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Introduction. Let R be a bounded either simply or multiply con-
nected plane region with boundary [I7, consisting of a finite number of
non-intersecting simply closed regular arcs of class ¢*. A plane curve
is a regular arc if the defining functions x(¢), y(t), a<<t<b have con-
tinuous derivatives with z/(£)*+4'(¢)’><0 on a<{t<{b. A regular arc is
of class ¢* if the defining functions z(s), y(s), s being arc length, have
continuous derivatives of order k. We shall say a function A(x, ¥)
defined on R=R+ I is of class ¢* if the partial derivatives of % of
order », 0<r<k exist in R and have limits on I" so as to define func-
tions continuous on B. Let g(x, y) be a given function of class ¢* on
R. The main problem considered is that of finding the function ¢,
which yields minimum value to the funectional

1191 (| (@g+ b4+ ep+ 204)da dy

defined over the admissible class of functions ¢ which are of class ¢*
on R and assume the values of ¢ on I

We shall assume a(z, y)>0, b(x, ¥)>0, ¢(z, ¥)>>0 on B; a, b, ¢
bounded and integrable in R; f(x, y) integrable in B. In the sequel,
unless otherwise specified, integrations will be taken over R and the
symbol R omitted.

Let G(z, y) be of class ¢* on R, vanishing on I', positive in R,
with normal derivative 3G/dy on I" different from 0. We show that,
if £>=3, every admissible function ¢ has a uniformly convergent ex-

pansion on R

g=g+ :21 b fi(x, v)

where f, are obtained by a Gram-Schmidt process from the functions
{Gaiy’} 7,7=0, 1, 2,--- and b, are generalized Fourier coefficients con-
nected with the quadratic functional

D1y~ ((ag+vg3+ epazay
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766 J. INDRITZ

In fact, b,=D[¢—g, fi] where

Dlg, 77]=Sg(a &, 7. +bE, 7, +cépdrdy.

An estimate of the error obtained by using for ¢ only the first =
terms of the expansion is given in terms of # and k. Sufficient condi-
tions are obtained for the convergence of

V|:g+§;bif¢]

to p¢ and an estimate is given for the rate of convergence.
In particular, if ¢, is an admissible function minimizing I[¢], then
the expansion

dy=g+ Zia/ift

yields an explicit solution for ¢,, since the coefficients a, are given, in
this case, by

a,== || .dz ay-Dlg,

which are independent of ¢,.

The problem of minimizing the functional I[¢], with ¢g=0, has
been studied by Kryloff and Bogoliubov [4] and by Kantorovitech [2],
both obtaining estimates for convergence to ¢, of functions obtainable
by the Rayleigh Ritz method. The first paper deals with convex
regions R, the second with regions R bounded by x=0, x=1, y=g(x),
y=h(z); h>g on 0<{x<1. Neither obtains an explicit solution for ¢,
nor studies the convergence of the derivatives.

In the final section of this paper, we assume the existence of a
funetion ¢, yielding minimum value, for p=>1, to

pig1=|| @i +sgrepyavay, y=g on I

and obtain an estimate for the rate of convergence to ¢, of functions
obtained by the Rayleigh Ritz method.

§ 1. Preliminary Considerations. A variation v shall mean a func-
tion of class ¢* on R vanishing on I'. Form the Hilbert space H by
completing the linear manifold V of variations v using the positive
definite quadratic form D[v] as the square of the norm of a variation.
If 2e H, we represent the norm of 2 by 2. If & and 7 are varia-
tions, the inner product will be

& p=DI¢, 7].
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Let f;, be any complete orthonormal set of variations in H. If ¢ is
admissible, then ¢—g¢ is a variation and thus expressible in H as
g—g =§;bzﬁ

with b—=D[¢—g, f].
If ¢, is an admissible function yielding a minimum value to I[¢],
if 2 is real, and v is a variation, then ¢,+Av is admissible, and

T T4+ i1=10¢] + 42D, o1+ { (20 die dy) +2Dlo1.
This implies that the coefficient of 2 must vanish so that
D¢y, v]— —ggfv de dy
and
I[¢o+ 2w]=1[¢y]+ 2*D[v]

for every variation v.
The first relation shows that the Fourier coefficients of ¢,—g,

a=Dl¢s—g, fl=DI¢», f—Dlg, fil= —SSfﬁ dz dy—DIg, fi]

are independent of ¢,.
The second relation implies that if ¢ is admissible,

I[¢1=1¢o+ ¢ — ¢l =I[¢u] + D[ — ¢0] .

Thus if
¢n=g + i; a’iﬁ y
then
0=lim | ¢, —(g+ 3 @i )| =lim Digs—,1=lim I, ]~ T[]

so that ¢, is a minimizing sequence.
Moreover,

is a minimum when ¢;=a, implying that ¢, are chosen to yield mini-
mum value to I[¢,]—I[¢] and hence to I[¢,] in the class of functions

Sbn:g’}' i;ciﬂ .

Thus ¢, may be obtained by the Rayleigh Ritz process applied to the
functional I[¢].
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We will prove, in Theorem 1, that the class of functions {G P}
where P is a polynomial in = and y, is dense in A. This class is the
linear manifold determined by the set {G &'y}, a set linearly indepen-
dent in H. For, if

n i
v==3 2, Galy,
=is

then D[v]==0 implies «;;=0.
It follows that we can obtain an orthonormal set f; complete in H
by orthonormalizing the set {G «'y’}. Let

=G 2"y

v,=Gxy, v,=Gz"y

(Y R (Y 40 g
Ve +1 +1~'G9/ Yooy vk(k+1)+k+1”—Ga/ Y.
2

P

Then
v 5 0 £)
S|

[COR T [ @, ) | ,
= . . |- . i . ‘. |
{ (vm ?)1)' M (’Uny /Un—l) Vnt | (vn—l ’ ’Un—l) \ J (/Un ’ vn) ‘

The function f, is of the form GP,, where the degree of the
polynomial P, is that of v,/G. If v,=G x" ¢ with r+s=£k, then

k(e +1)
2

+ 1@3’“’“; 2

+k+1

so that k< k(k+1)<2n—2 and the degree k of P, is less than 1/2n—2.
Similarly % is greater than 1"2rn—2.

§ 2. The Minimizing sequence. We shall use certain approxima-
tion theorems which can be derived by methods used by Mickelson [5].
To simplify the notation, let

xz(mlv" 'ws) ’

O =(a®, - a) ,

1 For detailed proofs of Lemmas 1, 2 see J. Indritz “ Applications of the Rayleigh Ritz
method to the solutions of partial differential equations” Ph. D. Thesis, U. of Minnesota,
1953.
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f(il')::f(il71, ) ms) ’
Qrit s
F@ =2 e, @,

0@ 10+ 0% s

29— | = S @020
=1

The modulus of continuity for a function f defined over a closed set
4 —1<x,<1 (i=1,---,9) is

O3, f)=sup |f(@®)—f(@®)

for all points 2@, ® in A with |j2® —2® | < 5. The uniform modulus
of continuity of a finite number of functions f,,---,fy is the largest of
the moduli of each f, for each .

