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NOTE ON THE MULTIPLICATION FORMULAS FOR THE

JACOBI ELLIPTIC FUNCTIONS

L. C A R L I T Z

1. Introduction. For t an odd integer it is well known [4, vol. 2, p. 197] that

snx-dfHz)
(1.1) sntx= r-r (z=sn2x),

where

(1.2)

and the aη are polynomials in u - k2 with rational integral coefficients. If we

define

by means of

sntx °° x2m

it follows from (1.1) and (1.2) that Φ2m^t^ 1S a polynomial in w with integral

coefficients for all m and all odd t. We shall show that

(i.4) is^ω-^ω- Σ -A^p-'hu),
p - l I 2m P

p \ t

where Hm{t) = Hm(t9u) denotes a polynomial in u with integral coefficients,
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170 L. CARLITZ

the summation in the right member is over all (odd) primes p such that (p- l ) | 2m

and p 11; finally Ap{u) is defined [4, vol. 1, p. 399] by means of

(1.5) snx 7ZTy\

so that A2m + ι(u) is a polynomial in u with integral coefficients. We show also

that

(1.6) * £ (-l ) M f Γ ) jB m + , ( , (*) i l«(»)-0 <«od(p-p')>f

o * s /
s=o

where p is an arbitrary odd prime and r >_ 1; by (1.6) we understand that the

left member is a polynomial in u every coefficient of which is divisible by the

indicated power of p.

The proof of these formulas depends upon the results of [2]; for a theorem

analogous to (1.4), see [ l ] .

2. Proof of (1.4). Put

(2.1)
x2m

Then β2 is a polynomial in u with rational coefficients; indeed [2, Theorem

2],

(2.2) (mod p )

0

In the next place, if we write

sn tx sn tx x

t sn x tx sn x

and make use of (1.3), (1.5), and (2.1), it follows that

t2s
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As already observed, tβ2m^t^ n a s integral coefficients; thus the denominator

of /3 2 m ( ί) is a divisor of ί. Now let p denote a prime divisor of ί, and assume

p e | ( 2 s + 1 ) , e > 1. Then

2s + 1 > p e > 3 e > e + 2 , 2s > e + 1 .

Thus not only is £ 2 s /(2s + 1) integral (mod p) but it is divisible by p. Since

by (2.2) the denominator of β2m contains p to at most the first power it there-

fore follows that the product

(2.4) j 8 a m . a β ί a V ( 2 . + l )

is integral (mod p) when p |(2s + 1 ) .

Suppose next that p \ (2s + 1 ) , where s >_ 1. It is again clear that (2%4) is

integral (mod p) since p occurs in the denominator of β2 2 at most once

while it occurs in t2s at least twice. Thus as a matter of fact (2.4) is divisible

by p in this case.

It remains to consider the term s = 0 in (2.3). Clearly we have proved that

(2.5) Pβ2m

{t^Pβ2m (modp).

Comparing (2.5) with (2.2) we may state:

THEOREM 1. If t is an arbitrary odd integer then (1.4) holds.

We remark that the residue of Ap(u) is determined [2, § 6 ] by

(2.6)

VΛp-i)£ />(p-i)\ j ( m o d p ) >

;=0 * / '

Here F denotes the hypergeometrie function.

3. Some corollaries. By means of Theorem 1 a number of further results

are readily obtained. By H2m will be understood an unspecified polynomial in

u with integral coefficients.

Since β2m9 a s defined by (2.1), is integral (mod 2) we have first:
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THEOREM 2. If t is divisible by the denominator of β2m* then

If t is prime to the denominator of β2m> then β2m(t) has integral coefficients.

THEOREM 3. If t\9 t2 are relatively prime and oddf then

(3.2) β2jhh) ΉΛm + β3nitι) + β3jt2).

If t is a power of a prime we get:

THEOREM 4. If p is an odd prime and r >_ 1 we have

(3.3) β2m(pr)=H2m+β2m(P).

Using (3.2) and (3.3) we get also:

THEOREM 5. The following identity holds:

(3.4) β2Jt)=H2m + Σ /8am(p),

p \ t

where the summation is over all prime divisors of t.

We have also:

THEOREM 6. If a is an arbitrary integer^ then the product

(3.5) a(am-l)β2m(t)

has integral coefficients.

