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MINIMAL BASIS AND INESSENTIAL DISCRIMINANT

DIVISORS FOR A CUBIC FIELD

L E O N A R D T O R N H E I M

In terms of the coefficients OC, jS, γ of a defining equation

of a cubic field F over the rational number field Q9 Albert [ l ] has given an ex-

plicit formula for a minimal basis, that is, a basis of the integers of Q{θ)

over the rational integers. We solve this same problem with a shorter proof and

a simpler result. This basis is then used to find the maximal inessential dis-

criminant divisor, that is, the square root of the quotient of the g.c.d. of the

discriminants of all integers of Q(θ) by the discriminant of Q(θ). It is known

[3] that the only prime dividing it is 2; we determine the power as 2° or 2 ι .

We first secure a normalized generating quantity,

L E M M A 1. If K is any cubic field, then K = Q(θ) with

( 2 ) 6>3 + aθ2 + 6 = 0 ,

where ( i ) a and b are rational integers, ( i i ) no factor of a has its cube dividing

b9 and ( i i i ) if 3 \\a, then the discriminant Δ = - b ( 4 α 3 + 27 b) of θ is not di-

visible by 3 4 unless 3 | b.

Here gn |1 y means gn | γ and gn l \γ.

Proof. The substitution θ'~ θ+ α/3 is used to obtain an equation of form

(1) with α zero. Follow this by the substitution 0 '= 1/0 to obtain (2) . For

Conditions ( i ) and ( i i) it is obvious that a substitution 0'= hθ will be effective.

If ( i i i) does not hold apply the substitution 0 ' = ab - 3 bθ + a2 θ2; then 0 ' 3 +

cθ'2 +d = 0 where
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624 LEONARD TORNHEIM

Now 3 2 \\c since (b9 3) = 1. Also 3 4 \d. If 36|</, then the quantity 0 " = 0 7 9 s

satisfies the conditions of the lemma, where s is the largest integer for which

(s ,3) = 1, s \c, and s3\d. If 3 6 ^ use θ"= 0 7 3 s .

Essentially the following lemma is given by Sommer [2; p. 261],

LEMMA 2. 7^e integers of Q( 0), where 0 is described in Lemma 1, have a

basis over the integers given by

__β + <9 B2 Λ-aB + ( β + α ) 0 + θ2

ωx = 1, ω 2 = — , ω 3 =
0 D 2 D

with B9 D9 Dι rational integers satisfying

(3) 3 β - f α =

( 4 ) 3B2 +2aB^0(D2Dι),

( 5 ) B3+aB2 +b^0(D3Df),

(6) -Δ = ό(4α 3 + 276) EO (D6D2),

and D9 D t are maximal subject to these conditions.

Proof. We shall first prove that D = 1. Let p be a prime dividing B and D.

By ( 3 ) , p also divides α. But then by ( 5 ) , p3\b, contradicting the choice of

0. Hence ( B , D) = 1.

From ( 3 ) and ( 4 ) , we have aB = 0 ( D ) . Therefore D \a. But by ( 3 ) , D = 3

or 1.

If D = 3, then 3fi> because from (5) we would get D \B. But then (6) con-

tradicts (i i i) of Lemma 1. Hence D = 1.

Therefore the problem is equivalent to determining the largest Di for which

there is a solution B satisfying (4), (5), (6), when D = 1. It is sufficient to

find solutions of these congruences with Dγ replaced by prime powers pΓ and

then Dγ will be their product. A value of B can be found from solutions modulo

pΓ by using the Chinese remainder theorem.

Thus we wish to determine the maximal value e of r for which there exists

a solution B of the simultaneous congruences

(7) B(3B
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( 8 ) B3 + aB2 + b = 0{p2r),

( 9 ) - Δ = 6 ( 4 α 3 + 2 7 6 ) Ξ 0 ( p 2 r ) .

The power p e exists because of ( 9 ) ; in fact if p u | | Δ , then e <_s, where

5 = U / 2 ] .

Case I. ( p , 3 b) ~ 1. Then e - s. For, let B be a solution of

L = 3 β + 2α = 0 ( p s ) ;

hence ( 7 ) is satisfied. By ( 9 )

Now

L 3 - 3 α L 2

Ξ 0 ( p 2 s ) .

T h i s on e x p a n s i o n g i v e s

α ~ 4 α 3 = 0 ( p 2 s ) ,

w h i c h with t h e a b o v e formula s h o w s t h a t ( 8 ) i s s a t i s f i e d . T h u s ( 7 ) , ( 8 ) , ( 9 )

h o l d wi th r - s. H e n c e e >_ s . B u t s i n c e e <̂  s we h a v e e = s .