LEMMA 1. Let F(0) be a continuous periodic function of period 2r in
each 0, and of class ¢*. Let w(8) be the uniform modulus of contimuity
of the partial derivatives of F' of order 1 to k for 6<z\'s. Let j<k.
Then, corresponding to every set my, +--, m, of positive integers, there is
a trigonometric sum T™ of order at most m,; in 0, such that

F0)-TrOI<K(% )’zw(%) for 0 e 1<y

i=1 m[
where K, is a constant independent of F, s, m; .
If the partial derivatives of order 1 to k satisfy

(00~ F (0 < L 33 60— 0]

then

\F(6) — T <L K(z = ) 0 vee e 1
i=1 M,

where K, is also a constant independent of F, s, m,.
If F is even in each 0, separately, T contains only cosine terms.

LEMMA 2. Let f(x) be of class ¢ in the set A: —1<x,<1 (i=1,---,8).
Let M be the maximum of the absolute values of the derivatives of order
1 to k, and Q(0) the uniform modulus of continuity of the derivatives
of order k. Let B denote a closed set interior to A. Let j<k. Then,
for every set of positive integers m,,---, m, with m, =k there is a poly-
nomial P™ of order at most m; in x; such that
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)= Pr@) <K 3 ) 5. o 1)

1
=1 m; i=1 My

for x im B and 0<r,+.--+r,<j. Here K, is a constant independent of
f and m;.

If also, the k-th partial derivatives of f(x) satisfy a Lipschitz con-
dition with parameter A, then, for x in B,

S k=j+1
F@-PY@ISK(S ) for 0<pietn<i,
=1 i

i=

and where K, is a constant independent of f and m,;.

To apply the lemmas to a function defined over the region R, we
shall extend the domain of definition of the function. The ques-
tion arises whether the differentiability properties of the function are
maintained under the extension. The answer depends upon the pro-
perties of the boundary [I" of R. For example, Hirschfeld [1] has
shown that even a cusp in the complementary region may prevent c'
extension of a function of class ¢ on a closed set through a continu-
ous boundary arc. Whitney [6] has given a different definition for a
function to be of class ¢* in a closed set 4. If f is of Whitney class
c® in A, then there exists an extension I to the whole plane E, which
is of class ¢* in the ordinary sense on FE, and is analytic in FE,—A4.
The derivatives of F' of order <k coincide with those of f at any
interior point of A. Moreover Whitney [7] has shown the following :
Let (a) f be of class ¢* on R+ 1", where R is a region, /' its bound-
ary, in the sense we have defined in the introduction, and (b) R have
the property ‘“ P’’, that any two points P, P, in R, whose linear
distance apart may be represented by ' P,—P., can be joined by a
rectifiable curve in R of length L, with L//P,—P, bounded uniformly
with respect to P, and P,; then f is also of Whitney class ¢* and thus
can be extended to E, to be of class ¢* on E,.

For our purposes we assume R to be a bounded region with bound-
ary I" consisting of a finite number of non-intersecting simply closed
regular ares /7, and we will show R has property ‘““P”.

Choose, for each I';, a 0>>0 such that no two tangents to /7, on
any portion of arc length <6 make with each other an angle greater
than 5°. We may choose ¢ independent of 4 and smaller than one-
fourth the distance between any two I',. Now fix 4, and let P,, P,
be points on I'; on a subarc of length <(9. There is a point @ on that
subarc between P, and P, such that the tangent line at @ is parallel
to the chord P, P.. Set up an (x, y) coordinate system at @, using the
tangent line as x-axis, the normal as y-axis, and note that the subarc
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considered has an equation y=y(x) of class ¢' in view of the implicit
function theorems. Let P, =(x, y), P, =(®, ¥.), |P.—P,|=distance

between P, and P, HI/%TD2 |=length of the subarc joining P, to P,
Then |P,—P, =|a;—a, and |y'(x)|<1 so that

(D \P=PI<I PR = [P0 e
<V2l-ml=v2 |P-P.

Moreover, since tan5°<1/10, the mean value theorem shows that
sup [y(@)| <[ A— P, |/10.

We shall also use the well known property that if I; is a regular
are, there is an »,>>0 such that for any subarc joining points P;, P,

on I';, we have H?’?H I/| Ps—P,|<w,. , can be chosen independent
of 7.

Now suppose S;, S, are any two points interior to the region R.
If the segment S;S, is interior to R, we of course have H/S,\Szl
[ISi—S:|=1 by using the segment as the arc. Otherwise, let @ be
the first intersection of the directed line S; S, with the boundary, say
with 7';. Let Q! be a point on S\@Q; in R. Let Q. be the first point of
intersection of the directed line S,S, with 7', and @} a point in R on
S.Q. such that the open interval Q,Q} is also in R. Note that @, and
Q. may coincide. If QLS, is not in R, let Q; be the first point of in-
tersection of the directed line @3S, with the boundary, say with 77,
and @} in R and on Q}Q,. Let Q, be the first point of intersection of
the directed line S.Q: with I', and @} a point in R, on @.S,, with the
open interval @Q,Q} in R. Continuing in this way, after at most =n
steps, we form a finite sequence of points Q)=S,, @}, Q,++-,Q, @it
=S, such that Q.,,-; and @, are on the same regular arc, and the lines
joining Q. to Qi.., £=0,---,m are in B. If we can show there is an

»>0, independent of the points, and arcs 4, in B joining consecutive

N
points @} to Qj.; such that | Q} Q). |[<w|Q}—Qj.: ||, then we can attain

the desired results by addition. It suffices to show that @} and @: and

an arc A joining @ to @} and in B may be chosen so that Hé}FQ\é\
<w|Qi—Q:||. Suppose first that @, and . coincide. A sufficiently
small circle with @, as center will have one of the arcs cut off by S.S,
entirely in R and we may choose @} and @) as the intersections of
S.S, with this cirele. In this case

LU T
1@ Q)= 9 [Qi—Q:].

Otherwise, let L be the length of an arc on /7, joining Q, to Q..
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Divide this arc into N equal segments of length f=L/N where N is
sufficiently large so that <(8. Draw circles of radius »r=/£/1"2 about
each of the division points and the end points. We first show that
consecutive circles intersect. If R, and R, are two consecutive centers,
(1) implies

so that

|Bi—Ro| | B~ Rl - B yp_p,

2 1/21/

and the circles must intersect.

Moreover, since r=>|R,—R,|/V 2, the semi-length r of the common
chord is

ST

whereas the arc joining R, to R, has distance <|R,—R,|/10 from the
chord. Hence the arc lies entirely within the circles.

