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REMARK ON THE AVERAGES OF REAL FUNCTIONS

R. E. CHAMBERLIN

1. Introduction. Let f(x) be a continuous function defined on the
closed interval [α, 6], It is known that if for each x in the open
interval (α, b) there is a positive number t such that

[x-t, a? + ί]d(α, b) and f(χ)^l^

then /(a?) is linear (see [2, p. 253]). The same method of proof shows
that if there is such a t for each xe(a, b) with

then f(x) is linear. Suppose f(x) is such that for each xe (α, b) there
exists a £ with [x — t, x-hf\cz(a, b) and

( i )

Is /(a;) necessarily linear ? On page 231 of [1] it is shown that if (1)
holds for each x and all t such that [x — t, x + fjczfat b) then f{x) is
linear. The question arises whether or not one can relax the require-
ment that (1) holds for all t in the above intervals and still conclude
that f(x) is linear.

In this note a continuously differentiable non-linear function f(x)
is given which satisfies (1) for every x e (α, b) and an infinity of £'s.
The values of t depend on x but they may be chosen arbitrarily
small for each x. Conditions which together with (1) make f(x)
linear are given and the note is concluded with some remarks on the
approximation to a function by its averages

DEFINITION. A continuous function f(x) on [α, b] will be said to
have property (1) if for each x e (α, b) there are arbitrarily small
values of t for which (1) is true.

2. An example. We give an example of a continuously differentia-
ble function having property (1) which is not linear. Let
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y c o s i φ n π x

It is clear that f(x) is not linear and is continuously differentiate.
To show that f(x) has property (1) we begin with the following

LEMMA. For every x,

lim|cosl02 M πx\>10~3.

Since the functions cos 1027V# (n^>l) all have 1 as a period it is
clear we need only consider x e [0, 1] in the proof of this lemma.
Since there is no loss in generality we assume hereafter that we are
dealing with the interval [0, 1] and x is in this interval.

Let the decimal expansion of x be .a^---. Then

102wa?=α1αi a.λnΛ- ,a2n+1 αaw+2 and | cos 102n πx | = |cos(.α2n+1 G^+Σ

Suppose i cos 102Λ πx \ <C 10~3. Set .α2w+itt2w+2 = .54 rκ where
Then

2
10" 3> I cos(.α2n+1 a2n+2-~)π | = | sin rnπ | = sin | rnπ | > ' rnπ \,

π

that is — - ^ I rn \. Hence there is an integer b with 0<6<5 such

that |rre|=.OOO6—. Therefore,

! cos

Thus for every x and every n0 there are integers w>ft0 such that
[cos 102??7τ^|>10"3. This proves the lemma.

For the function (2) we have

(3) g(x, «)=-![/(

= Σ - - -1 [cos 102"τr(̂  + ί) + cos 102Λτr(a; - 0]

From elementary trigonometric identities we now obtain

-•- cos i o 2 r a r a Γcos io 2 w rί - s m

1
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We investigate in detail the last expression for g(x, t) in (3).

Given x, let lim |cos 102nπx\=d . From the lemma it is clear there

are an infinity of integers k with the following properties :

(a) |cosl02fcτr#|>.99cZ.

(b) ! cos Wnπx |<1.01 d for n>\kβ~\

(c) &>10.

For these values of k we show that the sign of g(x, t) in (3) is deter-
mined by the sign of the λ>th term in its series expansion if t is
chosen properly. We assume hereafter that k is subject to conditions
(a), (b) and (<ή.

For the given x and subject to conditions (a), (b) and (c) pick k
large enough so that for ί=2 10"2fc, [x-t, α + £]ς:[θ, 1]. Then

g(χ, 10--)= Σ C°S 102nπX [cos

cos Wnπx

where | θn | < 2. Now

(5)

3 102fc ίΛ

1Π /lfe/3]-i 1 \ /1Π\ / fc-1 1 \

< l u io- 2 f c ( Σ io2Cw-fc)Vio3d+(lu)io-2fc( Σ -lo^-^ii.oid
3 \ n~ι n2 / \ 3 / \w-[Jt/3] n /

where we have used the lemma and property (b) of k to get the last
inequality.