Case II. p I 3 ό.

H i . ( p , 2 α ) = l . Then e = s . F o r , b y ( 9 ) , pu\\b. S i m p l y t a k e B=0(ps)

t o s e e t h a t ( 7 ) , ( 8 ) , ( 9 ) h o l d w i t h r = s.

Π i i . p \b9 p\a. Then e = 0 if p \\b and e = 1 = s - 1 if p2 \\b. N o t i c e t h a t

p \b by ( i i ) of L e m m a 1. F i r s t , if p \b9 t a k i n g B = = 0 ( p ) p r e s e n t s a s o l u t i o n

of t h e c o n g r u e n c e s wi th r = 1; t h u s e >_ 1. On the o t h e r h a n d , if e >. 1, t h e n

p\B by ( 8 ) ; s o t h a t p2 \b a g a i n by ( 8 ) . F i n a l l y , if e > 1 t h e n p 3 | ό by ( 8 )

s i n c e p | B by t h e p r e c e d i n g s e n t e n c e . T h i s i s a c o n t r a d i c t i o n to ( i i ) of L e m m a

1; h e n c e e <̂  1. It i s e a s y to s e e t h a t if pφ- 3, t h e n s = 1 w h e n p\\b a n d s — 2

when p 2 11 b. If p = 3, then s - 2 u n l e s s p 11 bf p 2 \ a and t h e n s = 3.

I l i i i . p = 3, p I α, p ^ 6 . N o t i c e t h a t t h e n s = 1 by ( 9 ) a n d ( i i i ) of L e m m a 1.

I Ι i i i ( l ) . 3 2 | α . Then e = 0 unless b = ± 1 ( 3 2 ) in which case e = 1. Now
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e < s = 1. Furthermore, the fact that e = 1 if and only if 6 = ± 1 ( 3 ) i s a con-

sequence of (8) since only then does Z > 3 + 6 = 0 ( 3 2 ) have a solution for (3 ,6) = 1,

the solution being given b y β = = - 6 ( 3 ) ; ( 7 ) and ( 9 ) always hold with r = 1.

Iliii ( 2 ) . 3 11 α. Then e = 0, unless b + a = ± 1 ( 3 ), in which case e = 1.

That e < 1 is a consequence of ( 9 ) and ( i i i ) of Lemma 1. If r - 1, then ( 7 ) and

( 9 ) always hold and ( 8 ) has a solution if and only if£> + a s ± l ( 3 ). For,

if B sat is f ies ( 8 ) then 3 | # ; hence £ 2 = 1 ( 3 ) , aB2 + b = a + b ( 3 2 ) . But

B3 = ± 1 ( 3 2 ) so that α + 6 ^ - β 3 = + 1 ( 3 2 ) . Conversely, if a + b = + 1 ( 3 2 ) ,

take J δ Ξ - ( α + 6 ) Ξ ± l Ξ - 6 ( 3 ) ; then B3 + α δ 2 ύ E ί 1 + α + έ E O ( 3 2 ) .

Iliv. p = 2, 2 I 6, 2 | o . Define t and c by 2t \\ b, b = 2*c.

Hiv ( 1 ) . ί odd. From ( 7 ) , 2\B. In the expression on the left in ( 8 ) , there

is only one term, either aB2 or b, containing 2 to the lowest power. Hence

e < [ ί / 2 ] . But B = 0 ( 2 Γ ) with r = [ ί / 2 ] does provide a solution of the three

congruences. Hence e - [ ί / 2 ] Notice that e = 5 — 1 since u — t Λ-\ if ί = l

but u = t + 2 if ί > 1.

Iliv ( 2 ) . t = 2. Let 4 ^ | | ( 4 α 3 -h 27 6) , then u; > 1. Set 4 α 3 + 276 = 4 ^ . By

( 9 ) , e <̂  ̂  + 1. Now e >_ w simply by replacing s by w in the solution of Case

I. It remains to determine when e = w + 1. Then from ( 7 ) , 2 | β and from ( 8 ) ,

2 2 | β . Also from ( 7 ) , 3β + 2a EΞ 0 ( 2 " ) ; that is , SB =~2a + 2wS. Now the

product of 27 with the congruence ( 8 ) gives

4 α 3 - 3 . 2 2 M ;

 aS
2 + 2 3 u ; S 3 + 276 s 0 ( 2 2 u ) + 2 ) .

Hence

2 ^ S 3 + / / ~ 3 α S 2 = 0 ( 2 2 ) .