Now let @ be an intersection of S,S, with the circle whose center
is @, and Q! an intersection of S, S, with the circle whose center is @,,
the points being chosen to lie in R and have the desired properties.
Starting from Q! we may proceed to Q! via the circumferences of the
circles. The total length of the curve thus formed will be less than

N+1)2z P N+1 2z ;4= p
W+lem 2o =N ve 1500

and

I QlQ1 I L 4n L 4z

! = < - w; .
|Qi—Q: 1/2 1QI-Q V2 [@-Q.] V2

This concludes the proof that R has property ‘“ P’’.

We will be particularly interested in extending a function of the
form v(z, y)/G(x, y) where G(z, y)>>0 in R, 3G/3»>0 on I', G=v=0 on
I' and we seek differentiability conditions on v and G which insure
that »/G is of class ¢® on R+ /. Here again the nature of the bound-
ary is of importance. The next two lemmas deal with this problem.
The letter P will refer to a point in R and @ to a point on /', the
boundary of R. By a neighborhood N(Q) in R+ I" we will mean a set
of points S in R+ /" such that for some sufficiently small circle with
center at @, every point of the ecircle which lies in R+ /" also lies in
S.
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LEMMA 3. a) Let R be a region bounded by 1, a finite number of clos-
ed Jordan curves, no two having a point in common. Let r be a requ-
lar subarc of ', and Q, an interior point of y. Let N be the mormal
to v at Q,. Then there is a mneighborhood N(Q,) i R+1" such that
through each point P in RN(Q,), the line parallel to N cuts yr,=yN(Q,)
in one and only one point Q, PQ lies in N(Q,), and @ ranges over 7.

b) Let ¢(x, y) be of class ¢' in RN(Q,) and suppose ¢, ¢., ¢, have
continuous limats on r,. Define (3¢/0s)(P) to be the derivative at Pe
RN(Q,) in the direction of the tangent at the corresponding point Q on 7, .
The derivative (0¢[0s)(P) has continuous limits on 7, which we will
denote by (2¢/9s)(Q).

If ¢=0 on y,, then (2¢'[3s)(Q)=0 for Q on y,.

Proof. Let y be given by a(f), y(¢) and Q, defined by the parameter
value ¢. Let (&, 7) be rectangular axes along the tangent and normal
at @,. In a suitable neighborhood of ¢, ¢ <{<%,, defining an arc i,
containing @, v admits a representation 7=7(¢). We may assume i,
so small that no two tangents to it make with each other an angle
greater than 5°. There is a positive distance d between 7'—j, and
the arc 4, defined by the parameter range (t,+¢t,)/2<t< (¢, +1.)/2. Take

o<lmin[d, [£(t)—&((t+1.)/2)], 1€(t) —&((E+11)/2)]]

and draw a square T of side ¢ with sides parallel to the (& 7) axes
and center at @, Let 7,=7yT, the projection of RT on y by lines
parallel to N, and let 7, be the arcs formed by displacing 7, a distance
% parallel to itself into R along N. For i<k, sufficiently small, y,=7'.
The regular arc y, may be given a representation a=u(s), y=y(s),
0<s<L, in terms of arc length s, where L is the length of y,. Then
7, 1s given by

x=a(s)+ A cos «, y=y(s)+h cos 3,

where cos «, cos  are the direction cosines of the line N directed in-
ward into B. The neighborhood N(Q,) may be chosen as given by
these equations with 0<s<L. 0<A<lh,.

It is clear that

o¢ 3¢ dx | dddy
I =l + [t
%8s dxds dyds

has continuous limits on y,. Write

by =29 ((s) +h cos @, y(s)+h cos f)=F(s, h).
08 08
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If 2 is any closed subarc of y,, we have
lim F(s, k) =22(@Q)
-0 o8

uniformly in s.
Along 7, we have

¢(Pz>—¢(ﬂ)=§f F(s, h)ds

where P, and P, are points on y, corresponding to points @, and @, on
2 with parameter values s, and s,. As 4 approaches 0, the limits on
the integral remain fixed. Since ¢=0 on 1, we find, by letting ~2—0,

0" %@ as

5, 38
for arbitrary s;, s.. Thus (3¢/3s)(@) =0 on /1 and hence on y,.

LEmMmA 4. Let R, 7, Q) N(Q)), N, 7, be defined as in Lemma 3. Let
v(x, y) and G(x, y) be of class ¢ on N(Q,) and of class ¢ on N(Qy)IE+ Q.
Let v=G=0 on 7, G>0 in RNQ), (BG[3v)(Q)><0. Then there
ewists I;rré v(P)/G(P) for PeR.

]

If 7 is of class ¢**' on N(Q,) and v, G are of class c* in N(Q,) and
of class ¢*** on N(Q)IR+Q,], then v/G is of class ¢® on N(Q)[E+Q,].

Proof. Denote differentiation along a line parallel to N by 9/24. By
the mean value theorem one finds that (3G/3)(Q,) is the limiting value
of (3G[oR)(P) as Pe RN(Q,) approaches ¢, along the normal at @, and
hence (3G/ov)(Q,) is the limiting value of (3G/3Z)(P) as P approaches @,
by any approach in RN(Q,). A similar statement is true for (9v/ov)(Q,).

Let P, be any sequence of points in RN(®,) converging to ¢, and
let @, be the points on y, associated, by projection along N, with P,.
By the generalized mean value theorem,

(P _ v(P)—v(Q.) _(v[oR)(Py)

GP)  GEP)—G(Q,) (3G[eh)(P;)
where P, is interior to the line segment P,Q, .
Thus

(P _ (20/2)(@) .
oy, G(P)  (0G/3)(Q0)
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It is clear from the construction of N(Q,) that the equations
x=X(s, h)=a(s)+hcosa, y=Y(s, h)=y(s)+hcosf

yield a one to one transformation of N(Q, into N*@Q,): 0<h<h,,
0<ls<L and 7, into r,*: =0, 0<s<L and @, into Q;*: A=0, s=s,. In
fact, in view of the restriction on the slope of the tangent to r,, the
Jacobian of the transformation is

J=a'(s) cos f—y’'(s) cos a=<0 .

If 2(s), y(s) are of class ¢**' on 0<(s<L then so are X(s, 4), Y(s, 2) in
N*(Qy)—71,*. Any partial derivative of X(s, #), Y(s, #) of order »r<C
k+1 converges, as A—0, uniformly on any closed subinterval of y,* and
thus this derivative has a continuous limit on 7,*. By the implicit
function theorems, the inverse functions s=S(», y), A=H(x, y) are of
class ¢*' in RN(®,). Moreover, the partial derivatives of S, H of
order »<k+1 have continuous limits on 7, for the relationships

oh

1=8X- % oX ak=x’(s)§§- + cosa
ox o

ds dx ok ow
Y s , Y oh ,, \0s oh
0= 3s aw+ oh am——y (S)’ém + cos o
can be solved for 0s/ox, 2h/dx, 3s/0y, oh/dy and the resulting equations
indicate that these derivatives and their derivatives of order <k have
continuous limits on 7, .

