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FOURIER ANALYSIS AND DIFFERENTIATION OVER
REAL SEPARABLE HILBERT SPACE

F. H. BROWNELL

1. Introduction* Let l% denote as usual the space of square sum-
mable real sequences, the prototype of real separable Hubert space.
It is well known that lz possesses no non-trivial, translation invariant
Borel measures. However, lz does have infinitely many subspaces X,
locally compact in the lz norm relative topology, which we may call
translation spaces and for which such measures φ exist [2]. Here the
spaces X are not groups under l% vector addition, so the notion of
translation invariance must be appropriately modified. For any such X
we may of course use the corresponding φ to define over z e l2 a Fourier
transform F of / e A(X, &, φ) by

However, in order to get the expected inverse formula, it seems neces-
sary to be able to make X into a group—roughly speaking to define a
vector in X corresponding to x + y when this Zs vector sum φ X. This
is a severe restriction on our translation spaces X, and the only natural
ones still available seem to be essentially modifications of Jessen's in-
finite torus [9]. With orthogonal coordinates this is the space Xo de-
fined below, a modified Hubert cube.

Since Xo is a locally compact abelian topological group, Fourier
analysis upon it becomes standard procedure. We are able to extend
some standard one-variable theorems (see [1]), relating Fourier trans-
forms and the operation of differentiation, to the situation here, which
seems new. In a summary at the end we discuss the significance of
these results as related to the work in functional analysis of Frechet,
Gateaux, Levy, Hille, Zorn, Cameron and Martin, and Friedrichs.

2. Fourier integrals on Xo. Let

X0={xel2 I —hn<Cxn<kn for integer ri>l}

where the fixed sequence of extended real hny 0<7iw<4-°o, has

for some fixed integer iV>0. For simplicity we assume hn= + co for
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650 F. H. BROWNELL

l<n<N if Λ7">1. Define -f' addition as l2 vector addition modulo the
subgroup 7o= {x e lz \ xn=0 for n<N, xni2hn=mni an integer, for n>N+1}.
Define P(x) for xelz as the unique element of Xo in the coset x 4- Io

thus clearly # 4- 'y=P(x + y)e Xo for α and yeX0. After defining the
inverse — '#=P( — #) for xeX0, we see that Xo becomes a group under
4-' and —'. However, the operation + ' is not continuous under the
metric \\x—y\\ defined by the Z2 norm

Thus, following Gelfand [5], we introduce the modified norm |||a?|||==
\\P(x)\\ for xel2. That + ' and —' are continuous under the resulting

metric |||a? —2/||| is clear from the easily verified statements

-y\\[ and | | | (-^)-(- ' a ? ) | |μ | | | t f - a ? | | | .

Thus Xo is a topological group under the metric topology of the modi-
fied norm. Note that P(x) is continuous from lλ onto Xo under the ap-
propriate lz and modified norm metrics, since

\lP(χ)-P(vnH\P(χ-y)\\^\\χ-y\\.

We can easily verify that the as yet unused condition

is necessary and sufficient for Xo to be locally compact under either
the l2 norm or modified norm metric topologies. Thus Xo, under the
latter topology, possesses a regular Haar measure φ defined over &,
the Borel subsets of Xo and φ is unique up to constant factors. Hence
φ is non-trivial and invariant under 4-', though, as we remarked above,
this φ could be constructed for 4- alone without making Xo into a
group, (see [2]). To fix φ, let

V^{xeX, I \xn\<i for rc<iV}

thus Vl9 being non-void and open with compact closure, must satisfy
0<jp(VΊ)<C+ °° We specify φ uniquely by requiring φ(V1)==l.

In order to get Fourier analysis on Xo following Godement [6] or
Weil [11], we need to determine the continuous characters on XQ, that
is all continuous complex valued functions ψ(x) on xeX0 with \ψ(x)\=l
and ψ{x-\-'y)=Φ{x)ψ{y). Here let

eZ2 I 2 n = 7 Γ ^ with pn an integer for
K
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oo

Note that since Σ ^ 2 < C+°° and zel2 make hn-+0 and «w->0 asw->oo,

each £eZ 0 must have #„=() and thus z n=0 for sufficiently large n.
Let

denote the lL inner product.

