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1. Introduction. A linear associative algebra possessing a nonsingular
parastrophic matrix is known as a Frobenius algebra after the mathematician
who first investigated the properties of such an algebra [3] In more recent
years the properties of this class of algebras have been studied in papers by
a number of mathematicians, notably R. Brauer, C, C, MacDuffee, T. Nakayama,
and C, Nesbitt (see References).

Since Frobenius algebras are defined in terms of the parastrophic matrices,
a natural question to ask is the following: Does a parastrophic matrix of rank
m of an algebra ( of order n determine in some manner a homomorphism of G
onto a Frobenius algebra of order m? As the answer to this query is, in general,
negative, it is the purpose of this paper to investigate the question: When does
a parastrophic matrix of rank m determine in some manner a homomorphism of G
onto a Frobenius algebra of order m? First a ‘‘manner of determination’ is
selected. Since the parastrophic matrices of (i form a double (-module, various
ideals of ( of annihilating elements correspond to each parastrophic matrix.
These are studied and conditions are developed (Theorem 9) which insure the
determination from these annihilators an ideal B such that the difference algebra
(- B is a Frobenius algebra of order m. These requirements are shown to be
necessary, also, in the sense that any homomorphism of (i onto a Frobenius
algebra of order m implies the existence of a parastrophic matrix @ of rank m
which satisfies these conditions. Furthermore, the kernel of the homomorphism
will be the ideal B determined from among those elements which annihilate Q

as an element of a double G-module.

Basic terminology is introduced in §2, parastrophic modules are defined,
and the order of such a module is discussed. In $3 one-sided ideals determined
by the parastrophic matrices are considered, while $4 is devoted to a study of
two-sided ideals determined by certain parastrophic matrices and of the homo-
morphisms of an algebra onto Frobenius algebras. Certain of the ideals
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introduced in $4 have radical-like properties, and these ideals are considered
in §5. A supplementary re % on the order of the radical of a Frobenius algebra

is given in §6.

The author wishes to express his gratitude to Professor C. C. MacDuffee for

his counsel during the preparation of this paper.

2. Preliminary remarks. Let ( be a linear associative algebra of order n
over the field 3, and let e;,++«,e, be an O-basis for (. Multiplication in
follows from the multiplication of the basis elements,

eiejzz:cijkek i:j=1""rn,
k

where the ¢;;, are elements of 3, the constants of multiplication.

The associativity condition, written in terms of these constants of multi-

plication, is equivalent to each of the following sets of n® matric equations:

(1) QiRi =2 cikjQk,

k

(2) S;Q = 2 ckij Ok iyj=1,-44,n,
k

where the matrices R;, S;, and Q; are defined as (c;5,), (cris) and (cgp;), re-

spectively, where r denotes the row and s the column index.

Let a € (; then
a=aje; +r+r +ape,,
where the a; are field elements. Let
R(a)=a;Ry++v+ayR,,
S(a)=aS; +++++apSy,,
Q(a)=a;Qy+ - +an0y.

R(a) is called the first matrix, S(a) the second matrix, and Q(a) the para-
strophic matrix, of a. (Note that Q(a) as defined here is the transpose of the
parastrophic matrix as defined by other authors). The set R () of all the first

(second) matrices of O form an algebra which is a homomorphic image of (.. The
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set 2 of all the parastrophic matrices of ( does not in general have this proper-

ty, but if the following definitions are made,
e ¥ =5;Qj, Qj*ei=0QjR; i=1.00,n,

then 2 is a double (-module, the parastrophic module of G.

If a change of basis is made for (, the elements of R and & undergo similar-
ity transformations, while the elements of - undergo congruency transformations

[81]. Hence rank and symmetry are invariant set properties of 2.

MacDuffee has obtained [7] necessary and sufficient conditions that K and

d be algebras isomorphic with (. A corresponding result for 2 is given by

THEOREM 1. 2 is of order m (as an (-module) if and only if the following

conditions are satisfied:

(i) O contains an ideal W of order m such that the difference algebra
G -Wis a zero algebra.

