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ON HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS WITH

ARBITRARY CONSTANT COEFFICIENTS

A. S E I D E N B E R G

Let K be an arbitrary ordinary differential field—for our purposes it is suf-

ficient to consider an arbitrary (algebraic ) field K which is converted into a

differential field by setting c ' = 0 for every c G K. Let u be a differential in-

determinate over K and let u — UQ9 uι, represent the successive derivatives

of u. Further, let Co9* 9cm be arbitrary constants over the field K\u)~

K(u0, uι9 •), that is, m + 1 further indeterminates with which we compute in

the usual way, setting cf = 0. In addition to the ring R ^ K{u \ ~ K [UQ$ uχ9 ],

we will also be interested in the rings Rt + m ~ & [UQ9 U\9 • , ι t£+ m ] . Theorems

referring to some one of these rings Rt+m may, if convenient, be regarded as

belonging to ordinary, rather than differential, algebra, but we will still apply

the operation of differentiation to elements of Rt+m (not involving ut+m). This

then amounts to a convenience in writing formulas.

Let IQ = CQ uo + + cmum. This element generates a prime differential

ideal [Zo 1 = ( h9 hi ) in S = K(c)\u\, where /; = c 0 U{ + + cm u; + m . We

a r e i n t e r e s t e d i n h a v i n g e x p l i c i t l y a b a s i s f o r [ l o ] n K \ u \ . I f Δ ( w ) i s t h e d e -

terminant of coefficients of any m + 1 of the Zt regarded as l inear forms in the

c;, then clearly A ( « ) G [ / 0 ] n K U ) and Theorem 2 below a s s e r t s that the

Δ ( u ) obtained from all choices of the Zj form the required bas i s .

Let us confine ourselves to the rings Rt+m

 a n ^ $t +m = ^ ( c ) L uo? > ^ ί + m J

I n S ί + m , let p = (Z o , , lt)

LEMMA 1. p = ( l 0 , , lt) is an m-dimensional prime ideal in St + m .

Proof. Let G(UQ, , ut+m) G St+m. Eliminating success ive ly ut+m9

ut+m-W*9Um mod (l0, •• , Z ί ) , we may write G ( uθ9 , z^+ m ) Ξ G I ( M O > * * § >

um.\) mod (Zo» •••>/*), where Gi £St+m is a polynomial in the indicated vari-

ables . Moreover, starting with indeterminate values <̂ . for uι, i = 0, ,wι —l,we

can build up a zero (ζQ, , ζt+m) of p by defining ^ m from the condition
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/ 0 ( £ ) = 0 , and defining ζ + . successively from the condition Zί ( ^ r ) = 0 . Then

( ξQ, , ζt+m) is clearly a general point of p, whence p is prime and m-dimen-

sional.

LEMMA 2. Let p n Rt+m — P\ and let t >_ m — 1. Then P is a 2m-dimensional

prime ideal in Rt+m

Proof, Consider the equations:

+ + cm ξm = 0

From these we are going to solve successively for the c t , i — 0, , m — l

Since ξQ £ 0, we can solve for c0 and find CQ G K( c i , , cmt ζQ, , ζm)

Suppose in this way, solving success ively for the c t , we find

C O , , C J G K ( C J + I , . . . , c m , ξQ, •• , ί m + / ) , i < TO - 1 .

In fact, assume we have found inductively that

0 2 + 2 + K ( ^ 0 , . , ^ . + m ) cm

Since

dt X ( c 0 , " , c m , ^0,,•• , ^ m + ι . ) / X ( c 0 , > c m ) = m and

dt X ( c o , , c m ) / ί : = m + 1,

we have

dt K ( co, , cm$ ξQ, , ξmH )/K = 2m + 1

= dt

w h e r e d t s t a n d s for " d e g r e e of t r a n s c e n d e n c y " . F r o m t h i s w e s e e t h a t ξQ, •••,