Under this transformation wv(x, y) becomes v*(s, ) and G(z, y)
becomes G*(s, k). It is sufficient to show v*/G* is of class c¢* at @Q*
since any partial derivative of order r<<k of v(x, y)/G(x, y) is a poly-
nomial in the derivatives of v*/G*.and in the derivatives of s and 2
with respect to z and y of -order <r.

By the hypothesis and comments above, v*(s, ) and G*(s, h) are
of class ¢* on N*(Q) and of class ¢*** on (N*(Q)—71r,*)+Q*. In view
of the continuity of 3G/oh at Q,. there is a neighborhood of @, where
(3G/[ah)(P)>6>>0, It is no loss of generality to assume (0G/ok)>6>>0
in N(Q,) and we shall do so. By Lemma 3, 2v/3s and 9G/[0s vanish on
7o. By repeated application of Lemma 3, o»/cs” and 0"G[3s” (0<r<lk)
vanish on 7,. _

The proof is greatly facilitated by an auxiliary transformation.
Let t=s, 2=G*(s, k) carrying Q,* into Q,**, 7,* into r,**, N*(Q,) into
N**(Q,). For eachs, z is a monotone increasing function of % and the
inverse funection ~=H*(¢, 2) is a monotone increasing function of z for
each t. As above, we see that v*(s, A)=v**(¢, 2) is of class ¢* on
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N**(Q,) and of class ¢**' on (N**(Q,) —7r**) + (Q,**). Moreover, it suf-
fices to prove that v**(¢, z)/z is of class ¢* at @,**. For notational
simplicity, let w(l, 2)=v**({, z). Note that N**(Q,) is the set 0<
<G, k), 0<t<L.

By induection, we verify

r | 7 7 7,
9 () rli(= 1)< L BTw 1y ® aw)
P Zr+t % 2! o ¢! oz"

for 0<{r<{k when z>0.
For ¢ fixed, w(¢, z) has a Taylor expansion of the form

w(t, H=w(, 2)+ ow @, 2)E—2)+-+ a7w(t, ?) -2
oz oz !

o+l (C_z)r+1
T GO

for 0<{r<_k, where 0=¢<&(t, 2, &, r)<z so that, when ¢=0,

0=w(, 0)=w(t, 2)— zrm(t 2)+ (_%):zr 2’2:)
r

L (=Dt 3w,
(r+1)! az’“( &

Hence

a‘<f)=i Tt ¢),

oz" r+ 102!

which has a limit as the point (¢, 2) approaches Q,**.

We have thus shown that the partial derivatives of w/z, with
respect to z alone, of order <<k have limits at Q,**.

We next show that the partial derivatives of w/z with respect to
t alone have limits at Q,**. First note that the derivatives of w with
respect to ¢ alone vanish at z=0. For, w(t, z)=v*(s, ) so that

* A
v owt +awaz aw+aw oG

s 8s ot 9z os ct 0z 08

and, as we have seen, Jv/ds and 9G(ds vanish at 2=0. Thus 3w/3t=0
at z=0. Similarly, successive differentiation shows 2"w/ot"=0 on r,**,
0<r<k.

We apply Taylor’s theorem to obtain

ar(w>= 1 ow(t, 2) _ [a’w(t E)]} 3 dw(t, &)
o\ z z ot” z az ot” 0z ot

06z, 1)<z

’
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and conclude that (27/3¢")(w/2) has a limit at Q,** for 0<r<k,
Finally, any mixed derivative may be written as

n+m
0 (w) , n+m=r<k

oz"ot™ \ 2
and this may be written as o {7178 wl
22 L zotm J

where 0™w/0t™ vanishes on 7,** and is of class ¢*™ on N**(Q,) and of
class ¢~ on (N**(Q))—7r.**)+Q,**. By the first results for deriva-
tives with respect to z, the mixed derivatives have the desired
property.

THEOREM 1. Let R be a bounded region whose boundary I’ consists of
a finite number of non-intersecting simply closed regular arcs of class
¢, (k=2). Let G(x, y) be a function of class c¢* on R+ 1", vanishing on
I', positive in R, with 3G[2v=6>0 on I'.

Let H be the Hilbert space formed by completing the linear vector
space V of variations—functions of class ¢* on R and vanishing on 1'—,
using the functional

Dle) = Sg(as: e+ e8)dx dy

for £eV as the square of the norm, where a, b, ¢ are bounded and in-
tegrable, a >0, b>0, ¢c=0 wn R+ 1.

Ther the set of functions Gr, where r is a polynomial in x and y,
is dense in H. The set {f,} obtained by orthonormalizing the set {Gx'y’}
s complete in H.

If g(=, y) is a function of class ¢* on R and ¥ is the set of func-
tions ¢ of class ¢ on R, assuming the values of g(x, y) on I', and if
for any ¢ e ¥ we define by=D[P—g, fi], then

‘2

I

| 9—g— 20,

=D I:S!"!]— g:i bifi]< o)

—_‘nk;—Z

where lim 0(n)=0, 0 depending on ¢—g.

N—»co

In particular, if f is integrable,

I[¢]= Sg(a¢i+ b2+ e+ 2F ¢dz dy

and there exists an admissible function ¢, which minimizes I[¢] for
de ¥, and we define
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—_—szﬂ dilf dy—D[Q; fz]’ ¢71=g+§aifi ’
then

| o= P=D[¢y— ] < < 0(%)

where lim 6(n)=0 .

NnN—o0

Proof. If v is a variation, we show there is a sequence Q; of poly-
nomials such that

lim|v—GQ; 1|‘—11m Sg[a(v—G Q). +b(v—G Q)i+ c(v—G Q)] da dy=0.
P
In view of Lemma 4, v/G is of class ¢*-' on R and it is thus pos-
sible to extend the definition of v/G over the entire plane so that it
is of class ¢*' over the entire plane. Let Q(§) be the uniform modu-
lus of continuity of the (k—1)st partial derivatives of v/G over a
rectangle with sides parallel to the axes containing R in its interior.
By Lemma 2, with s=2, j=1, m;=m,=j there is a sequence Q; of
polynomials of degiee 2j in « and y such that, for (z, ) in R,

g —Q,% ) KZ){ —Q, |, and I(E)J —ij';_ are all O( jkl_z Q(j))

Hence

o-vare[(5 -a)]-[(g -e) o+ (§-0)e]

<(2 Q)G+G(,—Q,)+2G\Gl( —Q;Mlg—@{

~0(pks [2()

A similar result is true for (v—G@;)? and (v—G Q,)* Thus thf Lijv
-G Q,]=0 for k=>2.

