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ON INFINITE GROUPS

W. R. S C O T T

1. Introduction. Several disconnected theorems on infinite groups will be

given in this paper. In V 2, a generalization of Poincare"s theorem on the index

of the intersection of two subgroups is proved. Other theorems on indices are

given. In § 3 , the theorem [ 3 , Lemma 1 and Corollary l ] that the layer of ele-

ments of infinite order in a group G has order 0 or o(G) is generalized to the

case where the order is taken with respect to a subgroup. In v 4 , it is shown that

the subgroup K of an infinite group G as defined in [ 3 ] is overcharacterist ic

[ 2 ] . In § 5 , characterizations are obtained for those Abelian groups G, all of

whose subgroups H (factor groups G/H) of order equal to o{G) are isomorphic

to G (in this connection, compare with [ 7 ] ) . Again the Abelian groups, all of

whose order preserving endomorphisms are onto, are found ( s e e [ 6 ] ) .

2. Index theorems. If // is a subgroup of G, let i(H) denote the index of

H in G. The cardinal of a se t S will be denoted by o(S).

THEOREM 1. Let Ha be a subgroup of G, α E S. Then

£(Π//α) <Πi(Ha).

Proof.

gtg'2
l£ Γi Ha

if and only if

' e f f α for all α G S.

Thus each coset of Π//α is the intersection of a collection of sets consisting

of one coset of Ha for each (X, and the conclusion follows.

COROLLARY 1. (Poincare) The intersection of a finite number of sub-

groups of finite index is again of finite index.
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590 w. R. SCOTT

C O R O L L A R Y 2. // i(H)=B9 then G has a normal subgroup K such that

<BB.

Proof. Let N(H) denote the normalizer of H, and Cί(H) the conjugate

class of H. Then

HCN(H), o(Cl(H))=i{N{H)) <B.

Thus if K is the intersection of the conjugates of //, Theorem 1 gives i(K) < B .

REMARKS. For every infinite cardinal A9 there is a simple group G of order

A (for example, the *'alternating" group on A symbols). Thus G has no sub-

groups of index less than or equal to B if 2 < A. In particular, if A is such

that B < A implies 2 < A9 then G has no subgroup of index less than its

order A, This is in sharp contrast to the behaviour of Abelian groups, which

have 2A subgroups of index B for Ko <_ B <_ A9 A > Xo [4] , It is an unsolved

problem as to whether there exists a group G of order A with no subgroups of

order A, for A > Ko.

Let U denote the point set union, and + and Σ direct sums ( the latt ice union

of subgroups will not be u s e d ) . If Γ is a nonempty subset of a group G, let

iR( T) = min o (S) such that \JTxa ~ G9 C ί E S .

Define iL(T) similarly, and let i(T) be the smaller of iR(T) and i^i T),

T H E O R E M 2 . If Hι9 ϊ = 1 , * ,n9 are subgroups of G such that i ( / / j ) > ^

A > Ko, then i ( U ^ ) > A.

Proof. The theorem is true for n = 1. Induction on n If, contrary to the

theorem, i(UHi) < A, then, say,

( n

U Hi

- „ i=i

with o ( 5 ) < /4. S i n c e ί(Hι) >_ A9 t h e r e e x i s t s a n % 6 G s u c h t h a t

is empty. Hence
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Therefore

n n I n \
UfyC U Hi(e υ(ϋaxax'ι)) = U U HΛxβ,

i = i *=2 / 3 G s ' \ i = 2 /

where o ( S ' ) < /4. Hence

= U ( U / / Λ * α = U U U Hixnxa= U U
/ αCS / 3 £ s ' j=2 P G "

This contradicts the induction hypothesis. Hence the theorem is true.

REMARK. For every infinite cardinal A, there is a group G of order A9 con-

taining an increasing sequence { Hn } of subgroups, each of index A9 such that

m n «= G.

Let I/A = 0 for A > Ko.

THEOREM 3. // Hi is a proper subgroup of G9 (i - 1, , n) and Σ 1/i (Hi )<

1, then UHt £ G.

