Pacific Journal of
Mathematics

THE REFLECTION PRINCIPLE FOR POLYHARMONIC

FUNCTIONS

ALFRED HUBER




THE REFLECTION PRINCIPLE FOR POLYHARMONIC FUNCTIONS

ALFRED HUBER

1. Introduction. In this paper the reflection principle for harmonic functions
is extended to the more general class of p-harmonic functions. The case p = 2
has already been treated by R. J. Duffin [1] whose method of proof will be
used in part. The formula for the reflection of a biharmonic function at a straight
line segment in the plane was even previously known to H. Poritsky [3]; but he

did not indicate under which conditions such a continuation would have to exist.

A function w(x;,%5,+++,%,) is called p-harmonic in a region D of the n-
dimensional space, if it is of class C?P and satisfies the differential equation

APy = 0, We shall make use of the following well-known properties:
(I) w is analytic throughout D.

(II) The following representation always exists:

p-1
14
w= Z Xy u’V(xl»xZ"":xn)y
v=0

the functions u,us, sy lUpet being harmonic in D; conversely such a sum is
always p-harmonic. As a consequence, the following decompositions are also

possible
wzf(xhx2"“sxn)+xll)-kg(xhx2"°‘:xn)i k=1321"‘vp"‘19

f denoting a (p — % )-harmonic, g being a k-harmonic function.
2. Reflection principle.

THEOREM. Let G denote a region of the n-dimensional space, the boundary
of which contains an open subset S of %y = 0. If the function w(xy,%x5,+++,%p)
is p-harmonic in G and if w xfl"l assumes the boundary value 0 on S, then w
can be continued analytically across S into the reflected domain G’ by putting
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p-1 ‘e
(2.1) w(~xlax2)"',xn)=(—l)p 2 ("l)k(k!)-2 x’l’”‘ Ak W(xhxz’ ’xn) .
k=0 xf'k

REMARKS. In the boundary condition for w, xf'l cannot be replaced by any
smaller power of x;. This is clearly indicated by the example x{’" log(xf + x22).
This function is p-harmonic in x; > d, but cannot be continued analytically

into the origin.

For p =1 (2.1) reduces to w(—x1,%5,+**,%,) =—w(xy,%2,+++,%,), that

is, the classical reflection principle of Il. A, Schwarz.

In the case p =2 we obtain the continuation formula of R.J. Duffin [1]:

Jw )
W(=%1,%0,000,%,) =—w + 22, ikl Aw.
X1

3. Proof.
We proceed in two steps:

(a) w can be continued analytically beyond S,
(b) the continuation can be extended to the whole of G’ and is given by
(2.1).

We can prove (a) by complete induction with respect to p. It is well known
that (a) is true for p = 1. It remains to be shown that (a) holds for any positive
integer p, provided it is known to be valid for p — 1. R. J. Duffin [1] has carried
out this step for the special case p = 2. His reasoning can be extended to the
general case without essential change, although there arise some technical
complications (for example, the averaging operation has to be iterated p times ).

Therefore, we refer to Duffin’s work for the proof of (a).

For the proof of (b) we introduce the notation v (xy,%5,++,x,) for the
right hand side of (2.1).

From (a) we know that w is analytic on S, and from the boundary condition
we conclude further that the functions w/x{"k (k=0,1,++4,p=1) are also

analytic on S. Therefore v is analytic on G u S.

Moreover, each term xf”‘ Ak(w/xf'k) is a p-harmonic function. For we have,

indicating by superscript the degree of harmonicity,
Ap§x€+k Ak [w(p)/x}:-k] } = Ap{x;lﬂk Ak[(f(p'k) + x[;-kg(k))/x;:-k] |

= AP (PR AR (PR)/gpkY | = AP {2*E (1 (P)/xP*R) ) < 0,
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Consequently, v is p-harmonic.

Now we shall prove that the Taylor developments of the functions w(-x,,
%25++3%,) and v(x,x5,+++,%,) are identical in an arbitrary point of S.
This will complete the proof of the theorem. For then we can immediately draw
the conclusion that w (~x, %5, +++, x, ), being identical with v(xy, 25, «++,%,),
can be continued into the whole of G. Therefore, (2.1) yields in fact a con-

tinuation of w(x,,%x,,+++,%,) into the reflected domain G

Let

14 12
(3-1) wzzavl”z"‘vnx 1x2---xv"

1 2 n

be the Taylor development of w at an arbitrary point of S, which we may assume
to be the origin of the coordinate system without losing generality. We are left

to prove that the development of v at the same point is given by

(3.2) =Z(—1)V1GV1V2"'anflx:2'”x:n'

First we demonstrate a lemma which we shall use in the sequel:

LEMMA. (see [2, problem 137]). Let r, s, t denote arbitrary positive in-
tegers, such that t £r. Then the identity

(3.3) Z (_1)l<l+s)(r)=o
=0 !

t

I+
holds. (We define(

s
):Oforl+s < t)
t

Proof of the lemma. Differentiating the identity

(1-27=3 (_1)1(’)xl
l=0 !