(i1) G contains no ideal of lower order with this property.

The proof of this theorem is a standard reversible procedure involving a
change of basis for (i. Let there be n —m linearly independent linear relations

among the Q;; then there exist n — m linearly independent row vectors
Ti=(ti1,"',lin) i=m+1,a--’n’

such that

Ztika“—'O 1> m,
k

If B is a nonsingular n by n matrix with the T; as its last n — m rows, and if

Uiy -+ +yup form a new basis for (1,
= 5 res L,
k

where P = (prs) = B!, then the Q; are transformed into
07 =PT(E t,-kok) P
k

=0 i >m.
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Thus if the new constants of multiplication are Ci;'k , then
ci'].k=0 hi=1l,eee,n; kE>m,

and uy,+++,uy, span an ideal W of order m such that ( —~ W) is a zero algebra.

The process is clearly reversible.

CorROLLARY. If U has either a left or right identity element, then 2 is of

order n.
0 is said to be a Frobenius algebra if 2 contains a nonsingular element.

TeEOREM 2. U is a Frobenius algebra if and only if 2 is a cyclic module
of order n.

If 2 contains a nonsingular element Q, then (1) and (2) imply that
G/ * Q = Q * G, = Q,

and 2 is of order n since a Frobenius algebra possesses an identity element.
Conversely, if 2 is generated by an element Q and is of order n, then (1),

(2), and Theorem 1 imply that Q is nonsingular.

3. Ideals of (. Let B be a right ideal of ( of order n —m. If a basis is
selected for ( such that the last n — m elements of the basis span 13, then the
m matrices Qy,+++,Q, have all zeros in their last n —m columns. The task of
determining a right ideal by a process involving reduction of certain elements of
2 through changes of bases of ( seems formidable, if possible. However, a

somewhat similar process is given by the following theorem.

THEOREM 3. A parastrophic matrix Q of rank m determines a right ideal

B of order greater than or equal to n — m.

Let B be the set of all elements b € ( such that Q * b =0, Clearly B is a

right ideal. That its order is at least n —m will follow from the next theorem.

That B may actually be of order greater than n — m is proved by the follow-
ing example. Let ( have basis elements e; and e,, ef =eje; =€y e; =0,
622 = e;. Then the corresponding Q; has rank 1 but B = (.

A more desirable result is contained in the following.

THEOREM 4. A parastrophic matrix of rank m determines a right ideal of

order n — m.
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Let Q be a parastrophic matrix of rank m. Then there exists a nonsingular n
by n matrix P such that the elements of the last n — m columns of QP are all

zeros, Let P effect a change of basis for 4; that is, if P = (prs ), let
ui = 2 Pri% B=lyeeesn
k

be a new basis for (. If Q =Q(a), then Q”(a), with respect to the new basis,

is PTQP and hence has nothing but zeros in its last n — m columns.

Now assume Q is of this form, Then

Q= ;Z a; O =(ZL: aiCsri)
so that

(3) Za,c]k,=0 j>m’k=1’...,n.
i

From (1) and (3) it follows that

(4) OR; = Zaj(z cikak)=Z (Z ajcikj)Qk=0 i > m.
j k k )

Hence Q * e; =0 for i > m, and B = (ep41,+++,€,) is the right ideal determined
by Q.

A right ideal of (. which may be determined in this way will be called a
parastrophic right ideal.

THEOREM 5. 4 sufficient condition that the ideal of Theorem 3 be a para-
strophic right ideal is that 2 be of order n.

Suppose B =(ep+1s+++5€,) is determined from Q as above, and consider
e;y i <m IfQ *e; =0, then if 2 is of order n, (4) implies

Zaicikj=0 k=1¢¢4,n,
i

which is impossible since () is assumed to be of rank m.