Proof. L e t H\, , HΓ have finite index, the others infinite index (if r = 0,

the theorem follows immediately from Theorem 2 ) . L e t

D = Π //; .
1

Then D has finite index in G, and it is well known that (UΓ Hi) n Dx is empty

for some x G G. Hence, if U? fff = G, then Dz C U ^ j ffίf whence U ^ + 1 ^ has

finite " index" in contradiction to Theorem 2. Therefore U" Hi ^ G.

3. Layers. Let T be a subset of G, and let n be a positive integer. Let

L i n , T ) = \ g \ g n £ T , g

r £ T f o r 0 < r < n \ ,

Moo, 7') = U | g Λ ( ί 7 ' , n = l , 2 , . . . } .

For T - e, the L(n, Γ) have been called layers. The following theorem general-

izes [3, Lemma 1 ]•

THEOREM 4. Lei G be an infinite group9 H a subgroup9 P a set of primes

and
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U U L{λp,H)\\iL(ω,H).
,£P λ /

Proof. Deny the theorem. Let x E S. If XeL(λp9H) then xλeL(p9 H).

Hence we may assume that # E L (oo, //) or x E L (p, H), p E P.

Case 1. o (/V(%)) = o ( G ) , where N(%) is the normalizer of %. Then o {N(x)~

S) = o ( G ) . If y E /V (% ) - S, then yΓ E // for some r such that (r, p ) = 1 (if p

e x i s t s ) . If xγ £ S then also (xy)n £ H for some n such that (n 9 p) = 1 (if p

e x i s t s ) . Thus

and # Γ / Ϊ E //. B u t (rn9 p ) = 1 if p e x i s t s , a n d , in any c a s e , we h a v e a c o n t r a -

d i c t i o n . H e n c e xγ E S a n d

o ( S ) > o ( % ( / V U ) - S ) ) = o ( / V U ) - - S ) = o ( G ) ,

a c o n t r a d i c t i o n .

C a s e 2. o ( / V U ) ) < o ( G ) . T h e n o ( C Z ( % ) ) = o ( G ) .

C a s e 2 . 1 . o(H) = o(G). T h e n o ( G ) r i g h t c o s e t s of N(x) i n t e r s e c t H,

T h u s t h e r e are o(G) e l e m e n t s of t h e form h~l xh. But if {h"lxh)n E H t h e n

xn£H, w h e n c e n = λ p and A" 1 xh £ S. T h e r e f o r e o ( 5 ) = o ( G ) , a c o n t r a d i c t i o n .

Case 2.2, o ( / / ) < o ( G ) . We h a v e , s i n c e o{S) < o(G),

(1) o(G)=o(Cl(x))= 21 o ( C Z U ) n L U , t f ) ) .
(τι,p) = l

If o ( G ) = Ko, and o{x) = oo, then since H is finite,

C Z U ) C L ( o o , / / ) C S,

a contradiction. If o ( G ) = K0, and o(x)~m, then Cl(x) n L(n, H) is empty

for n > m. Hence, by ( 1 ) , there exis ts , regardless of the s ize of o ( G ) , an n

such that (n9 p ) = 1 and

o(Cl(x)nL(n9 H)) > o(H)o{S).

Let



ON INFINITE GROUPS 593

AU9T) = { g \ g

n e T \ .

T h e n A(n9H) D_L(ntH), h e n c e

o(Cl(x)t>A(n,H))= Σho(CUx)nA(n,h)) > o(H)o(S).

Hence there exists an ho £ H such that

o{Cl{x)nA{n,h0) > o(S).

There i s then a b 6 G such t h a t (b"1 xb)n = h0, whence

xeCl{x)nA(n9 bhob'1).

If

q eCl(x)n A(nibhQb-1),

then

q

n = bhob
 l =xn.

Hence if qr G H9 then

xnr *qnΓ £H

and p I ΓΪΓJ whence p | r. Thus <7 G S in any case. We have

o(S) >_o(Cl(x)<\A(nsbh0b"l))=o(b{Cl(x)<\ A(n,ho))b-1)

= o(Cl(x)nA(n,h0)) > o(S).

This contradiction shows that the theorem is true.