If S = 0 ( 2 ) f then ff = 0 ( 4 ) f an impossibility. Hence S i s odd, S2 EE 1 ( 4 ) ,

S 3 = 5 ( 4 ) , and

2WS + f f + α = 0 ( 2 2 ) .

But since w > 1, we have 2^S = 2W ( 2 2 ) . Hence
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(10) 2M; + / / + α = 0 ( 4 ) .

If w = I, then H = α 3 + 2 7 c = 0 ( 2 ) , a contradiction to (10) . Hence w > 1.

Conversely, if (10) is true, then all the congruences in this paragraph are

satisfied by taking S odd; that is, by taking for B a solution of

3B +2a^2w (2w+ι).

H e n c e e = w + 1 if and only if ( 1 0 ) i s s a t i s f i e d ; t h a t i s , H + a = 0 ( 4 ) . N o t i c e

from the definit ion of w that u = 2 + 2w; h e n c e s - w + 1.

Il iv ( 3 ) . t = 2v(v > 1 ) . From ( 9 ) , u = 2v 4-2; h e n c e e < s = v + 1. Now

β Ξ 0 ( 2 ^ ) y i e l d s a so lut ion of the c o n g r u e n c e s with r — v; h e n c e e >_ v We

determine when e = v + 1. T h e n from ( 7 ) , B i s even. Again from ( 7 ) e i ther

2 | | β or 2V I B. In the first c a s e v <_ 1 by ( 8 ) and t h i s i s a contrad ic t ion to

v > 1; h e n c e β ^ 2 V K. Now ( 7 ) h o l d s while ( 8 ) impl ies

23vK3 + a22vK2 +22vc^0 ( 2 2 t ; + 2 ) ,

which gives, since v > 1,

o χ 2 + C Ξ 0 ( 4 ) .

Thus K is odd and

a + c =0 ( 4 ) .

Conversely^ if this last congruence is satisfied and B is taken as a solution

of B Ξ= 2V ( 2 V + 1 ) , then β is a solution of ( 7 ) , ( 8 ) , and ( 9 ) .

These deductions are summarized in the following theorem.

THEOREM 1. Let θ satisfy the conditions of Lemma 1. A minimal basis

ofQ(θ)is

ω 1 = = l , ω2 = 0, ω 3 = {J3 2 + α β + ( β + a) θ + θ2 \/D,

where D is a product of prime powers ρe determined by the prime powers p

for which ( p 2 ) s | | Δ as described below and B is a common solution of the con-

gruences given below:

(1) If ( p , 3 6 ) = 1 , t h e n e = s a n d SB + 2 a ̂  0 ( p e ) .

( 2 ) If p I a , p 11 b% t h e n e = 0 . , 4 Z s o e = s - 1 ί/ p / 3 cmc? e = s ~ 2 i / p = 3 .
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( 3 ) If p\a9 p2\\b$ then e = 1 and B = 0 ( p e ) . Also e = s - 1 unless p = 3

am/ p I α α^ί/ ίλe z e = s - 2.

( 4 ) / / > I 36, ( p , 2 α ) = 1, then e = s and B = 0 ( p e ) .

( 5 ) 7/p = 3, 3 | α , 3^6, ίAerc e < 1 = s; and e = s ι/ cmc? orcZy i / έ + α Ξ + l ( 9 )

ami ίAera B = - 6 ( 3 ) .

( 6 ) / / p = 2, ( 2 , α ) = l , 2 * | | 6 αzzJ

( a ) if t is odd9 then e = s - 1 and B s O ( 2 e ) ;

( b ) if t = 2 ίΛerc e = s - 1 urc/ess H + a = 0 ( 4 ) , wΛere W = -

α/irf then e = s . ,4Zso 3 5 + 2α = 2 s " ι (2s).

( c ) if t > 2 and even, then e = 5 - 1 unless a + c=0 ( 4 ) , where c =6/2*,

and then e = 2. 4Zso B ^ 2 s " 1 ( 2 s ) .

The discriminant of (?(#) is Δ/D 2. It divides the discriminant Δ ( α ) of

every integer α of Q(Θ) and hence their g.c.d. G. The largest inessential

discriminant divisor F is the square root of the quotient G/(Δ/Z)2).

THEOREM 2. TΆe largest inessential discriminant divisor F is 1 except

it is 2 in Case 6b of Theorem 1 when

(11) //-3a + 2 e-U0(23)

αmZ in Case 6c when

(12) a + c + 2 e - 1 ^ 0 ( 2 3 ) .

