Pacific Journal of Mathematics

ON THE DARBOUX PROPERT

ISRAEL HALPERIN

Vol. 5, No. 5

BadMonth 1955

ON THE DARBOUX PROPERTY

ISRAEL HALPERIN

A function f(x) with a finite real value for each x in the closed interval (a, b) is said to have the Darboux property if f(x) assumes on every sub-interval (c, d) all values between f(c) and f(d). This note discusses *local* conditions which are necessary and sufficient in order that f have the Darboux property (and corresponding conditions for a generalization of the Darboux property).

For each x in (a, b) let $I_r(x)$ denote the open interval with end points

$$f^r(x) = \limsup \{f(t); t \ge x, t \rightarrow x\}$$
 and $f_r(x) = \liminf \{f(t); t \ge x, t \rightarrow x\};$

let $I_i(x)$, $f^i(x)$, $f_i(x)$ be defined similarly, using $t \leq x$, $t \rightarrow x$. Let \mathcal{N} be any family of N-sets with the properties:

(a) Whenever an open interval is an N-set, its closure is also an N-set.

(b) Every subset of an N-set is an N-set.

(c) The union of a countable number of N-sets is an N-set.

We shall say that f is \mathcal{N} -Darboux on (a, b) if f(x) assumes on every sub-interval (c, d) all values between f(c) and f(d) with the exception of an N-set. We shall say that f is \mathcal{N} -Darboux at x if for every h > 0:

(i) the values assumed by f(t) for x < t < x+h include all of $I_r(x)$ with the exception of an N-set;

(ii) the values assumed by f(t) for x-h < t < x include all of $I_i(x)$ with the exception of an N-set, (i) to be omitted when x=b, (ii) to be omitted when x=a.

We shall prove the theorem :

THEOREM. f is \mathcal{N} -Darboux on (a, b) if and only if f is \mathcal{N} -Darboux at every x in the closed interval (a, b).

The theorem was suggested by a paper by Akos Csaszar [1] who established the theorem for the two special cases: Case 1: the only N-set is the empty set, giving the usual Darboux property; and Case 2: (iii) also holds, every set consisting of a single point is an N-set.

We use the following modification of a lemma of Csaszar:

LEMMA. If E is not an N-set then E contains a point y_0 such that IE fails to be an N-set for every open interval I containing y_0 , and I

Received December 10, 1953.

fails to be an N-set for every open interval I which has y_0 as one of its end points.

To prove the lemma let E_1 be the set of x in E for which I(x)Eis an N-set for some open interval I(x) containing x, let E_2 be the set of x in $E-E_1$ such that x is the right end point of some open interval J(x) which is an N-set and let E_3 be the set of x in $E-E_1$ such that x is the left end point of some open interval which is an N-set. Then

$$E_1 = E_1 \sum \{I(x), \text{ all } x \text{ in } E_1\}$$

= $E_1 \sum \{I(x_n), \text{ for a suitable sequence of } x_n\}$
= $\sum (E_1I(x_n))$ = union of a countable collection of N-sets.

By (c), E_1 is an N-set. Since the J(y) are clearly disjoint for different y in E_2 , they form a countable collection; the closure of J(y) includes y and is an N-set because of (a); it follows that E_2 and similarly E_3 , are N-sets. Hence $E_1 + E_2 + E_3$ is an N-set, thus not identical with E which must therefore contain some y_0 not in $E_1 + E_2 + E_3$. This proves the lemma.

To prove the theorem, we note that the 'only if ' part is an easy consequence of (b) and (c). To prove the 'if ' part it is sufficient to assume that the set E of real numbers which lie between f(a) and f(b) but are not assumed by f(t) is not an N-set, that y_0 is a point of E as described in the preceding lemma and obtain a contradiction. For this purpose we shall prove:

(*) For every sub-interval (a_1, b_1) of (a, b) with y_0 between $f(a_1)$ and $f(b_1)$ and for every m > 0 there is a sub-interval (a_2, b_2) of (a_1, b_1) such that y_0 is between $f(a_2)$ and $f(b_2)$ and

$$|f(t)-y_0| < 1/m \ for \ all \ a_2 < t < b_2$$
.

Successive application of (*) with $m \to \infty$ will give a nested sequence of closed intervals such that at any of their common points $f(t)-y_0=0$, a contradiction since y_0 is in E, the set of omitted values.