For the first sum in the last inequality of (5) we have

—10"2

To get an estimate on the second part of the last inequality of (5),
n

recall that if s w = Σ Λ i
i = l

then

Σ< Sn\Pn Γn+l) ^r-lPr S-mrm+1
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Letting <xn=102(-n-k\ βn=lln2 we get

k-l 1Λ2(»-*) fc-1 /I 1 Π - 2 w \ / 1 1

(<J Λ 2 J — ^ Λ 2 J iw Λ T^To-2 A 2 "T^T^

at least for β>10. Using the estimates obtained in (6) and (7) we
get

O n-1, n 1U l U L o o 1U fC

<—d -y—^ for

Furthermore

(9)

<1.01d

n^tl 1(PW LC

102Cfc+1) 1 -

From (8) and (9) we see that the A>th term of the series for
g{x, 10~2*) is greater in absolute value than the sum of the remaining
terms. Hence the signs of g(x, 10"2*) and -10"2%-2cos Wπx are the
same. For ί = 2 10"2fc the fc-th term of the series for g(x, 2 10"2*) is
10"2fcfe"2 cos 102kπx and in the same manner as above one can show that
the signs of g(x, 2 10~2*) and the A>th term are the same. Since
10-2fcAr2 cos 102fc7r# and — 10-2fcAr2cos 102fcπ^ are of opposite signs, g(x, t)
vanishes for some t e (10"2fc,2 10"2fc). But for g(x, t) to vanish means
that f(x) satisfies (1). Since for each x there are an infinity of fc's
satisfying (a), (b) and (c), there are (for each x) arbitrarily small
values of t for which the f(x) of (2) satisfies (1). Hence this f(x)
has the property (1).

3. Sufficient conditions for a function to be linear*

LEMMA 1. If f{x) is continuously differentiate and /;/(^o)^vO, then
g(x09 t) is of one sign for some open interval (0, t0) (£0>0).

Under the stated conditions we may represent f(x) by

(10) /(«) =

Using (10) and the definition of g(x, t) gives
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(ii) g i X o , o ^
2

2
^ \xo+t\f(χo)+f'(χo)(u-xo)

Thus if /"(a?0)=M), it is clear g(x0, t) is one-signed for sufficiently small
values of t.

THEOREM 1. If f(x) has property (1) and f'(x) is absolutely con-
tinuous then f(x) is linear.

For fn(x) exists almost everywhere and by Lemma 1 it is zero
everywhere it exists because f(x) has property (1). Hence f'{x) is a
constant and f(x) is linear.

THEOREM 2. If f'{x) is continuous, monotone increasing and not
constant in any sufficiently small symmetric interval about x0 then g{xϋJ t)
is one-signed in an interval (0, ta).

One has

"°~+tf'(u)du

and for any xe(x0—t, xo + t) we get

(12) f

where at least one of the inequalities is strict by the hypothesis of
Theorem 2. From (12) one obtains

+ t) +• (̂ o -X±t)f(x0"J

It is obvious from (13) that g(x0, t) is positive. Clearly this result
with the inequality reversed holds if f'{x) is monotone decreasing.

We do not know if property (1) and bounded variation of f'{x)
imply linearity for f(x). In view of the two preceding theorems it
seems quite likely.

4. Remarks on the approximation of a function by its averages.

Suppose f(x) is a continuous function defined on the interval
(α — δ, b + δ) (<Γ>0). We make some remarks on the approximation to
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fix) by its averages

Γ V (0<t<δ), xε[υ, 6].

If /(#) is linear then f(x, £)=/(#). If /(#) is not linear in any
subinterval then there is an everywhere dense subset of points x at
which the approximating functions are all either above or below f(x).
Otherwise the conditions of the theorem of [2, p. 253] are met and
f{x) would be linear.

One might ask if there are necessarily points at which fix, t) ap-
proaches fix) monotonely. From the results of § 2 above this can be
seen to be false. For f>0, fix, t) is continuously differentiate func-
tion of t and

\ ψ m d u U \ g { x , t).
From this it is clear the function of § 2 gives an example of a con-
tinuously differentiable function which at no point is approximated
monotonely by its averages.
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