LEMMA 1. The group of characters Xo is isomorphic with Zo, each
character having the form ψ{x)=eiiz^ with zeZ0.

Proof. Let exp [iΦ(x)]=ψ(P(x)) for any ψ e Xo, with 0(0) = 0 and Φ{x)
defined uniquely by requiring continuity. Thus Φ(x) is a continuous linear
functional over l21 so Φ(x) = (x, z) = (z, x) for some unique zel2. For
hn^Λ- oo, taking Xj=2hn if j=n and ^ = 0 if not, we see that P(#)=0.
Hence 2πpn=Φ(x)=(z, x) makes zn=πpnlhn, sozeZ0.

Let Z0Ql2 be topologized relatively from l2. Clearly this topology
is equivalent to the product of the euclidean EN topology with the
discrete topology on the part ri^>N, where zn=πpnjhn and hn->0. ZQ so
topologized forms a locally compact abelian topological group under l2

vector addition, η denoting its Haar measure. Clearly this topology on
ZQ is equivalent to the Hausdorff space topology with neighborhoods as
finite intersections of sets of the form

^NPyF(z0)={zeZ01 \(z—z0, x)\<ip for xeF} ,

£>>0 and F a norm bounded subset of XQ. Equivalently on Xo this
topology is given by

Nt,F(Ψo)={ψeXQ I \Φ(x)-Φ»(x)\<* for xeF} .

Now (X, & , ψ) is a ^-finite measure space, so L^Xo, &, ψ) is the

conjugate space of Li(X0, ^ , <p) Thus the argument of Godement,

[6, p. 87], is valid and Zo is homeomorphic to Xo££«,(Xo, ^ > ψ) under

the weak topology defined by LI(XQ, &f <p).

We may normalize rj uniquely by requiring the Fourier inversion

formula (2.2), which must hold as stated in Lemmas 2 and 3 following.

The formulae are:

(2.1) () \
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(2.2) /(*)

Here we note that any feLi(X0, &9 ψ) has its Fourier transform F(z)
defined and continuous on Zo by (2.1); and if such FeLλ(ZQi &r, rj),
&1 being the Borel subsets of ZQ9 then the right side of (2.2) also
exists and is continuous. For Lemmas 2 and 3 let ~/S be the class of
all convolutions

\μ*v\(x) = I u(x — ry)v{y)dψ(y)

of continuous functions u(x) and v(x) vanishing outside compact subsets
of XQ. (For proof of these following well-known lemmas see [6, p. 90-
94]. The density of Λ? in Lemma 2 follows from the regularity of φ.)

LEMMA 2. ^-/S is dense in Lι{XQy &, φ) and L2(XQ, &, φ), and
each f e Λ? has its Fourier transform FeLλ(ZQ, &',rj) with (2.2)
holding at each xe Xo for the inverse transformation.

LEMMA 3. If f' e L2(X0, &, ψ), then there exists a unique Plancherel
transform FeLz(Z0, &', η) such that every sequence {/fc}C /̂/̂  with the
Lt norm \f — /Λ||a->0 also has \F—Ffc||2->0. Moreover, every sequence
{/JC^/f with ||F-^||2->0 also has | |/-/J2->0. This Plancherel
transformation takes L2(X0, &, φ) onto L2(Z0, &', rj) as a Hilbert space
isomorphism,

(2.3) f f(x)φ)dφ(x) = \ F{zJG(z)dyj(z) , f,geL2.

In order to determine η explicitly, let S be the set of all integer
valued sequences ζ={pn} over n^>N such that pn=0 for large enough
n for each sequence; thus S is countable. Let z=(ω; ζ) be defined
for ωeEN, ζeS by za=ωn for n<N and za=πpnlhn for n>N. Letting
XA(Z) be the characteristic function of any A e ^ ' , with μN Lebesgue
measure on EN,

(2.4) V(A) =(1V Σ jt XA(<* 0 d ^ w M I Σ

follows, by applying Lemma 3 to the Gaussian

to determine the normalization.