Proof. The discriminant Δ(α) of an integer Cί = c\ ω\ + c 2 ω 2 + cz ω 3 can

be found from the formula

| α ι 7 | 2 Δ ( 0 ) ,

where the elements of the determinant | α t y | = |α, y (α) | are defined by

α1""ι = α a + ai2 0 + o i 3 02 ( j = 1, 2, 3 ) ,

Since the discriminant of α is unaltered by addition of a rational number, we

have

Δ(α) = Δ ( c 2 ω 2

where
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+ C3{B + α ) / D ] # + (,

In computing β2 use the fact that θ3 = - aθ2 - b and θ4 = a2θ - bθ + ab. Also

since the first row of | α t y ( / 3 ) | is 1,0,0, any rational terms can be ignored.

Hence,

c3(B3+aB2+b) c,c2(3B2 + 2aB) c2cAW+a)
/ Ί r ) \ | | 3 2 3 2 3 o

(13) | α , μ _ + _ + _ + c ».

Thu s

| α l 7 ( ω 3 ) | =
D3

and

M , / x, ( 3 S + 2aS) ( 3 β + o )
15 ) I αj.- ( ω 2 + ω 3 ) I - I o ί ; ( ω 3 ) | = + + 1.

D2 D

Now, since GD / Δ is the quotient of the g.c.d G of | α j y | 2 Δ by Δ/D , it

equals the g.c.d of \aη\ 2D2. Hence the inessential discriminant divisor F is

the g.c.d of I aij I D.

To find F we determine for each prime p the highest power p* which remains

in all the denominators of the | α j / ( c θ | expressed in their lowest terms. Then

F is the quotient of D divided by the product of these prime powers and thus F

is the product of all pe"K

In all c a s e s of Theorem 1 except in 5 when a + b = ± 1 ( 3 ), in 6b when

H + a = 0(22), and in 6c when α + c = 0 ( 2 2 ) , B may be chosen to satisfy

either

or

In these cases ( 1 5 ) implies, s ince its first term is then integral, that e = /

when p\a. But if p | a then p | b and s ince we need consider only e > 0 we have

Case 3 of Theorem 1. Then ( 1 4 ) with B E O ( p 3 e ) shows t h a t / = 1= e.
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N e x t , in C a s e 5 w h e n b+a=±l ( 3 2 ) , 3 { β . If 3 2 | α , t h e n ( 1 5 ) i m p l i e s

t h a t / = 1 = e . B u t if 3 11 a t h e n a - 3 α i a n d aχ + 6 ^ 0 ( 3 ) by ( i i i ) of L e m m a 1.

Were / = 0 , t h e n B + 2a ι = 0 ( 3 ) b y ( 1 5 ) , w h i c h i m p l i e s B = ax ( 3 ) . B u t t h e n

B 3 + a B 2 + b = a 3 + b έ θ ( 3 ) ,

a contradiction to (8). Hence again f = e.

In both Cases 6b and 6c, 2 | β by (7). Now

2(3B + α )
ω 3 ) I + |α jy(-ω 2 + ω 3 ) | - 2 | α ι ; ( ω 3 ) | =

D

Since 2 11 2 (3β + o), we have / > e - 1.

We now consider in particular Case 6b when ff + o = 0 (4) . Then 3β =

- 2a + 2e ιQ, where 0 is odd. Thus

2 7 ( β 3 +aB2 + 6 ) = 4 α 3 + 2 7 6 - 3 ρ 2 α 2 2 e - 2

+ ( ? 3 2 3 e - 3 .

Hence if f ~ e — 1, then

# - 3 α + 2 e - 1 = 0 ( 2 3 )

by (14), and if this is satisfied then / = e - 1. For, the first term in (13) has

numerator divisible by 2 2 e + 1 , and 2 e | | ( 3 β 2 + 2aB) and 2° | | ( 3 β + o ) so that

2 e + 1 | [ c 2 c 3

2 ( 3 β 2 + 2 α β ) + O C 2

2

C 3 ( 3 β + α ) ] .

Hence in lowest terms \a{j \ has a denominator divisible by no power of p greater

than e — 1.

We finally discuss Case 6c when α + c = 0 (4) . Then β = 2 6 " 1 + C2 e, where

we may assume that 2 e + 2 | C, and b = 2 2 ^ e " ι ^c. Hence

If / = e - 1, then by (14) this expression must be = 0 ( 2 2 e + 1 ) , so that

If this is satisfied then / = e - 1 because the first term of (13) has numerator

divisible by 2 2 e + 1 , and 2 e 11 ( 3β 2 + 2αβ) and 2° 11 (3β + a) so that
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