4. A related result. It follows from (1.1) and (1.2) that, for t odd,

oo

(4.1) sn tx = Σ, C2r+ιsn2r*ιx ,
r=o

where the C2Γ+1 are polynomials in u with integral coefficients. Clearly we have

1 Γ=0
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where the ^m a r e defined by

2m

m=0

and like the C's are polynomials with integral coefficients.

We shall now prove the following property of the C's.

THEOREM 7. For t odd we have

(4.4) (2m + l ) C 2 m + ι =0 (modi) U = 0, 1, 2, . . . ) ,

where ( 4 . 4 ) indicates that every coefficient in (2m + I ) C2m+ι is divisible

by t.

Proof Differentiating (4.1) with respect to x, we get

en tx dn tx ™

Σ (2(4.5) t
cnxdnx m

Now we have, in addition to (1.1),

cntx Gϊ){z) dntX

 GΪU^
(4.6) = — , - = - _ (z=sn2x),

cnt GU)(z) dnx c ( t ) ( z )

where G2 and G3 are polynomials in z of the same form as Go. By means of

(1.1) and (4.6) it is evident that (4.5) implies

(4.7) t 2^ Hm zm = 2^ (2m + l)C2m+ιzm,
m=0 m=0

where the Hm are polynomials in u with integral coefficients. Clearly (4.4) is

an immediate consequence of (4.7).

Kronecker [5, p. 439] has proved a similar result in connection with the

transformation of prime order of sn x. For a result like Theorem 7 for the

Weierstrass ^-function, see [3],

Returning to (4.2) we recall [2, §2] that
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(4.8) A2m =° (mod(2r)!) (m = 0,1, 2 , . . . ) .

We rewrite (4.2) in the form

Λ (2r)! Λ<22m (2r + l ) C 2 r + 1
(4.9) fi ( ί )

2 m (2r)! t

By (4.4) and (4.8) the last two fractions in the right member of (4.9) have

integral coefficients; also (2r)!/(2r + l ) is integral unless 2r + 1 is prime.

Consequently (4.9) becomes

1 ( p . 0 P C

P

p-l I 2m P

p\t

Comparing (4.10) with (1.4) we get:

THEOREM 8. If the prime p divides t9 then

(4.11) —- = 1 (modp).
t

Hence if pe \t$ pe ι \ t it follows that

(4.12) Cp = - (modp e ) .
P

5. Proof of (1.6). Again using (5.1) we have

(5.1) — = 2: Cu+1sn2ix.
snx i=0

Now it is proved in [2, Theorem 4] that the coefficients A^2t' defined by (4.3)

satisfy

S = 0

(5.2) £ (~iy"S (r)Λϊr'S)b/{p'l) Amlb Ξ 0 ( π i o d ( p 2 ^ p e r ) ) ,

where pemί{p - 1) | b. Hence using ( 1 . 3 ) and (5 .1) we get:
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THEOREM 9. Ifpe'Hp - 1) |ό, then

(5.3) ί £ (-l)Γ

For b = p — 1, (5.3) evidently reduces to (1.6).

It is of some interest to compare Theorem 9 with the results of [2, § 7 ] ,

If we take r = 1, (5.3) becomes

2 m + b / β 2 m ( t ) } , 0 <»od(p a»

If we put

and recall that, by (2 6),

i l p ( 0 ) a ( - l ) * ( P - ι ) (modp)

we get exactly as in the proof of [2, Theorem 6]%

T H E O R E M 10. Let pe'ι{p -\)\b and p J m l <i < pL Then

6. An elementary analogue of β2 ( ί ) . It may be of interest to say a word

about the numbers φ (t) defined by

etx -e 1 x
(6.1) = T φ it)—*,

tie*-l) ~0

 m rn!

where t is now an arbitrary integer. Clearly (6.1) implies that

S = 0

By a theorem of Staudt (see for example [6, p. 143]),
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(6.2) φm{t)=G+ Σ

p \ t

where G is an integer. Moreover,

(6.3) pφi

It follows [6, p. 153] that

Γm

p |
(mod p )

0 ( p - l | m ) .

. ^ 1
(6.4) φ 2 m ( t ) = G - 2^ —

p-l j 2m P

Thus Staudt's theorems (6.2) and (6.4) may be viewed as elementary analogues

of (3.4) and (1.4).

Formulas like (6.2) and (6.4) hold also for the numbers Φ2m^i;^ occurring in

s'mtx ~ x2m

* s i n * m = Q

 2m ( 2 m ) ! '
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