It has thus been proved that the linear manifold formed by {Gz'y’}
is dense in V and thus in H. By the previous discussion the set {f;}
is complete in H.

Now let v in the above be the particular variation ¢—g and let
[N] represent the largest 1nteger <_N. For fixed n, let j=[(V n [2)—1]
and r,(z, ¥)=0Q,x, y). “Thus there is a ‘sequence r, of degree at most

2 jg[z(Vz?? — 1)]: [V2n—2]
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such that

Dl¢—g—G Tn]=o( n}w( 1/87,% )) .

Now ,Z, b, fi=Gp, where p, is a polynomial of degree greater than
V2n —2, and it is known that

P—g=2 afi
is a minimum when ¢,;=(¢—g¢g, fi)=b;. Thus

D g—g-3bfi|-0( 1,0), lmo—o.

In particular, if ¢, minimizes I[¢], then we have seen that

Dldo—g, fil— —ngfz dz dy—Dlg, f.].-

Thus, in this case, the Fourier coefficients depend only on known
quantities.

COROLLARY bnzo( o(n) )
-

Proof. ti=Dlbufi)=D (4=g-Sb.f)~(4=s-S 0.1 |
<D[y—g-S b s |+2(D[v-0-"5 b.si]
Dy—g-% b, fi])”l D ¢—g-3 b f]=o(2™).

§ 3. Expansion Theorems. We use the notations in Theorem 1 and
seek conditions which insure that convergence in H yields uniform

convergence in R.

THEOREM 2. Let R be a bounded region with bomzdaa:g_/ 1'. Let ¢, ¢, be
continuous on R, absolutely continuous on each line in R and all taking
on the same values on I'. Let D[J]<co, D[¢,]<oo. If hm D¢ —¢,]
=0, then a necessary and sufficient. condition that lim ¢,= sb umformly
on R is that ¢, be equicontinuous on R. If lim ;)_t},;—¢,n]=0 then a
necessary and sufficient condition that lim ¢, négz:s‘ts unsformly on R is

nroo

that ¢, be equicontinuous on R .

Proof. The necessity is clear since a sequence of continuous functions
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which converge uniformly are equicontinuous.

Let u(z, y) be a function with the continuity properties of ¢(x, y)
and vanishing on I'. Let P, be a point interior to R. Place polar
coordinates at P,. If a ray from P, meets the circle S, of radius p<d,
d being the diameter of R, with P, as center, before it meets /7, label
P, the first intersection point with S, and @ the first intersection
with 7. Otherwise both P, and Q will refer to the first intersection
point of the ray and /.

;ﬂ{ S\u )] da}ZgSZ”uﬂ(Pl)d0= SHQ '(;?;dq«]‘de

[T 1 ou LAY (ouY
L,y i fao < ve U] Y aran

<log - SS(?L +ul)dx dy<a log -~ D[u]
P

where a=1/min (a, b), since
R+F
Sg(au'j; +bu? + cu?)dx dy=min(a, b)SS(u’m +ul)dx dy .

Apply this result to the functions u,=¢—¢, (or 1o uy, =¢,—¢.)
which are equicontinuous on R+ I’ and thus have a uniform modulus

of continuity (8), which approaches 0 with 4.
Since P, is on or interior to the circle of radius p, we have
[t (Pr) — (L) Zw(p), whence |u,(P)|=|u,(P)| —w(p) and

27 Jun(Py)| — 0(p)]<<V 2za log dfp Dlu,] .
Thus

quz(PO)IS‘/QC;[D[ZLn] 10g‘ ;d; + ‘”({’) ’

which is true even if P, is on /.
Now, for ¢>0, choose p=p; so small that w(p,)<¢/2 and then choose

N so large that

27

“ Dlu,] log <, -
p

for n>N. Hence
e 0-240 N(e) 3 n>N-D-|P(Ly) — f(Po)|<Ce .

LEMMA 5. Let R be.a bounded region with boundary I" and diameter d.
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Let u(z, y) be continuous on R+ 17, absolutely continuwous on each line in
R+, and vanish on I', and let 0<_D[u]< eo. Let «=1/min (a, b). Let
R+

Poe R+1I'. If there exists >0, K=>0 and
lw(P) —uw(Po)| <K | P—P,

Jor all points P such that the ray PP is in R+ 1", then

aDlu] ; K
m(P@g/ e log* o +4D[u]

where 4 is any number >0, and
loga of a>1
log*x=
0 if <1,
Proof. If P, is interior to R, and p<{d, then as in Theorem 2

1 J S lu(Py) lda} < alog dfp Dlu],

where P, is a point which is the first intersection of a ray from P,
with either I or the circle of radius p<<d about P, as center.
Since P, is on or interior to the circle of radius p, we have

[w(P) —u(P) <Kp°,  |u(P)|=|u(Po)| — Kp®,
2n{u(P,) — Kp*1<<V'2na log dfp Dlu],

(P I<y/ S5l log ;f +Kp*,
T

which holds even if P, is on I'.

Let £>0. If
A 1s
(422" <e.
choose
— (,412[%] )“"
K
to obtain

| (Fo) IS/ 2:81)[”] log Ai‘;ﬁ | +4 Dlu] .

Otherwise,
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and we may replace K to obtain

D[u]

{u(Po)lS‘/ ;D[u] log (Z + 7

Choose p=d to obtain |u(Py)|< 4 Dlu].

COROLLARY 1. A sufficient condition that a sequence u,, absolutely con-
tinuous on each line in R, vanishing on I, continuous on R, and having
hm D[u,]=0, converge to 0 at P, is that 30>0 and a sequence K,, with

hm Dlu,] log K,=0 such that

n-ryco

lun(p) ——uﬂ(PO)IgKn H P—PO ”5
for all P with ray PP in R. If o, K, are independent of P,, the con-
vergence s uniform. In any case,
’ . d°K,
ealPI<y/ ¢ D U, To * +4, Dlu,]
VY gy Dl 0 4, D[]
Jor any 4,>0.

LEMMA 6. Let R be a bounded domain with boundary I°. Let
P,e R and suppose there is a circle of radius ¢ lying in R and contain-
ing_Po. Place polar coordinates (v, 0) at P, Let u(x, y) be of class c'
in R and suppose that there exist 1 >0, >0 such that

lu(P)—uPo)|<o | P— P, [*

for all points P such that the ray PP is in R.

Then
pu@)P=eppapy ()T ey o S D).
Ar e A
Proof. [, (Po)| < e, (P)|+ o7

Integrating over a circle S, of radius p<e¢ which contains P, S,C
S,, we obtain

Sg \u (P dr d0£,2“ w(Pyr dr df+ 2“ v dr df
Sp ~SP Sp

We may assume that the polar axis lies in the direction of pu(P,).
Hence u.(P,)=|pu(P,)|cos ¢ and

S S lpu(Py*(cos* O)r dir dO<<2c D[]+ 2+*2p) rp* .