ζm+i a r e a l g e b r a i c a l l y i n d e p e n d e n t o v e r K ( s i n c e t h e s e t c^ + l f , ί m + ι h a s
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2m + 1 members), in particular they are not zero. The coefficient of c + i in

li + i(ξ) is £2( + 1) plus a term in K( ξQ, • •, £ 2 ί + ι ) arising from c0 ξ^ι + +

since i + 1 < m, we have 2( ί + 1) < m + i + I and ^ ( ^ j ) ί

). Hence <?j+i G X( c t + 2, , fm+ + ι ) ; also ^i + i holds. Con-

tinuing, we have c 0 , , cm. L G K( c m , f0, , £ 2 m - ι )• Hence ίo» " » ^ 2 m . ι

are algebraically independent over K. Thus P is at least 2m-dimensional.

Let Δj ( ^ ) , i >_ m, be the determinant of the coefficients of the forms

IQ( ζ)J •» Zm. ι ( ^ ) , Zi(f) regarded as linear forms in c o , , c m ; that is,

V

Then one finds cyΔj (<f) = O, so that Δj(<f)=O. The coefficient of f + in

this equation is a polynomial in the indeterminates £Q9 , ζ this coef-

ficient contains the term ζQ ζ2 f2m_2

 a n ( ^ n e n c e i s n o t z e r o (therefore also

^o( ζ}* * * ' ^m- l ( ί ) a r e linearly independent over X ( f ) ) . Thus P is at most

2m-dimensional, and hence exactly 2τn-dimensional, Q.E.D.

LEMMA 3. Let M = M(u) be the matrix:

α 0

, t >^rn.

Let /4 be the ideal generated in

olM(u). ΎhenA CP.

by the (m + 1) x (m + 1) subdeterminants

Proof. Since lo( ξ), , Zm. i ( £ ) are linearly independent over K(ξ) (and

in fact over any field containing K{ξ)) but Zo( ^ ) , , lm-ι ( ί \ 4 ' ( f ) a1"6

linearly dependent over K(ξ), the matrix M(^) has rank m. Hence A C_ P.

We want to prove A = P, in particular that /4 is prime. Conversely, if we
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knew that A were prime, we could conclude immediately that A - P. In fact,

suppose A is prime and let ηQ, , ηt+m be a general point of A. Since A has

a basis of forms of degree m + 1, no form of degree m vanishes at 77. Hence all

m x m subdeterminants of M(η) differ from zero, and it follows that A is 2m-

dimensional, whence A = P.

In proving A = P, we proceed by induction on m, the assertion being clearly

true for m = 0. For given m, we proceed by induction on t (£ >_ m). For ί = m,

we have to prove the following lemma.

LEMMA 4. Let D be the determinant

uί '

^m ' * ' U 2 m

Then D is different from zero and is irreducible in i?2m

Proof. By induction on m, being trivial for m — 0. D is linear in UQ, the

coefficient δ of UQ> being different from zero and irreducible by induction: in

particular, therefore, D ̂  0. Also D is linear in U2m

 a n ( ^ the coefficient δ ' of

U2m i s irreducible. D is reducible if and only if δ is a factor of D - woδ, hence

of D. Similarly for δ'. Now δ and δ ' are not associates, since they are of dif-

ferent degree in UQ SO D is reducible if and only if it is divisible by δδ'. For

m — 1, this means if and only if UQU2 —U^ is divisible by uoii2 This is not

the case. For m > 1, D is reducible only if it is of degree at least 2m, whereas

it is of degree m + 1. Hence for every m, D is irreducible.

DEFINITION. An ideal is called homogeneous if it has a basis of forms.

Similarly we call an ideal isobaric if it has a basis of isobaric polynomials.

LEMMA 5. A and P are homogeneous and isobaric.

Proof. A is clearly homogeneous. Moreover consider one of the (m + 1) x

(m + 1) subdeterminants of M{u)9 say one involving the ith. and th rows, i < j .