3* Fourier transforms and XQ differentiation Here let Xn denote
Xo with the nth coordinate omitted, φn the corresponding measure over
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the cr-algebra έxϊ n of Borel subsets of Xn, and ^ the Borel σ-algebra
of Eλ if n<N, of (-kn, hn) if rΓ>N. Then [7, p. 222], we see that
/ / y ^ ^ x ^ as the uncompleted product; also, using the uniqueness
of Haar measure, φ=φnxμi or =φnx(μiβhn) according as n<Nor >iV.
Now consider f e Lι(X0, &, ψ), let x denote x with the nth coordinate
omitted, and define Kn(t, xn) = l if —hn<Ct<Lxn, K{t, xn)=0 if not. Clear-
ly Kn(t, xn)f(x19 , xn-i, t, xn+Λy ) is measurable ( , ^ w x ^ x ^
= (.. '̂ x ^ ) over (5, #n, ί) e Xn xEx xE1 if ^<iV, or Xn x (-hn, hn~\
x( — hn, hn] if n>iV. Thus if we define

\/(a?)da?n=l Kn(t, xn)f(x, t)dt,

then the Fubini theorem makes \f(x)dxneL1(XnxIf^
f,φ) for any

finite xn interval /.
For the following theorems we will say that f(x) is xn absolutely

continuous if for all xeXn — A, where A is some set e &n having
φn(A) = 0, we have f(P(x,xn)) absolutely continuous as a function of xn

over every finite interval of Eλ.

THEOREM 4. // feLι(X0, &, φ), if f is xn absolutely continuous,
and if f'n, the resulting xn first partial, is e L^XQ, &, ψ) also, then
the (2.1) defined Fourier transforms Fn and F of f'n and f have Fn(z) =

over zeZ0.

Proof. Consider first hn<C + °° > so we know almost everywhere (φ)
on XQ that

Now

\ elZntdt=O for

so

But

~hn

ΐ h n • (ΐs )

elZnS\\ f'n(x,t)dt\ds
J~h U - A '

-Λ»
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by integrating by parts, and

f H fn(x, t)dt=f(P(x, hn))-f(P(x, -Λn))=0 .
ιι"il

Thus F(z)^-(llizn)Fn(z) for zΛ=M). If zn=0, then

Jin

f'n(x, t)dt=

makes Fn(z)=0, so Fn(z) = — iznF(z) for all zeZ0.
Secondly if Λw=-foo, we know

almost everywhere (φn) over xeXn. Thus f(x,xn)-+C(x) as #„-> —α>,
so f{x,Xn)eL^(E^ in xn almost everywhere (φn) requires C(£)=0,

f(x)s=\fή(x)dxnf and similarly \ f'n(x, t)dt=Q almost everywhere

(Φn). Thus

J'n(x, t)dήds

V - f'n(x,t)dt\ - Λ e^sf'n(χ, s)ds

F ^ ^ - - i - F M ( 2 ) for zn

If sn=0, then Γ fΊ/(x,t)dt=0 makes Fw(ί2;) = 0, so Fw(«)=-ώj?7^) for
J - o o

all 2620.

For the next lemma we need to remark that T(x; y) = (x; y—rx) is
a homeomorphism of X o x^ o into itself, and hence leaves unchanged
the Borel class ^ ' x ^ , [7, p. 257]. Thus Ae & has Γ ( I o x A ) e ^
x .<?>', so clearly any /(a:) measurable ( ^ ) has f(x+'y) measurable
( ^ x ^ ) . Let ne e Z2 be defined by nek=δntk9 and we then easily see, using

{(x y)e XoxXQ\yk=0 for k^n} e & x &,

that such / also have /(#+'£we) measurable (,^ x ^j) over a e l o and
t real.