Let Q = 2 a;Q; be in the reduced form described above.
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THEOREM 6. If G has a right identity element, then a; =0 for i > m.

Since ( has a right identity element there are field elements f; such that
2 fiS =1, 2= fi epij = Oy
i i

Then (3) implies
sz(zaicfki)=0=2ai(zfkcjki)=zai8ﬁ=“f j>m.
k i i k i

The results of this section are obviously valid if the word ‘‘right” is re-

placed by ““left’”’.

Since the existence of ideals in an algebra (. has been shown to be equiva-

lent to the existence of singular elements in 2, the following theorem is immedi-
ate.

TueEoREM 7. O is a division algebra if and only if 2 contains no singular
elements.

4, Homomorphisms of (. The following result is an immediate consequence
of Theorem 4 and its analogue for left ideals.

THEOREM 8. If Q is congruent to a matrix of the form

. T 0
0o of,

where T is a nonsingular m by m matrix, then the right parastrophic ideal B is
also a left parastrophic ideal. Conversely, if B is a right parastrophic ideal
determined by (), then if B is also a two-sided ideal, Q satisfies the above

condition.

Such an ideal will be called a parastrophic ideal, and Q will be said to have
P-rank m. While P-rank is not defined for every matrix, it is a property of every
symmetric matrix. Thus, if the characteristic of J is greater than n, the radical
of O is a parastrophic ideal. (It will be apparent shortly that this is true re-
gardless of the field characteristic since a semisimple algebra is a Frobenius

algebra. )

It does not follow that a matrix of 2 of P-rank m determines a homomorphism
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of 0 onto a Frobenius algebra of order m, for any commutative nilpotent non-
zero algebra contains proper parastrophic ideals. The following indicates a

necessary criterion.

LewMA 1. If 7 is a homomorphism of (. onto C, an algebra with an identity
element 1, then (i contains an idempotent element e such that me = 1. Further-
more, the set of left annihilators of e is contained in the kernel of the homo-

morphism.
This follows simply from the structure theory for algebras.

Now suppose the last n —m basis elements of ( form a parastrophic ideal
B, and suppose that (i has an idempotent element u such that QuuB=0.
Then B will be called a regular parastrophic ideal.

THEOREM 9. A homomorphism of (. onto a Frobenius algebra of order m has
as its kernel a regular parastrophic ideal of order n —m, and conversely if B
is a regular parastrophic ideal of G of order n —m, then G —B is a Frobenius

algebra of order m.
Suppose G is a Frobenius image of (0, with basis ey,+++,e, and kernel
13 spanned by ep 41, ,en.

Then G possesses a nonsingular m by m parastrophic matrix Q,
—_— m —
Q= 2 Qi
i
and
m
Q=2 a0
i

is an element of 2 with P-rank m. Hence B is a parastrophic ideal. By Lemma

1, Bisa regular parastrophic ideal.
The converse follows from the regularity of B and Theorem 6.

Thus, if Q is a parastrophic matrix of rank m, if ¢ can be reduced to a
corner matrix by a change of basis of (, and if Q is associated with a linear
combination of the first m of the new basis elements, then Q determines a
homomorphism of ( onto a Frobenius algebra. Furthermore, each homomorphism

of U onto a Frobenius algebra may be determined in this fashion.
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5. Radical-like ideals. A function f of ( into the set of all ideals of U is
called a radical function of U if the contraction of f to the difference algebra
C=0G-7(G) maps C onto the zero ideal. The ideal f () is called a radical-
like ideal of C.

Let P be the set of all regular parastrophic ideals of (i and let 1 be an
element of  of minimal order, with the agreement that [l is the zero ideal if

(G is a Frobenius algebra and G if ( is nilpotent. Then define f (() =1,
Tueorewm 10. f(G) =W is a nilpotent ideal of G.