C O R O L L A R Y . // H is a subgroup of the group G9 then o ( L ( o o , / / ) ) - o{G)

orO.

Proof, In Theorem 4, let P be the empty set.

4. An over-characteristic subgroup. Neumann and Neumann [ 2 ] have defined

a subgroup K of G to be over-characteristic in G if and only if ( i ) K i s normal,

and ( i i ) G/K £ G/H impl ies KCH.
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Define ( s e e [ 3 ] ) a subgroup K of an infinite group G a s follows. Let E(x)

be the set of g G G such that x is not in the subgroup generated by g, and let

K be the set of x G G such that o(E(x)) < o ( G ) .

THEOREM 5. //"G is infinite$ and K is defined as above, then K is an over-

characteristic subgroup of G.

Proof, ( i ) K is normal since it is fully characteristic [3, Theorem 6],

(i i) Let G/K ^ G/H.

Case 1. K is finite. Then [3, Corollary 3 to Theorem 8]

K2 =K(G/K) =e.

Hence K(G/H)=e. Now

o(G/H)=o(G/K)=o(G).

If there exis ts a k G K — H, then

o ( E ( k H ) ) < o ( E ( k ) ) < o ( G ) = o ( G / H ) .

Hence kH G K(G/H). This is a contradiction. Hence K C^H, and X is over-

characteristic.

Case 2. X is infinite. Then [3, Theorem 5] A is a p°° group, and [3, Theo-

rem 8] G/K is finite. If there exists a k G X - H then

implies k' £ K - H, and

This contradicts the finiteness of G/H. Therefore X C//, and since G/K is

finite, K ~ H. Hence K is over-characteristic.

5. Abeliaπ groups with special properties.1 If G is an Abelian group such

that 0 C H C G implies G ~ H for subgroups //, then it i s trivial that G i s 0 or

cyclic of prime or infinite order, and conversely. This naturally leads to the

problem of finding those groups which p o s s e s s the following property:

1For the facts used without proof in this section, see [ l ] .
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(Pi) G i s Abel ian, and if // i s a subgroup of G s u c h that o(H) = o(G) then

G ~H.

THEOREM 6. G has property (Pi) if and only if (i) G is finite Abelian,

( i i ) G is a p°° group, ( i i i ) G is a direct sum of cyclic groups of order p, p a

fixed prime, ( i v ) G is infinite cyclic, or ( v ) G is the direct sum of a non

denumerable number of infinite cyclic groups.

Proof. If G is of one of the above five types, then it is either trivial or

well-known that G has property ( P i ) .

Conversely, suppose that G is infinite and has property ( P i ) . Let T be the

torsion subgroup of G.

Case 1. o(T) < o(G). Then (see, for example, [3, proof of Theorem 9,

Case 1]) there is a free Abelian subgroup H of G such that o(H) = o ( G ) .

Hence G 21 H. If the rank of G is non-denumerable, we are done. If the rank of

G is countable, then G is countable and contains an infinite cyclic subgroup.

By (Pi ) , G is infinite cyclic.

Case 2. o(T) = o ( G ) . Then G 21 T, that is, G is periodic. If Gp is a non-

zero p-component of G, then G = Gp + Hp, hence G 21 Gp or G 21 //p , a con-

tradiction unless //p = 0. Hence G is a p-group. Thus G = D + R, where D is a

divisible (that is, nD — Ό) and R a reduced (no divisible non-zero subgroups)

p-group. Hence G 21 /? or G 21 D, that is G is reduced or divisible.

Gαse 2.1. G is a divisible p-group. Then G ~ Σ,Ca where Ca is a p°° group.

If there is more than one summand, then there is a subgroup

Cί φ Oio, where G* is a proper subgroup of C α Q . Hence o(H) =o(G)9 but H is

not divisible, a contradiction. Therefore G is a p°° group in this case .