LEMMA 5. // f eLr(XQ, &, ^) wi£A reαZ r > l , if / is xn absolutely
continuous, and if the resulting fr

neLr{XQlf &, ^), ί^e^ defining
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nMx)
h

over real h^O yields

Proof. Since xJrfhne=^P(xΛ-hne)J we know that

't »*) ~ f"n(x
h Jo

almost everywhere (φn) over xeXn. With 1/r'= 1 —1/r if r > l , 1/r'
replaced by 0 if r = l. The Schwarz-Holder inequality thus yields

; (^+'«n«) - / ; w \r
l/r

Then by the Fubini theorem

. 1 Γ
Jo

< sup \\gt-gt
\t{<)lι\

where g(x)^f'n{x)eLr and ί/ t(^)=^(^+/ίnβ). The functions ẑ (̂ ), con-
tinuous on XQ under the modified norm topology and vanishing outside
compact subsets of XQ, are Lr norm dense in Lr(XQ, &, φ) by the
regularity of φ; and such it have \\ut—u\\r->0 as t->0 by their uniform
continuity. Also \\gt — ut\\r=\\g — u\\r by φ invariance, so

llnΛ-/ή||r<I2||0-%||r4- sup | |^~w| r
]ί|<l/M

and hence ||n/Λ—/»||r->0 as Λ->0 .

We also have the following converse for r==2.

LEMMA 6. // / and geL2(X0, &, φ) and if lim||n/Λ-flr||2=0, then

f(x)=f(x) almost everywhere (φ) for some f(x) measurable {&) which

is xn absolutely continuous and has its derivative fή{x)=g(x) almost
everywhere (φ).

Proof.

by the Fubini theorem, so using a Riesz-Fischer subsequence &=4



656 F. H. BROWNELL

we have

lim
— llγi

lim \

for almost (φn) all x e Xn. This reduces our statement to the one real
variable analogue, where the result is well known (see for example
Bochner, [1, p. 131], if λn=-l-oo). Since we may take

f(x) = \ g(x, t)dt+f(x, 0)
•o

almost everywhere (φn) with

1 Γa ί fs

f(x,0) =—\ ]f(x9 s)—\ #(#, t)d
a Jo ( Jo

for 0<α<Λw, clearly /(α?) may be taken measurable (,

The L2 counterpart of Theorem 4 now follows.

THEOREM 7. If f eL?(XOy &, φ)9 if f is xn absolutely continuous,
and if the resulting fr

n e L2(X0, £/?, φ) too, then the Plancherel trans-
forms F and Fn of f and f'7i satisfy Fn(z)= —iznF{z) almost everywhere

Proof Using the Fubini theorem in (2.1) and the translation in-
variance of φ, we have

nFM(e
h

for the transform of nfh in case / e LλC[L^ and hence for all / e L2 by
the Plancherel Lemma 3 wτith LXΓ[L2 dense in L2. Since

l i m — ( e - ^ - l H - i S n
h

and since \\nFh—i^||2->0 as h~>0 by Lemma 5 and (2.3), the Riesz-
Fischer theorem yields Fn(z)=—iznF(z) as desired.

It is easy to get an extended converse of Theorem 7.

THEOREM 8. Iff and geL2(XQ, &, φ) and have transforms F and

G satisfying G(z) = (—izn)
kF(z) for integer k^>0, then f(x) = f(x) almost

everywhere (ψ) for some f(x) measurable (&) such that f(x) possesses

everywhere up to (k—l)st order xn partials which are eL2(X0, &, φ),
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the (k — l)st f%ή ?.,n(χ) is χ

n absolutely continuous, and

f (fc) (rΛ Π(Ά

almost everywhere (φ).

Proof. From (-izn)
kF(z) and F(z)eL2(Z0, έ%\ rj) clearly (~-izn)

pF(z)
eL2 also for p=0, 1, , k — 1, and by taking inverse Plancherel trans-

forms we get pgeL2(X0, &, φ) transforming into (—izn)
pF(z). As we

have seen before the difference quotient pgh of pg will have the trans-
form

\_(p ~iznh __Λ\(__ή7

Since |{ } |<1 and { }->l, this transform -*(-izn)
p+ιF(z) in I 2 norm

as Λ->0. Hence | | ^ —2J+i^||2-
>0 as A->0 by the Plancherel lemma, and

so Lemma 6 with og=f and fc(/=# gives the result.