Sa



APPLICATIONS OF THE RAYLEIGH RITZ METHOD TO VARIATIONAL PROBLEMS 783

We will show that the minimum value of “ (cos* M) rdrdl is mp*/4.
S

Suppose first that the pole O is interior to S, . Lpet 7(f) be the equa-
tion of the circle relative to the pole O. Let @ be the point (+(6), )
and Q' the point (#(0+=), 0+x). Q@ and
Q' are thus the intersections of a ray
through O with the circle. Let O’ be the
center of the circle and suppose the co-
ordinates of O’ relative to O are (¢, ¢).
Then the angle between OQ and OO’ is
¢—0. Drop a perpendicular from O’ to
QOQ’ hitting the latter at 7', the length
of OT being |ccos(p—0)]. Thus one of
the lengths [[OQ|, |OQ'l| is m+|ccos(p—0) and the other is m—
lc cos (p—0)| where 2m is the length of QQ’, and the product |0OQ’!
|| 0Q |=m*—¢* cos*(p—0). Also, if OO’ meets the circle in points A4,
A’ it is easily seen that |OA’ | [OA[=[0Q]| | 0Q’ | so that (o+c)(p—c)
=m*—c*cos*(p —0) and m*=p*—c*+ ¢ cos*(p—0). Hence

10QF+] 0Q" F=[m+|c cos(¢p—0)| '+ [m—[ec cos(¢p—0)[
=2m” + 2¢* cos*(¢p — ) =2p* — 2¢* + 4¢* cos*(¢p — 6).

We note that

([, cosorarao=1{"r@cos0 a0 = L[ 0QF +1 0@ Pcost 0 a0
Sp 2 0 2 0

='512 S [20" —2¢ + 4¢* cos(p— )] cos* 6. dO .
0
Moreover this formula holds even if O is a point on the circumference

for in this case

Y+
v

SS (cos? 0) r dr df — 1/25 "r(0)cos? 0 dB
SP

where 7y is the angle between the polar axis and the tangent to the
circle at O in that direction which has the area to the left of the
tangent line. Here »*=[2pcos(¢p—0)] and since the square of the
cosine has period =, the integral reduces to

; Sﬂ 4p* cos*(p—0O)cos® 6 dO .
1)

Thus, in any case,
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SSS (cos® O)r dr di = ; S: [20* —2¢* + 4¢* cos*(¢p — 6)] cos* 0 dO
P

= ; Pt — ; wc+ ”Z [14+2cos*¢].
For fixed ¢, the minimum is obtained when ¢= g, and is "‘U-—i et .

The absolute minimum is obtained when ¢=p and is zp*/4.
It follows from this result, that

" pu(PoP<2aDlu] + 2 @)

8a D[u]

2

|pu(P) <<

- Q2N 2 f'-.n\ .
7P

Consider the function y=A/p*+ Bp*™ where A=8«a D[u]/m, B=22+%5
The minimum value is

Y= AM()H-!)B”()‘H)(,{ + 1)2—)-/()\4-1)

2 ey & Al(A+1) . . :
:(g D[u])‘)”( b ; (A + 1) QA+BI(A+1)
AT

obtained when

{)=< A >1/(27\+2\ ::< a D'_?{«] )1/(2A+2)

B gt
If
( aD[u] )1/(2A+2) <€ .
Awa?2
choose
‘0:< « D[u] >1/(2,\+2)
Ama2™
and have

MA+1)
[Pu(P1<(s* D[u]*)‘““”(%) 2EA+DIA+D() 41,
T

However, if

(aB Y

a2
we have

2 @ D[u]

— 22)\2”82)\4-2
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and integrating over S,, as in the beginning of this proof, we find
that

SS (Bl dre df = 2“ w(pyrdrdn+2 S0 e,

" pu(P < 2aDfn] + 2 DLl e

4 TAe”

pupyp<®e Dl 8 Dlul_(y, 1)l
’ 2

Ane’ e’

Thus, in any case,

qu(Pu)lzé(aﬂl)[u]“)mmgf )”‘“”zcsm)/w(a 4 1) 4 B Dlul (2 4}—1) _
T e {

LEMMA 7. Let R be a bounded region with boundary I and diameter
d and let R have the property that there exists an ¢ >0 such that every
point of R+ 1" is within some circle of radius e lying in R+1.

Let u(x, y)=Gr+ H where t 1is a polynomial of degree m, G and H
are of class ¢ on R+ 1" and vanish on I', G0 in R, |pG|=6>0 on I'.
Let |G|<G, |HI<H, \[pGI<G,, \[pH|<H, for constants G,, G,, H,, H,.

Suppose also that

|GoA(P) = GoP)<Go | P= By ||, |G(P)=G(P)I<G,| PPy,

|HAP)~ H(P)|<H, | P=Py |, |H(P)—H/(P)<H,|P~P,| for constants
G,, H, whenever P, P, are points in R such that the line P,P is in R.
Let A be an upper bound for D[u] and D[u]log m.

Then there exists a constant B, depending only on a, A, G,, G,, G., H,,
H, H, &, ¢ d, G but not on m or r, such that for P,eR.

(P, )1</ 2% Dl log ; D[‘J + B( Dlu]) (D))"

for any 4>0. (m to be replaced by 1 if it 1s 0).
Proof. We may assume D[u]>0 for otherwise u=0 in R.
Let L=max |r|. By a theorem of Kellogg [3], |pc(P)|I<Lm’le for

PeR. ) ~
If P and P, are on a straight line in R, then

oB) =Py = Sar| < PP

IH(P)-H(Po)léﬂz ” P*Pu h ’ lG(P)”‘G(Pu)Ing “ P*‘Pn H ’
[u(P) —u(P)|<<|G(P)z(P) — G(P)z(Py)| + |G(P)z(P)) — G(P)r(Py) + | H(P) — H(F)|



786 J. INDRITZ
Lm | |
< (G LG, + Hg)g] P—P,|=K| P—P,|.

By Lemma 5, with 4=D[u]-"?,

(2) |u(Po)I£V/ 2 Pla] log* l/dff ]+1/D[u]

Also, z,, 7, are polynomials of degree m and absolute value less
than or equal to Lan’le, so that |pr|<(Lm?/e)(m’le,) and

P 4 ‘
oP) =PI Ireddr <27 PR
0

Thus

2_Lm

lpe(P) —pr(Py)|< | P—Py] .

Then
lPu(P)—pu(Py)|
<IGP)pr(P)—G(P)pr(P)| + |c(P)yG(P) — t(P)yG(Py)| + | H(P) — p H(F,)|
<UG(P)po(P) —G(P)pe(Po)|+| G(P)pz(P) — G(Po)pt(Fy)
+[2(P)rG(P) —(P)y G(P)|+| «(P)pG(P) — (P)r G(F,)
+|HAP) — H(Py)| +| H(P)— H,(P,)|

g( 2 Lm! +@—G2+L2G +G2Lm
€

+2H)||P l=a | P—P,] .