Thus we need only prove (*). Since y_0 is in E, we have $f(x) \ge y_0$ for all x. It is easily seen that if $f(x) > y_0$ then $f_r(y) \ge y_0$ and $f_l(x) \ge y_0$ (because of the particular properties of y_0) and hence x lies in some open interval I(x) on which $f(t) - y_0 > -1/m$. Similarly if $f(x) < y_0$ then x lies in some open interval J(x) on which $f(t) - y_0 < 1/m$. By the Heine-Borel theorem, a finite number of I(x) and J(x) cover (a_1, b_1) and hence it follows that some $I(x_1)$ and some $J(x_2)$ must contain a common open interval (u, v) say. We may suppose $x_1 < u < v < x_2$. If y_0 is between f(u) and f(v) we can choose (u, v) to be the (a_2, b_2) required by (*). Otherwise we may suppose $f(u) > y_0$, $f(x_2) < y_0$. Let a_2 be sup twith $f(x) > y_0$ on $u \ge x > t$. Then $f(a_2) < y_0$ is impossible; for if $f(a_2) < y_0$ held, the open interval $(f(a_2), y_0)$ would be contained in $I_l(a_2)$ and yet omitted from the values of f on (u, a_2) , implying that $(f(a_2), y_0)$ is an *N*-set and thus contradicting the particular properties of y_0 . Thus $f(a_2) > y_0$ and $u \leqslant a_2 \ll x_2$. It now follows easily that $f_r(a_2) = y_0$ and that a_2 is the limit of a sequence of t_n with $t_n > a_2$ and $f(t_n) \ll y_0$. Hence, for sufficiently large n, t_n may be selected as b_2 to give (a_2, b_2) with the properties required by (*).

The example f(x)=x for x<0 and f(x)=1 for $x\ge 0$ with the open subsets of (0, 1) as the class \mathcal{N} shows that the condition (a) cannot be omitted.

References

1. Akos Csaszar, Sur la propriété de Darboux, C.R. Premier Congres des Mathematiciens Hongrois, Akademiai Kiado, Budapest, (1952), 551-560.

QUEEN'S UNIVERSITY.

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. L. ROYDEN

Stanford University Stanford, California

E. HEWITT University of Washington Seattle 5, Washington R. P. Dilworth

California Institute of Technology Pasadena 4, California

A. HORN* University of California Los Angeles 24, California

ASSOCIATE EDITORS

H. BUSEMANN	P. R. HALMOS	R. D. JAMES	GEORGE PÓLYA
HERBERT FEDERER	HEINZ HOPF	BORGE JESSEN	J. J. STOKER
MARSHALL HALL	ALFRED HORN	PAUL LÉVY	KOSAKU YOSIDA

SPONSORS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA, BERKELEY UNIVERSITY OF CALIFORNIA, DAVIS UNIVERSITY OF CALIFORNIA, LOS ANGELES UNIVERSITY OF CALIFORNIA, SANTA BARBARA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA OREGON STATE COLLEGE UNIVERSITY OF OREGON UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD RESEARCH INSTITUTE STANFORD UNIVERSITY UNIVERSITY OF UTAH WASHINGTON STATE COLLEGE UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY HUGHES AIRCRAFT COMPANY SHELL DEVELOPMENT COMPANY

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any of the editors. Manuscripts intended for the outgoing editors should be sent to their successors. All other communications to the editors should be addressed to the managing editor, Alfred Horn at the University of California Los Angeles 24, California.

50 reprints of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is \$12.00; single issues, \$3.50; back numbers (Volumes 1, 2, 3) are available at \$2.50 per copy. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues, \$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to the publishers, University of California Press, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.) No. 10 1-chome Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

* During the absence of E. G. Straus.

UNIVERSITY OF CALIFORNIA PRESS · BERKELEY AND LOS ANGELES

Pacific Journal of Mathematics Vol. 5, No. 5 BadMonth, 1955

Henry A. Antosiewicz, A theorem on alternatives for pairs of matrice		
F. V. Atkinson, On second-order non-linear oscillation	643	
Frank Herbert Brownell, III, Fourier analysis and differentiation over real		
separable Hilbert spac	649	
Richard Eliot Chamberlin, <i>Remark on the averages of real function</i>	663	
Philip J. Davis, On a problem in the theory of mechanical quadrature	669	
Douglas Derry, On closed differentiable curves of order n in n-spac	675	
Edwin E. Floyd, Boolean algebras with pathological order topologie	687	
George E. Forsythe, Asymptotic lower bounds for the fundamental frequency		
of convex membrane	691	
Israel Halperin, On the Darboux propert	703	
Theodore Edward Harris, On chains of infinite orde	707	
Peter K. Henrici, On certain series expansions involving Whittaker functions		
and Jacobi polynomial	725	
John G. Herriot, The solution of Cauchy's problem for a third-order linear		
hyperoblic differential equation by means of Riesz integral	745	
Jack Indritz, Applications of the Rayleigh Ritz method to variational		
problem	765	
E. E. Jones, <i>The flexure of a non-uniform bea</i>	799	
Hukukane Nikaidô and Kazuo Isoda, Note on non-cooperative convex		
game	807	
Raymond Moos Redheffer and W. Wasow, On the convergence of		
asymptotic solutions of linear differential equation	817	
S. E. Warschawski, On a theorem of L. Lichtenstei	835	
Philip Wolfe, The strict determinateness of certain infinite game	841	