The following converse of Theorem 8 is considerably deeper than
Theorem 7. We remark that if / and geL^Xoy &, φ), then f*geLλ

also and has the Fourier transform F(z)G(z), where

exists almost everywhere (φ). More important for us, if / and
geL2(X0, &, φ), then f*g is the inverse Fourier transform of
F(z)G(z) e L^ZQ, &, rj), defined pointwise by (2.2), and hence also the
inverse Plancherel transform if FG e L2. This follows by noting

that eKz^F(z) is the transform of f{x—'y) as a function of y and by
using (2.3).

THEOREM 9. // feL2(X0, <3? y φ) and possesses everywhere up to
(k — l)st order xn partials, if fQnJ.?n{χ) ̂ s χn absolutely continuous, and if
fc£..,n(

χ) e L2(X0, &, φ), then also fc£..Jx)eL2(X0,^,φ)for p=l, 2,
• , k, and such /$£?..,n have the transforms {—izn)

pF{z).

Proof. First we construct rather arbitrarily a smoothing transform

G(z) = exp ( - 1 Σ «>) - I Tnzl) P(ζ)

for z=(ω; ζ) of ωeEN and ζeS using the notation of (2.4), where
rn=0 if n<N and γn=l if n^>N. S being countable we may set
S={*C} and define p(ζ) on S by setting p(^)=e-k. We see clearly from
(2.4) for each integer p>0 that (-izn)

pG(z)eLιΠL2Γ\Lo. for the measure
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space (ZQf &', η), since

is bounded and 0{e~\Zn\) as |zw|->co. Also G(z)>0 everywhere on ZQf

these two conditions being all we really need. Take g as the unique
element of L2(XQ, &, φ) transforming into G, and by Theorem 8 we
may take g(x) to possess all order derivatives in xn with g%l.tneL2

transforming into (—izn)
pG(z).

Now for hn<C+oo and 0<p<&, by integrating by parts we see that

ί gi%A* - ry)f(v) dyn = ! g(χ- f

existent finite for almost (φn) all yeXn for each x e Xo, using the
periodicity of g(P(x — y)) and f(P(y)) at the endpoints yn=±hn. If
^=4-oo we still get the same result by a slightly different argument.
Here we know fCnX.,n{x) eL2(— oo, oo) over xn for almost (φn) all xeXn,
so by the Schwarz inequality follows

as |#w|->oo for such x. Thus by further integration

as |#w|->oo for such xf 0<Lp<Jc — l. Now clearly

g(x)=e~hXn2

gi(x) ,

so

as \xn\—>oo. These two estimates are enough to make the endpoint
terms vanish in integration by parts, so

- fy)f(y) dyn=

Thus with K=l or Ij2hn we have

existent finite in the order written for 0<p<k and all x e Zo.
Now for p=k we are given /^?..,»eL2, so the Schwarz inequality

shows g(x — fy)fCnr.^n(y) t° be eL l β Thus by the Fubini theorem
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at all xeX0. By our remarks preceding this theorem, since (-izn)
kG(z)

and G{Z)BLOO make (~izn)
kG{z)F(z) and G{z)Fk(z) e L2, for the Plancherel

transforms we have [(-izn)
kG(z)]F(z) = G(z)F*(z) . Thus since G(z)>0

everywhere, Fk(z) = (-izn)
kF(z) with FkeL2 the transform of / ^ . , n e L 2 .

Thus Theorem 8 gives the result.

THEOREM 10. // / αmZ geL2(X0, &, ψ) and if their transforms F
and G satisfy

then there exists a sequence of functions nf{x) measurable {&) such that
„/(#)=/(#) almost everywhere (φ), nf(%) is xn absolutely continuous as
well as its everywhere existent first xn derivative nf'n(%)9 nf'n and

M

nfnn€L2(Xc, &, φ), and Σ nf'ήn converges in L2 norm to g as ikf~>oo.