Whence Lemma 6 yields

(3) | ru(Py<y/ (ozD[u])”z( “-)”‘32 1 16a Dlu] |
e

By use of inequalities (2) and (3) we now find a bound for L.

Either L<1 or else there exist constants ¢, ¢, such that K<C
¢, Lm?, o<c,Lm* where the factor m is to be omitted if it is zero, and
¢, ¢; depend only on ¢, Gy, G,, H,, H, G,.

Assume L>1. Since |pG|=<0 on I', there exists a continuous
curve (or curves) 7 dividing R into two closed sets R, and R, such
that B,R,=7, R, being a boundary set where | pG|>5/2>>0, and R, the
set separated from /" by y. There is a constant ¢; such that G(P)
>¢;, >0 for PeR,.

Suppose first that | r| assumes its maximum L at a point P,eR..
Then, by (2),

| G(P)e(P) + EH(P) g/ .z‘ip[u] log* f/cbl[’;"jz +v/ D[]
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or,

< L/« d e, Lm? J
(4) < [H‘ s / pm log* L/ Dl

Since Dfu]log m and D[u] are bounded by A, equation (4) implies
the existence of a constant ¢, depending on ¢, ¢, d, A, «, H; such
that L<e,.

On the other hand, if || assumes its maximum L at a point P,e
R,, write

pu=Gpr+rpG+ypH pG=rpu—upr+ Hpr—pH,
?lpGl<|c| [pul+lu| |pri+|H| |pr|+|c| [pH|

< L]/(cg LAms D[u])“( ) 32+ 16a Dlu]

2

e
_Iin_f «a + d clillni v Dl H Lm
+ . ( 2ﬂD[u] log 1/D[ ] + [u]>+ v~ +LH, .
Therefore,
(5) L=< 2{)/s0( om DLuly” (¢)" 26 DLl
m*( Ja Dluly . d e L’ 4 Hm?
+ (l/ o log Bt -H/D[u]) : +H2} .

This inequality, which is of the form

L<K, + K;m*+ K;m*V'log L + Km*V' L,

shows that
VI < Vjii + .i{/@ + Ksm‘“’}/ 10%[4 + Ko< K, + Kym?+ Kym* + Kone?,

since I.>1, whence L<e;m*' for some constant c¢;.

Thus, in any case, there is a constant ¢, such that L<esm', where
the factor m is to be omitted if it is zero. From this one can con-
clude that K<le,¢;m*. However, we may obtain a better estimate by
noticing that K merely serves as a number such that |u(P)—u(P,)
<K |P-P,| whenever P and P, are on a straight line in B. Hence
K may be replaced by sup lpu|.

R

The inequality o<lc,Lm*<e,cem® and formula (3) yield

;Vu(Pu)lg‘/Cz(}s m D[u]‘”(f‘ )1/2. 324 16“D[u]1/:Dlu]lll :C7D[%]1/4’m} ,
T

e
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since D[u]<<A. Thus we may replace K by ¢ D[u]*m* and substitute
in Lemma 5 to obtain

;o o A D T, b
i<y Dt tog+ PR apal

Let d=dc,4D[u]*"' and B=de; to obtain the conclusion.

LEMMA 8. Let R, G, have the properties in Lemma 7 and let u=
Gt where © is a polynomial of degree m.

Then D[u]>>cplu(P)|*/log m where ¢, >0 is a constant depending only
on Gy Gi, Gy, d, o «, 8, G. The factor log m is to be omitted if m=0
or 1.

Proof. Whether L<<1 or not, the formulas for K, s show that
K<e,Im?, o< c,Lim*. Moreover, either formula (4) or (5) holds, with
=0, H,=0. If (4) holds, we have

Let w=L/V'D[u]- The above inequality is then of the form w <<
K V'log wm*+ K, whence L/ D[u]<c; log m for some constant ¢;, depend-
ing on a, ¢, d, ¢;. Here the factor log m is to be omitted if m=0 or
1. On the other hand, if (5) holds, we have

Vzg—[z?]g%{ ‘/;ZW v g[uj <§>/ 2+ 1;?? |

= g ow dew L))

from which we conclude L/V/D[u]<cym*log m (m and log m to be omit-
ted if m=0 or 1).

Thus, in any case, there is a constant ¢, such that Ljy/D[u]<
com® . Therefore

K olm® ;
p = Sclcm’)’n' .

e
V'Dlu]™ Vv'Dlu]
Substituting in equation (2), we have
WPy Dl log* deseum + 1/ Dl et/ log m /Dl
T

m to be omitted if it is 0 or 1.
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THEOREM 3. Let R be a bounded region whose boundary I’ consists
of a finite number of simply closed regular arcs of class ¢, k>3. Let
G(x, y) be a function of class ¢ on R+1I", vanishing on I', positive in
R, with 3G[0y>6>0 on I'. Let f, be the set obtained by orthonormaliz-
ing the set {Ga'y’} using the functional

D[¢]= “R (a2 + b€ + c)dx dy

as the square of the norm, where a, b, ¢ are bounded and integrable,
a>0, >0, ¢c0 on R+1I'. Let g(x, y) be any function of class ¢* on
R+I'. Let {(x,y) be any function of class ¢* on R+1" assuming the
values of g(z, y) on I'. Define b;=D[y—g, fi].

Then

p=o= S0s=0 (VI eg ")

where
EEE AR

with lim 8(n)=0, @ depending on ¢—g, and where N is any fized constant

n—>co

>0. Moreover, if k=10, then

oo Sur-o([%]")

Finally, +f S is any closed domain in R, k=T, then for points P in S,
) i /4
romr( Spr)—o([ 10 ken ]

nk-—c

Proof. Let u,lzsb—g—éb,f,-. Then u, is of the form Gr,+H
where the degree m, of r, is less than 1724 —9 and greater than 1/2xn
—2. By Theorem 1, D[u,]<#(n)/n*-*, k>3, where hm O(n)=0 so that
Dfu,] log m,<<A for some constant 4 independent of n By Lemma 7,

By % Dl log | e |+ BADlw) D]

for any 4,>0.

|un|—<~ 2g D[un] 10g+ 111{‘2[72’ ] + B(A7ZD[_un])4D[u7z]1“
T n
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There is a constant £, depending on N, such that 1/n<E/(logn)"e,
n=>3. Then

Diu< <0(n) OME=  _on /2n
""(logn)”“““” e"'ﬂ’dn ed,

if
1/2%(105%‘ n)N(k 2)
= dmE

The function xlog (1/2n/4x) is monotone increasing for 0<"w<{1/2n/ed so
that we may replace D[u,] by 6(n)/n*-* to obtain

2a ﬁ(n) 0(n)E"'
\u"\g/ -2 log (log P z)g(n)

() oy

ofy/ VAt e )

(log n)¥

In the proof of Lemma 7, we saw that L<legm* and o<lc,LM*<
c,cem®. Hence by equation (3) of Lemma 7,

et <]/(' camn<i%)_> (n> 16026 0(n)

et mF?