¢ times with respect to x, putting x = 1 and dividing by ¢! we get (3.3) for the

special case s = 0. By complete induction with respect to s and making use of

- )

the relation
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the general case is easily established.
As a first step in the proof of (3.2) we now verify that the operator (2.1)

transforms the function

V1 Va L2 vy Vi V) v,
%, %, " eeex,” into (-1) X, x, ---xn";vl,vz,---,v,,

being arbitrary positive integers and p < v; < 2p — 1. Putting this function

into (2.1) we obtain

p-1

(=P 3 (=1)k ()2 2p*k Ak (P22 o) =S+ 5,
k=0
where
P vy-ptk v v
Sy=(=1)P 30 (=1)k (k1)"? xB*% 57K (xl"” IEREY xn”)/a“fx1
k=0
and
X azk(x:’l -p+kx;/z “.x:n)

p-1 +
Sy = (=P = (=1)k (k1)-2aP*k 5~ T
k=0 ky <k; freofzceccfns

kythy +eee +ky =k

2k 2ky a2kn

(9 X1 a Xo *ee

Xn

We have

g (vy—p + &)
(3.4) Sl=(..1)P Z (-—l)k(/g!)’2

k=0

vy Va V.

—_ X, X
(Vl'-p'—k)! ! 2

3

v
(=D 2

1 %2 n
because of
Y1-pP (vy —p + k) vi-p - k —
> (—1)k = > (D ("‘ P )(”‘ ”)
k=0 (k!)z(vl—p—k)! k=0 k k

I

(=)
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2 () ()

since the inner sum in the last expression vanishes for [ < v ~p and equals
(=)' P for | = vy — p (see solution of problem 141 in [2]).

In order to prove that S, = 0 we consider now the sum o of all terms in S, be-
longing to an arbitrary but fixed set of values (kj, k3, +++, k) # (0,0, <+, 0).
In the following we shall denote by 4, 4, and 43 factors which do not depend

on the summation index. Putting k* = k5 + k3 + «++ + k,, we have
vy-pt2k* AT k)l
1—pt +2f* -2k -2k
o=dy 2 (DR xy U 2Ty R
h=k* }Cl'(l/l—p k+2k*)'

Vl'P+2k*

E\(vi—-p+k\ [vi—p+2k*
= DT

vi-p*2k* k
k +2k* k
TR (T Y
k=k* k* 1=0 !
where
k*-1 Vl-p+2k* *
vy —p k EN{E\[vi—p +2k
3.5) o'=d ( ) (-1) ( )( )(
( 7 2% ! ,g{ AV k
and
vy-p+2k* vi-pt2k* *
” Vy—p k(k)(k)(Vl—p+2k)
.6 = -1 .
(3:6) o=d 2 ( ! ) 2 ORI k
I=k* k=1
But since
Vl-p+2k* *
EN[k\(vy-p +2k
(3.7) > (—1)"( )( )(‘ P )
ey E*I\1 k
vi-pr2k* i [E\[vi—p+E*
4 _1) ( )( ) _0
PV AN I

k:k*
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by means of (3.3), we conclude that o’=0, Furthermore, we observe that the
summation over % in (3.6) may be extended from k = k* to k = vy — p + 2k* be-
cause ( ) =0 in all terms with index % lying in the interval £* < k < [, There-
fore 0= 0. Consequently o =0 and, finally, S, = 0. Combining this with (3.4),
we obtain the stated property of the operator (2.1).

We now apply the transformation (2.1) to the series (3.1). This may be

carried out term by term, Putting

Vi, V2 Yn
v= Zbe”z""’n Xy Xy X
we have to prove that
vy
(3.8) bylu,‘,... Vn=(—1) a'Vl Vyeee vy

From the boundary condition we infer that (9kw/6x{c =0(k=0,1,¢¢0,p=1)
on S. Since this holds in all points of S it follows that Ay vy eee v, =0 for
vy <p-1 and arbitrary vy, v, +++,v,. On the other hand, it is easy to see
that the operator (2.1) never decreases the number of factors x; in a term.
Therefore we have also by, vyeeevy =0 for vy < p-1 and arbitrary vy, v3, ¢, vy

This proves (3.8) for v; <p - 1.

We have verified above that the term

v, vy v
Qupvgeesvy, X %y 00t %,

is transformed into

vy v 12
lx 2 “.xnn

vy
(-1) Gupvgeeeyy, X1 %y

for p < vy < 2p —1 and arbitrary vy, vz, +++, v, Since (2.1) never decreases
the number of factors x;, terms of order > 2p in x; cannot contribute to the
coefficients by, vy.ee v, where p < vy < 2p ~1, and (3.8) is thus demonstrated
forp <vy <2p-1

Finally, we observe that both w(-x{,%3,+++,%,) and v(x;,%5,+++,%,)
are p-harmonic functions. Using the differential equation (and eventually dif-
ferentiating it) any derivative of order > 2p in x; can be expressed as a linear
combination of derivatives of the orders vy —2, vy —4,+++,v; —=2p in x;. If

the equality of the latters has already been shown, it follows that the first ones
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also have to be equal. By complete induction we thus are able to assert the

validity of (3.8) in the remaining range v; > 2p. This completes the proof.
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