n + {h-3/2)π = ( A - l / 2 ) i 7 ,

v ( b , λ 3 ) - τ ( b , k 2 ) > - π + ( b - a ) m ( λ 2 ) >-π + {j + l/2)π = ( / - ]

THEOREM 8. s Let

— G(x,y{x, λ), z (x, λ); λ)

*' K{x,y(xtλ),z(x,λ);λ) '

0 2 + /3(ί>,λ)2]2[S(α,λ)2+tf(α,λ)y(α,λ)2]

Let λn and μ be values of λ for which

5 The paper [ l ] treats the linear case of system ( 1 ) , ( 2 ) . Lemma 5, p. 38, of that

paper needs the additional hypotheses stated for Theorem 8, above, and the proof given

for this lemma should be modified to take these into account.
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, v(b9μn) - r{ b, μn) = (n + 1/2) IT,

where n is a nonnegative whole number that is even or odd according as the

nonvanishing continuous function sin[t>(α, λ) — τ(a9λ)] is positive or negative.

If either

( a ) 0(μ Λ ) ΪL 1 and H{x, μn) is monotonic increasing6 on X

or

(b) θ(μn) > [H(a, μn)]/H(bf μn) and H(x9 μn) is monotonic decreasing6 on X,

then there is at least one characteristic number, ηn, of the differential system

(1), (2) between λn and μn. Furthermore, if pn exists such that

v(b$ pn) - τ(b, pn) =(n +V2)π,

and the foregoing conditions are satisfied, then there is at least one character-

istic number between μn and pn

Proof. Let y(x, λ), z(x9 λ) be a solution of (1), ( 2 ) ( a ) as described in

Theorem 1. When this solution is substituted into Condition ( 2 ) ( b ) and trans-

formation (3) applied, equation (6) results. It remains to show that this equation

in λ has at least one root between λn and μn Since sin(ι;α — τ α ) does not

vanish on L, this requires that

be equal to

q2(λ) = [Ua/Ub]sin(va-τa)

for some λ between λn and μ^. Since

? 1 ( λ n ) ( 7 l ( F n ) = - l , q2(λn)q2{μn) > 0, ^

it follows that either

( i ) <?,(λn) < 0 < 9 2 ( λ n ) or ( i i ) ? 2 ( λ π ) < 0

6If this condition must be checked without explicit use of y(x,μ>n), z (x, μn), then
bounds for these functions may be used to determine a class of absolutely continuous
functions which would be used in H (x, μn) to test the validity of the hypotheses.
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In case ( i ) , we have qι(lJi

n) = 1 a n d will therefore have

we show

[Ua/Ub] | s i n ( t > o - τ o ) | < 1.

The inequalities

show that the continuous functions ^ ( λ ) and q2(λ) a r e e c I u a l f°Γ a t least one

λ = ηn between λ^ and μn.

In case ( i i ) , we have qι( μn) = - 1 and will therefore have ^ ( μ ^ ) <_92^rc^

if we show

iUa/Ub] | s in(t; α - τa) \ < 1.

In this case, the inequalities

yield the existence of ηn between λn and μn such that q^V^ ~

Hence the theorem follows when it is shown that

ί/α I sin (v α -τa)\/Ub < 1,

or

V\ >U2

a sm2(va-τa) >A(μn)
2

for λ = μ . If the second equation of (4) is solved for u(b, μn)9 and the relation

between U and u taken into account, the foregoing inequality which must be

established to complete the proof of the theorem becomes

2 fb (K+G)sin v cos v dx o „ o

(10) β J o > Δ ( μ π ) 2 / [ α 2

6 + /Sfc

2]tyα

2

 + δ α

2 ] ,

or

(11) 2/ =

Using equation (4) , we get
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21 = fb (K + G)d(sin2v)/[K-(K+G)sin2v]
J

(K+G)d(cos2v)/[(K + G

(12)

= Γ

(l-\/H)d(cos2υ)/[\-(\-\/H)cos2υ}

Letting sin2t> = w, then we have cos2υ = 1 - w, and

»sin2 υb

21 = 1 (l-H)dw/[l~(l-H)w]
• ŝin2 va

vh

since w, c?//, [1 - ( 1 — H)w] are nonnegative under hypothesis (a). Since

s i n 2

t , o = y 2 / ( y 2

+ δ 2 ) , sin2 vb = β2/ ( C(2 + /S2 ),

we get

2 / > l o g [ ( δ 2

+ / / α y 2 ) / ( α 2

+ ^ / S 2 ) ] [ ( α 2

+ / S 2 ) / ( y α

2 - H δ 2 ) ]

by hypothesis (a). This is formula (11), and completes the proof of the theorem

for the case where hypothesis (a) is met.

In formula (12), let cos v = w; then

/• COS 2 VU

2/ = - A n~H)dw/[H
•'cos2 vn
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•'cos2 vn

( 1 - h ) dw/ [ 1 - ( 1 - h)w], w h e r e h =

Under hypothesis (b) , λ = 1/7/ is monotonic increasing; hence dh9 w9 [1

(1 —h)w] are nonnegative. We thus have

2/ > lo g [l-(l-λ α )cos 2 t;J/[l-(l-λ ό )cos 2 ι , ό ]

>log[y2 + δα

2/«α] [α2

 + £ 2]/[β 2

 + α2///6][yα

2

 + δ2]

under Condition ( b ) . This is formula (11) and completes the proof of the theo-

rem for the case where hypothesis (b) is met.