Proof Let gneL2(XQ, &y φ) be defined uniquely by requiring
Gn(z)=-zlF{z), since \zlF(z)\<\G(z)\ makes z*F(z)eL2(Z0, &',yj). Now

X Zn is actually a finite sum for each z 6 Zo, and also

M

11 = 1

M

so by dominated convergence 2 Gn(z)-+G(z) in L2 norm as Λf->oo, and
M

hence also X #w—•# in Z2 norm. Finally Theorem 8 for each n gives

the desired nf(x)=f(x) almost everywhere (φ), nf'n and w/;'weL2, and
nfnn{χ)^gn{

χ) almost everywhere (φ) as desired.

THEOREM 11. Let f and geL2(X0, &, ψ) and let a sequence of
functions nf{x) measurable (&) satisfy the conditions: nf(x)=f(x)
almost everywhere (ψ) nf everywhere possesses a first xn partial nf'n

M

ivhich is xn absolutely continuous; n/^eZ 2(X 0, ^ , φ); and X nf'ήn-*9

in L2(X09 &, φ) norm as AT—>oo. Then the transforms F and G satisfy

G(Z)=-(±ZI)F(Z)

almost everywhere {η).

Proof, By Theorem 9 we also have w/^eL 2 and nf'ήn has the
M

transform Gn(z)=—z2

nF(z), From Σ nf'ήn-+9 in L, we thus know
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M

Σ Gn->G in L2 norm as M->oo, where
1

Since J£s£ is actually a finite sum at each zeZ0, Riesz-Fischer sub-

sequences yield

as desired.

4* Significance of results. The main results of this paper are
Theorems 7 through 11 relating Fourier transforms over Xo, a modi-
fication of the Hubert cube, to the operations of differentiation in an
L3 sense. It is clear that Theorems 10 and 11 allow one to use Fourier
transforms to define a generalized Laplace differential operator for
scalar functions on Xo. This definition is in a global L% sense, which
gives a pointwise definition only by using Riesz-Fischer subsequences.
The ideas of pointwise infinite dimensional derivatives seem to go back
to Frechet and Gateaux. Hille [8, pp. 71-90], Zorn [12], and others
have developed a notion of analyticity from similar complex differenti-
ability on complex Banach spaces.

To be precise, for real l2 consider a real valued function f(x) over
xeL and define the gradient Vf{x)=y at each x such that there exists
y e l% having over u e l2

(4.1) lim||u||-1|/(a? + w)-/(a?)-(M, 2/) 1=0 ,

such y being clearly unique. This is a Frechet type definition. If we
let {wn} be a complete orthonormal system in l2, we have where Vf{x)
exists thatexists that

(4.2)
dλ

This equation could also serve as a Gateaux type definition of Vf{x),
possibly depending on {wn}, wherever the squares of the right hand
terms are summable. For the divergence, if T(x)elz for each xeU,
we may formulae the Gateaux type definition

(4.3) (F, T(x)) = ± (wn9 Vφn{x)) for ψn(x) = (T(x), wn) ,
W = l

which is independent of the choice of base {wn} if
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(4.4) ΣIIWaOIK+«> and
l

0= lim |N|
HwIM)

Finally we can define the Laplacian P2f(x) = (F, ¥/{%)), so that

shows this definition to agree pointwise with the expression in Theorems

10 and 11, ± f'Ux).
n = l

Levy has also constructed a vector analysis for Hubert space,
though he is led to define

as the Laplacian, [5, p. 248]. He differs more seriously from our ap-
proach by using a development of mean values of functions instead of
integration with respect to a non-trivial, translation invariant measure.
Thus he has no need to reduce l2 to Xc, though naturally his theory
of mean values must pay for this by certain anomalous features.
Cameron and Martin have also done a great deal of functional analysis
in terms of Wiener measure on the continuous functions ([3] and
others), but since this is not translation invariant, it has little contact
with our work.

It seems that our results relating Fourier transforms and different-
iation over real Hubert space may be useful in a mathematical formu-
lation of quantum radiation theory, just as finite dimensional differential
operators are very conveniently defined self-adjointly in terms of Fourier
transforms. Friedrichs has discussed such problems and is led to still
a different method of integration over Hubert space, [4, p. 60]. How-
ever, the set functions induced by his method are not ^-additive and
apparently not translation invariant either.
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