If G is nilpotent the theorem is trivially true, so assume that ( has the
radical ¥ # (. Suppose ¥ is of order r and that 1 is of order m. Let

Nn¥=C,

Case 1. C=(0). Let (U have a basis such that the first m basis elements
span !l while the last r span . By the definition of Il there is an element
Q” of 2 of rank n — m with its first m rows and columns composed of only zeros.
Now I is isomorphic to a semisimple subalgebra of G —¥, so there is an element
Q’ of 2 of rank m with only zeros in its last n ~m rows and columns. Then

Q@+ Q7 is nonsingular,

Case 2. C #(0). Then G -C is a Frobenius algebra by the above work.

In either case

Na#¥ =N

so that 1l is contained in ¥ and so is nilpotent.

One important property which !l may lack is uniqueness. The question of
whether 1l is unique up to an (i-isomorphism will now be considered and parti-

ally answered.

The following result indicates a significance of the (i-isomorphism of two

minimal elements of P,

THEOREM 11. Let Yl and W be minimal elements of P°. Then a necessary
condition that Y and W be G-isomorphic is that N — C and M — C be zero alge-
bras, where C =N n M,

It may be assumed that C = (0). Then let o be an (i-isomorphism from !l onto

M. If @ and b are elements of M, then | contains an element b such that
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ab=alob)=0(ab’)=0.

The isomorphism of the minimal elements of  for certain algebras will

stem from the following lemma.

LEMMA 2, If U and V are n by n matrices of rank m with elements from a
field 3 which contains at least m + 1 nonzero elements, then & contains an

element t #0 such that U + tV is of rank at least m.

It will be sufficient to prove the result for m =n. et D and £ be nonsingu-
lar n by n matrices such that

DVE =1,
Consider the equation

det (D(U —xV)E) =det(DUE ~xI} =0,

which is of degree n in the indeterminate x. Since 3 contains at least n +1

nonzero elements, one of them does not satisfy this equation.

Let U and V be n by n matrices, and let
UV =0

mean that the two matrices do not both have nonzero elements in the same row-

column position.

THEOREM 12. If two minimal elements Y., and 1\, of P are determined by
symmetric matrices Q and Q, of 2 of rank m, if O contains at least m + 1

nonzero elements, and if
Ql A Q2 =0 ’

then G, = W\, is isomorphic with G — g,
The cyclic modules

G’*leol*a’r @*Q2=QZ*G'

are of order m, and the representations of U over these double (i-modules yield
Frobenius algebras of order m which are images of (, isomorphic with 0 -1,
and ( - 1, respectively. Let ¢ be a nonzero element of J such that Q, +1Q, is

of rank m (since higher rank would contradict the minimality of the order of I
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and ;). Since ¢, and Q, are symmetric
Gx(Q, +¢Q,) =(Q, +t0,) x C

is a cyclic module of order m, and since @ AQ, =0, (1) and (2) imply that
the mapping

(Q, +tQ,)R;—0Q, R; G

is an (-isomorphism between Q, * G and (Q, +t0Q,) * (. Similarly Q, * G and
(Q, +1Q,) * G are (.-isomorphic. Hence Q,* G and Q, * G are (-isomorphic
which implies that G — Y, and ( - 1, are isomorphic.

6. A remark concerning Frobenius algebras, While Frobenius algebras are
generally regarded as algebras with radicals of sufficiently small order, the

following indicates that their radicals must also be of sufficiently large order.

TueEOREM 13. Let U be a Frobenius algebra bound to its radical ¥. Then
if G —¥ is of order my ¥ is of order at least m. If ¥ is a zero algebra, then ¥
is of order m.

By the results of Nakayama [9] the set of all elements of (. which annihilate
¥ from the right is an ideal £ which also annihilates ¥ from the left and has
order n — k = m, where k is the order of ¥. Since U is bound [4] to ¥,

£cH,

hence m < k, and m =k if £ =¥.

The consideration of bound algebras is, of course, sufficient since an alge-

bra may be written as a direct sum of a semisimple algebra and a bound algebra.

(This result is due to M. Hall [4]).
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