Then Mj+&_2 i s t n e element in the ith row and /rth-column and w/ + /.2 is the

element in the /th row and Zth column. Suppose k > L The determinant in ques-

tion has together with a term π wj+/c-2 "/+/-2 a l s o a t e r m ^π ' ui+l-2 ' M/+A>2»

which is of the same weight. Hence if rows i0, ,im are involved, each term

has the weight of the term uiQ z ^ + i ̂ ι2+2 ' ' wιm+m> ^ a t is> t n e determinant is
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i s o b a r i c . T h u s A i s i s o b a r i c . As for P , we know that p i s homogeneous , and

from th i s and the fact that P = p n Rt+m one c o n c l u d e s immediate ly t h a t P a l s o

i s h o m o g e n e o u s . T o s e e t h a t P i s i s o b a r i c , l e t g(u)£P and write g{u) =

gr(u) +gr+ι(u) + •••, where gXu) i s zero or i s o b a r i c of weight /. It i s c lear ly

suff icient to prove gΓ(u) E Pf a s s u m i n g gr £ 0. Since g{u) E P , we have

h{c) g{u) ~ c, u) lί(c9 u),

where h(c) i s a polynomial in the c; a l o n e , and the A^ are polynomia l s in the

c; and uj We a s s i g n to c2- the weight m — i . L e t h{c) = hs(c) + Λ5 +1 ( c ) + •••,

where Ay(c) i s zero or i s o b a r i c of weight / and hs(c)^0. Observe that the

ll{cyu) are i s o b a r i c . Comparing terms of l ike weight on both s i d e s of the above

equat ion we s e e that hs(c) gr(u) = ^ ^ / ( c9u) l(( c9 u). H e n c e griu) G p.

THEOREM 1. A = P. In particular, therefore, for m > 0# A: uo ~ A.

Let

Proof. We proceed by induct ion on m and t, and first show that A:u0 -A.

be the general zero of P introduced above. L e t D(u) be the^.+

determinant occurring in Lemma 4. From D(ζ)=O we see that ζ2m

written as a quotient of two polynomials in the indeterminates ξQ,

with the denominator being

can be

' ^2m-l

d D 2 7 7 1 - 2

which is irreducible by Lemma 4. Hence we see that

ξ, ~LSn+l

(for were it zero, then ξ2m could be written as a quotient of two irreducible

polynomials in ζ^, , ζ , the denominator this time not being an associate

of the other denominator). Hence ξQ is algebraic over K( ζγy , ££+m) Hence

<^i'# * ' ' <̂ +m defines a 2m-dimensional prime ideal Pί in K[uϊ9 , ut+m]; and

Pi is generated by the (m + 1) x (m + 1) subdeterminants of M(u) which do

not involve the first row of M(u). Designating also by Pl9 the extension of

Pi to K [ UQ, , ut+m ], we see that Pγ C_ A. Let now ιiQg(u) G A. We write
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uog(u) = Σ / 4 J ( M ) ΔJ ( W ) , where the ΔJ ( M ) are the (m + l ) x ( τ n + l ) sub-

determinants of M(u), and the /4t are polynomials. We write Aι=A?+uoA."f

where A?does not involve UQ. We then have uo(g(u) - Σ>A?'Δi{u)) = Σ ^ . ' Δ j d ί ) .

The right hand side here i s of degree at most one in UQ, hence gχ = g(u) —

Σ,A?'Δι(u) does not involve u0: g v = g ι ( u i , , ut+m) Now g ( u ) and Δ ; ( u )

vanish at £ Q , . . , ξm+t, hence so does g t that is , g£ vanishes at ^ , , £ m + , .

Hence, g t G P t , whence g € A. Hence A: UQ - A.

As a corollary to the above we get that A : f = A for any polynomial

f £ Rm + t containing a term dur
Q, d £ K9 d^O (m > 0 ) . For suppose fg £ A: to

prove g G /4. We may suppose / and g isobaric; and also homogeneous. We then

get duΓ

Q g G A$ whence g G /4.