The conclusion concerning p follows from

and

THEOREM 9. Under the hypotheses of Theorem 8, there exists at least one

characteristic number ηn for the system (1), (2) such that ηn lies between λn

and μn, and

nπ < υ(b, ηn) - r(b9 ηn) < (n + 1/2) 77,

where n9 λn9 μ , have the meanings described in Theorem 8. Also9 there exists

a characteristic number τ?n + ι between μn and ρn such that

U + l/2)ττ < v(b9ηn+i) -r(

The special case where \q2i μn) \ = 1 might make ηn = yn + x

Proof. Since v( b9 λ) - τ( 6, λ) is continuous, it takes on the value nπ at
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least once when λ ranges from λn to μ . Let cn be a value of λ for which

v(6, cn ) — τ(b9 cn) = nπ,

and note that

?l(c n )-0, q2icn)q2(μn) > 0, ^ ( μ j ^ μn ) > 0 ,

It follows from these inequalities and the continuity of qAλ), q ( λ ) that these

functions are equal for at least one ηn between cn and μR. The existence of

is establ ished by a similar argument.

DEFINITION 3. By a characteristic set, Sn, for the system ( 1 ) , ( 2 ) is

meant the collection, ί ηn 1, of all characterist ic numbers ηn for which

nπ v(b, ηn) - τ(b, ηn) < (n + l)π.

THEOREM 10. Let j and h be as described in Definition 2, and let j be

greater than h. Under the hypotheses of Theorem 8, there exist at least (j — h)/2

or (j -h + l )/2, according as j - h is even or odd9 characteristic sets for system

(1), (2).

Proof. Since v (b9 λ) - τ ( b$ λ) is continuous in λ on the interval from λι to

λ2, where λ{ and λ2 are as described in Theorem 7, this function takes on the

values

(h-l/2)π, U + l/2)τ7, (h + 3/2) π, . . . , ( / - 1 / 2 ) 77,

for values

of λ on L. By Theorem 9, there is a characteristic number, 77̂ , between each

pair of values, c{ and Cj + i At most two of these can belong to the same charac-

teristic set, this occurring only when the common value equals one of the c/s .

Hence there exist at least (/-Λ)/2, or (/ - h + 1 )/2— according as / - A is

even or odd—characteristic sets.

THEOREM 11. If ηn is any number in the characteristic set Sn, then φ(x, ηn)

has at least n or n + 1 zeros on a < x < b according as va - τa is positive or

negative on L. If 0i{x9ηn)/β{x$ηn) is nonincreasing on X, then φ{x9y]j)

vanishes exactly n or n + 1 times on X.
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Proof. We have — π < via, ηn) - r{a9 ηn) < π while nπ < v ( b9 77 ) - τ ( b9 77 ),

and v(x9 ηn) - τ(x, ηn) is continuous on X, Hence this function takes on all

positive integral multiples of π less than n + 1 at least once on (α, b). In case

va — τa is negative, it also takes on the value zero. φ(x9η ) vanishes when,

and only when, v (χ9 ηn) - τ(%, ηn ) is an integral or zero multiple of 7Γ.

If &{x$η )/β{x9η ) is nonincreasing, v{χsη ) — τ(x9η ) is an actually

increasing function of x, and hence takes on a given value only once on the

interval X.

COROLLARY. y(x?ηn) vanishes at least n - l times on X while z(x9ηn)

vanishes at least n times on this interval. If (λ(x9ηn)/β(x9ηn) is nonincreas-

ing, then γ (xs ηn) vanishes exactly n ~ 1, n9 n + 1, or n + 2 times while z (x9 ηn)

vanishes either n or n + 1 times on X. (This corollary follows from the observa-

tion that U - l / 2 ) τ τ < v(b9ηn) < U + 3/2) π.)

3. Example. The nonlinear system,

y ' = λ ( l + 3 * 2 ) [2 + s i n ( y 2 +z2)]z9

z ' ^ λ d + 3 % 2 ) [2 + s i n ( y 2 +z2)]γ,

has the family of solutions

y{χ,λ) = 4 s in[λ3c( l + x2) ( 2 + s i n 4 2 ) -f β ] ,

z(x9λ) =A c o s t λ c ί l +x2) ( 2 + s i n i 2 ) + B],

where A and B are arbitrary constants, on

X: 0 < * < 1, L : 0 < λ < o o .

If boundary conditions

y ( 0 , λ ) = 0

are considered with this system, all hypotheses of Theorem 3, 7, 8, 9, 10, 11

are satisfied, where m(λ) = λ, M{λ) = 12λ, h -Ί, and / >. 2 may be taken as

we please.

Characteristic numbers for this system are
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K =nπ/(2 + sin A2) (n = 1, 2, •••),

where A ^ 0 may be arbitrarily assigned. Corresponding solutions are

=/4 sin

cos

It is noted that all λ on the interval n7r/3 <_ λ <̂  nπ belong to the character-

istic set Sn which yields the above solution. Thus the characteristic sets con-

tain continua, and these sets are not mutually exclusive. These properties re-

flect the nonlinearity of the system.

Theorem 8 uses hypotheses which, in effect, prevent amplitudes of oscil-

lations in the solution functions from becoming too small as x takes on larger

values. This property was important in establishing existence and oscillation

theorems for the system. For stability investigations where it is desired that

the amplitudes remain bounded as x increases, the hypotheses used in Theorem

8 would need to be changed to the extent of making H(x9μn) monotonic de-

creasing for Condition (a), and monotonic increasing for Condition (b). For

the specific example given above, Conditions (a ) and (b) both hold, so it is

not surprising that the solutions given have bounded amplitudes for all values

of x.
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