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1. Introduction. The aim of this note is to give a new elementary proof of
Helly’s theorem [1] on the intersection of convex sets in n dimensional Eucli-
dean space E", Like other elementary proofs, our proof avoids the use of limit
concepts and is thus valid for any n dimensional affine space with coordinates
in a real number field. In €3 we remark that Carathéodory’s theorem on convex
hulls may be derived from Helly’s theorem. This is a reverse procedure of the
one adopted by Rademacher and Schoenberg [2], and indicates the central
position of Helly’s theorem in the theory of convex bodies. We shall prove the

following version of Helly’s theorem.

HELLY’s THEOREM. Let Cy,+++,C,, m > n, be convex sets in E".
If every n + 1 of these sets have a point in common then there is a point common
toall Ciyi=1,2,000,m.

Equivalently the theorem states that if

m
N C; = ¢ (the void set),

=1

then there exist k + 1 {with £ < n) sets C,-l, e, C such that

ih+1

t1

Ciyneeen Copyy = 0.

Other versions of Helly’s theorem refer, under suitable restrictions, to
infinite sets of convex bodies. These are easily deduced from the above form.
In these generalizations the completeness of the space is essential and it is

impossible to avoid the limit concept in some form or another.
2. We shall first prove the following special case of Helly’s theorem.

LEMMA 1. Helly’s theorem is wvalid in the special case when Cy,+++,Cp
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are closed half-spaces of E™

Proof. The case n =1 is simple. We proceed by induction and note that if
we have the Lemma for some E¥ it obviously remains true if some of the C; are
allowed to coincide with £* or to be void sets. Let Cy,+++, C,, be closed half-

spaces of E" defined by the hyperplanes m;,++., 7,, and assume
(l) Cln"‘ncm=¢.

We may assume that no C; in (1) may be omitted without making the intersection

nonvoid. C, is a closed half-space so C; D #; hence

ﬂlnczn..-ncm=¢,
that is

(ﬂlnCZ)n 00'ﬂ(ﬂlncm)=¢)o

Now =y n C; is either a closed half-space of #; considered as an n — 1 dimen-
sional space, or (if #; and #; are parallel ) coincides with 7; or the null-set.
By virtue of the generalized induction hypothesis there are k, % < n, sets
my 0 C; having no point in common. Thus, after renumbering the sets if neces-

sary:
(nlnC2)n v n(ﬂ!n Ck+1)=771nC2ﬂ--0ﬂ Ck+1=¢.

Denote C; n +++n Cp4y by B then B is convex. We claim that either

(a) Bn El = ¢ (where Z'l is the complement of C; in E™) or

(b) Bn C, =¢. Indeed, if both (a) and (b) were false there would exist two
points P, P, with P, €Bn C; and P, € Bn C, and the line segment P, P,
would have a point in common with 7;. As B is convex, P; P, C B contradicting
B n 7y =¢. Now case (a) is impossible, because it implies C; n Cyn «cen C) =6
which together with (1) implies that

(’5‘UC\)nczn‘l-ﬂcm=C2n ---nCm=¢

contrary to the assumption that none of the C; in (1) could be omitted. Thus
case (b) holds, that is, Cin...nCy,y = ¢; since k < n the proof of the

lemma is completed.

Proof of Helly’s theorem. Let Cy,++.,C, be arbitrary convex sets in E"
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every n+1 of which have a nonempty intersection, Let Ciyre++,C; | be any
n+l sets C; and P; ... ; ., any point in C; n...n C;, . denote by A the
finite set of all these points (for this device compare [1]). The sets C;n 4
are finite sets every n+1 of which have a point in common. Put B; = H(C;n 4)
where H(S) stands for the convex hull of S. The convex hull of a finite set
may be represented as the intersection of a finite number of closed half-spaces
(for an elementary proof of this fact see [3]), thus B; =D; ;n..«n D; ;>
say. Let Dy,.++,D; be all the half-spaces appearing for all the B;. To every
D; corresponds a certain B; for which D; D B; O (;n A4 so that every n+1 of
the D; have a common point. By virtue of Lemma 1: Dy n...n Dy # &, Now

Dlﬂ--0ﬂDs =Blnn-an

also C; D An C; so that by the convexity of C; we have

CiDH(Cl—nA)=Bi

hence

3. Carathéodory’s theorem states that the convex hull H(S) where S CE"
equals the union of the convex hulls H (F) where F ranges over all sub-sets of
S containing not more than n+1 points. It is easy to show that #(S) equals the
union of the convex hulls of all the finite sub-sets of S, so that the crucial

point of Carathéodory’s theorem lies in the following:

THEOREM. Let Py,+++, Py, k > n+1l, be points of E™. Let Q €H(Py,.--,
Py ) then n+1 points Pj-++,P may be chosen so that Q EH(P; o4+,

P ).

We shall deduce this result from Helly’s theorem and the following easily

in+1

in+1

established lemma.

LEMMA 2. Let Q#P;, i=1, A k. Denote by m; the hyperplane through
P; perpendicular to the direction QP;, let C; be the closed half-space defined
by m;, which does not contain Q. A necessary and sufficient condition for

QEH(pl,ii',Pk)iS C1n°l0an =¢.

Proof of Carathe'odory’s theorem. We may suppose that Q # P, i=1,..+, k.



366 MICHAEL RABIN

By the lemma ﬂl'."=1 C; = ¢; by the special case of Helly’s theorem n+1 half-
spaces C; ,«++,(; _, may be chosen so that ﬂ::: C;, = ¢. Using again the
lemma we conclude Q € H(Pip coe, P,-n_H) Q.E.D,
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