We proceed to prove that /4 is prime. Let Zj = IΪ/UQ = c 0 v̂  + * + cm Vj+m,

where v( = U(/UQ, We p a s s to the rings Rt+m ~ ^ [ ^ ι > * > vt+m J a n ( ^ ^t+m ~

K(c)[v] Observe that t> l y ,vt+m are algebraically independent over K.

Let if be the matrix of the coefficients of the Z, , that i s , the matrix:

V2

v2

V3

and let A be the ideal generated in Rt+m by the (m + l ) x ( m + l ) subdeter-

minants of M(v). Each such subdeterminant is a power of u0 times an (m + 1) x

(m + 1) subdeterminant of M(w); and vice-versa. It would therefore be sufficient

to prove A prime, in fact it would be sufficient to prove that the extension of

A to the quotient ring Q of /?t+ m relative to the ideal ( v Ϊ 9 , vt+m) i s prime.

For suppose this proved and g(u) h(u) G A, where we assume without loss of

generality that g ( w ) , h(u) are homogeneous. Dividing by appropriate powers of

UQ and sett ing

gU)/αJ=i(t;), h(u)/us

0=h(υ),

we get g(v)h(v) G A9 w h e n c e by a s s u m p t i o n f(v)g(v) or f(v)h(v), s a y

fg i s in A for s o m e f(v)ERt+m9 f £ {vi9 , vm). Mult ip ly ing by a power of

^0 w e find uζ f iu) g(u) G A, where f ( u) c o n t a i n s a term duζ. H e n c e g ( u ) G A.

T h e i d e a l /4 in /?£+ m h a s ζ^/ζ^ > ^t+rd^o a s a z e r o » n e n c e i s a t l e a s t

( 2 m — 1 ) - d i m e n s i o n a l . A l so A r e m a i n s at l e a s t ( 2 m — 1 ) -d imens iona l upon ex-

t e n s i o n to Q. In fact , if ξχ/ξ0, •••, ζf^m/^o d e t e r m i n e s P in Rt+m, t h e n
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P C_{v\ 9 9vt+m), as one s e e s from the fact that £ 0 , » , £ ί + determines a

homogeneous and i sobar ic ideal P and UQ $L P.

Subtracting v{ t imes the first row from the (ί + l ) t h row of M, we get the

matrix

v i v 2

0

Each (TO + 1) x (TO + 1) subdeterminant of this matrix is also an (TO + 1) x

(m . + 1) subdeterminant of /I/. Hence one sees that every m x m subdeterminant

of the matrix

v2

vt+m

is a leading-form of an element in Q A, These m x m subdeterminants generate,

by induction, a 2(m — 1 Vdimensional prime ideal in K\_v2j »vt + m\ a n <^

hence a (2m - 1 )-dimensional prime ideal q in K[vι9 , Vί + m l . The leading

form ideal of A contains or equals ~q. If it contained ~q properly, it would be of

dimension less than 2m — 1. But an ideal and its leading form ideal have the

same dimension [1; Satz 8], Hence q is the leading-form ideal of A and A is

{2m - l)-dimensional.

Moreover A is prime. For quite generally in a local ring, if an ideal A has a

prime ideal ~q as leading form ideal, it must itself be prime. In fact, suppose

gh E A$ g jέ A% h<t A. Then the leading form ideal LFI(A9g) of (A9g) contains

^properly, and likewise for (A,h). But LF1 (A, g) x LF1 (A, h) C LFI ( ( J , g )x

(A$h)) C_ LFIA = q, a contradiction. Hence /4 is prime, and the proof is com-

plete.

The following theorem is an immediate consequence of Theorem 1.

T H E O R E M 2. A basis for ilo]n K\u\ is given by the {m + 1 ) x (m + 1 )

subdeterminants of the oo x (m + 1 ) matrix

um

u2
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