Case 2.2. G is a reduced p-group. Then G has a cyclic direct summand C

of order, say, pn. Zorn's lemma may be applied to s e t s S of cyclic groups

Ca of order pn such that Σ G α , Gα G S, exis ts and is pure in G (that i s , a

servant subgroup of G ) . There is then a maximal such set S*, and if X = ̂ C α ,

G α E S*, then X is a pure subgroup of bounded order. Hence K is a direct

summand, G - K + A. It is clear that /I has no cyclic direct summands of order

pn. This implies, by property ( P i ) , that o(A) < o(G)9 hence G 21 K. If, now,

n > 1, there is a subgroup H of K oί order o ( G ) such that H £ K. Therefore
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Theorem 6 has a dual.

(P2 ) G is Abelian, and o(G/H) = o ( G ) implies G ~ G/H.

THEOREM 7. G has property {P2) if and only if ( i ) G is finite Abelian,

( i i ) G is infinite cyclic, ( i i i ) G is a direct sum of cyclic groups of order p,

( i v ) G is a p°° group, or ( v ) G is the direct sum of a non-denumerable number

of p groups.

Proof. If G is of one of the above five types, then it is clear that G has

property {P2).

Conversely suppose that G is infinite and has property ( P 2 ) .

Case 1. o(G/T) = o(G). Then, by (P2) G is torsion ̂ free. Let C be a cyclic

subgroup of G. Then 2C is cyclic, and G/2C has an element of order 2, hence

o(G/2C) < o{G). Therefore o(G) = K0,-and o(G/C) is finite, hence G is

cyclic.

Case 2. o (G/T) < o(G). Hence o ( T) = o ( G). Let S be a maximal linearly

independent set of elements, B the subgroup generated by S (set β = 0 if S is

empty). Then Γπ β = 0, hence Γ is isomorphic to a subgroup of G/B, and

therefore o(G/B) = o ( G ) . But G/β is periodic, hence G is periodic. It follows,

just as in the proof of Theorem 6, that G is either a divisible or a reduced

p-group.

Case 2.1. G is a divisible p-group. Then G = Σ C α , where C α is a p°° group.

If the number of summands is non-denumerable, we are done. If not, then G is

homomorphic to a p°° group, and o(G) = K0. Therefore by ( P 2 ) , G is a p°°

group.

Case 2.2. G is a reduced p-group. Then, almost exactly as in Case 2.2 of

Theorem 6, it follows that G is the direct sum of cyclic groups of order p.

REMARK. Szelpal [7] has shown that if G is an Abelian group which is

isomorphic to all proper quotient groups, then G is a cyclic group of order p or

a p°° group. Theorem 7 may be considered as a generalization of this theorem.

Szele and SzeΊpal [6] have shown that if G is an Abelian group such that

every non-zero endomorphism is onto, then G is a cyclic group of order p, a

p°° group, or the rationale. The following theorem may be considered as a

generalization.
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( P 3 ) G i s A b e l i a n , a n d if σ i s a n e n d o m o r p h i s m o f G s u c h t h a t o(Gσ) = o ( G )

then Go — G.

THEOREM 8. G has property (P3) if and only if ( i ) G is finite Abelian,

( i i ) G is a p°° group, or ( i i i ) G is the group of rationals.

Proof. If G is of one of the above three types, then it is clear that (P3)

is satisfied.

Conversely, suppose that G is an infinite group satisfying ( P 3 ) .

Case 1. G is torsion-free. Then if pG ^ G for some p, the transformation

gσ~pg is an isomorphism of G into itself, so that o (Gσ ) = o (G), Gσ •£ G, a

contradiction. Hence pG - G for all p, and therefore G-ΣLRa9 where Ra is

is isomorphic to the group of rationals. If there is more than one summand, then

there is a projection σ of G onto ΣlRa9 CC ^ Cί0, a contradiction. Hence G is

the group of rationals.

Case 2. G is not torsion-free. Then G = A + B where A is finite (and non-

zero) or a p°° group. Thus the projection σ of G onto the larger of A and B yields

a contradiction unless B = 0. But in this case, since G is infinite, G - A is a

p°° group.

Finally (compare with Szele [5]) consider the following property.

(P4) G is Abelian, and if σ is an endomorphism of G such that o(Gσ ) = o(G)

then σ is an automorphism of G

COROLLARY. G has property ( P 4 ) if and only if ( i ) G is finite Abelian,

or ( i i ) G is the group of rationals.
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