Since m,<1/2n, we obtain the statement of the theorem regarding

uniform convergence in R of |pu,| for k>10.

Next, let S be any closed domain in R. We may suppose the
boundary /" of S is sufficiently smooth so that a circle of radius e
may be rolled around /”/ while lying in S. Let Ln’:s%p |zl and P§™

be the point in S where L, =|r(P§™|. As in the proof of Lemma 7,

o<y @Dty (%) s24 8D gor pe s

me”

where

_ 2 4 4 4 2 ,
5= G, 2Ly I G 1,26, + FE o,
€

&t

Using Gz, as the function u of Lemma 8 defined over R and remember-
ing that Ge,—— S.b.f., we obtain
i=1
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G Ll=y/ [ S logmfe. -
i1
In S, |G(P)>e>-0. *Also
p| Lusl- Bu<E-nly-g.
i=1 iz =1

Therefore L,<lci1/logn , on<ci:7*1/log n , and

PPl <y/ euny/1og n( 2

k-2

~0 ([ (Z(%}gg n ]’) .

THEOREM 4. Let R, I', GG, f, be defined as in Theorem 3. Then
there is a constant ¢y such that whenever Pye R, then

V()" 52 1660
T

n_sz,nrc—z

K; FLPY< ¢ logm .

The theorem is true if F, is a point where f,,.--, f, all vanish, in
particular on /'. Let P, be a point in R where not all f, K=1, ...,
n vanish. Consider the problem of minimizing D[u], where u is of the

form u= nEcK fx, under the condition u(P)=T=<0. Now
K=1
Dlul=D| Seafe |- Sk,
K=1 K=1

so that we must minimize an‘jc under the condition i]cx S x(P)=T.
K=]1 K=1

By Lagrange multipliers we find a necessary conditicn for a minimum
to be

5 _TFulP)

Crx==Cg

2 FiE)
and the function &= iEK [« satisfies
K=1
DIl=T"| 3 Fi(P) .

=1

n
This is actually a minimum value, for, if u= 3¢, f,, then
K=1

T[S 0xfu(PIF< 3 cie 31 FH(P)
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S0
/A

) <3 eh=Dlu] .
S PP

K=

Now # is of the form G r, where -, has the degree of f, and this
degree is less than 1/2p,—-2 .

By Lemma 8, we have D{#]>=¢,,T%/log /212 .
Hence

r =D[a]> T
Z fK(PO) 10g 1/2)2 —

MIOES ! log v/2i-2

4. An Associated Problem. As in the previous sections, let B be a
bounded region whose boundary 7' consists of a finite number of simply
closed regular arcs of class ¢*, k==3; G(z, ¥) be a function of eclass ¢*
on R4 I', vanishing on I', positive in R, with 8G/0v=>0>>0 on I"; g(x, y)
be any function of class ¢ on R+ 17"; a variation be a function of class
¢® on R+ /7" vanishing on /.

Let

D= (o vesyndy

where ¢ >0, >0, ¢=0 on R+1I"; a, b, and ¢ are bounded and integr-

able on R; p is a real number greater than or equal to 1.

Assuming the existence of a function ¢,, yielding minimum value
to D*[¢] in the set of admissible functions of class ¢ on R+ 17, which
take the value of g on /', can we obtain ¢, by the Rayleigh Ritz
method ? This question is answered in the affirmative and an estimate
is obtained for the rate of convergence.

Let | ¢||=(D"[£])'"**, for &in the set of functions of class ¢ on R+ /.
This functional has the properties [£]>0, [aé|=|a]||&| for real a,
le+nl=<l&l+]7].

The functional |&|| is a true norm in the linear space V of varia-
tions. Let H be the Banach space formed by completing V with respect
to this norm. As in the proof of Theorem 1, we see that the set of
functions Gr, where r is a polynomial in « and y, is dense in H.
Moreover, if ¢ is admissible, there exists a sequence of polynomials
Q; of degree at most j such that
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[ —g—GQ =Dy — g~ G =0 ’;‘7’ )

where 6 depends on ¢—g¢g and lim 6(;)=0.
jooo

There exists inf D?[¢|>0 for admissible ¢». Let z; be a polynominal
of degree at most j which makes D'[g+ Gr,|<<D'[¢g+GQ;] for all poly-
nomials @, of degree at most j.

That such a polynomial r; exists can be seen as follows. The class of
all functions GQ; where Q; is a polynominal of degree at most j is also
the linear manifold determined by f:=GT;, the orthonormal sequence
of Theorem 1, whose polynomial factor T, is of degree at most j. As

stated in the introduction, 1<@\g<7;1)+j+1=a so that we may

write GQJ=HZC,.f,-. Now let @; be any fixed @, We may restrict
i=1

ourselves to those @; such that D’[¢g+GQ;]<D*[G+GQ;]. For such Q,
we have

lal+19+GQi| =]g]+]9+GQ;[| =GR, -

Sinece D[£|<<D*[£]"?|R['"* where (1/p)+(1l/q)=1, |R|=area of K, we
find that

RI" g1+ 19+ 6Q;F=D16Q1=D] S afi |- 5.

Thus the permissible ¢; lie in a bounded closed set S in s-dimensional
space. Since

D”[g+GQ,-]=D"[g+ Se fi]

is a continuous function of ¢; in S, it attains its minimum in S.
Since D*[g+ Gr;] is a decreasing function of j, we have

lim | g+ Gr,|<lim inf g+ GQ; | .
oo P

Let ¢ be admissible and choose Q; so that lim D¢ - g—GQ;]=0. Then

lg+GQ; <P +]¢—9—GQ,| implies that hm inf |g+GQ,|I<|¢|. It
follows that lim| g+ Gz, |<|| sl'U for every admlss1ble ¢ and thus ¢+ Gz,

J)>eo

is a minimizing sequence.

If ¢>0 in a set of positive measure in R, the functional |£| is a
true norm in the linear space (¢*) of functions of class ¢* on R+1". If
¢=0, a.e. in R, this is still true provided we identify funections differ-
ing by a constant. In either case we will complete the space (c¢*) to
form a Banach space B.
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A set S in a normed linear space is uniformly convex if there
exists a continuous monotone increasing funection g(e), <1, with
lim g(e)=0, such that whenever &, » are in S and HE\\—M!F , [ (E+7)/2]

g->00

—~1—¢, then |§—7[<g(e).
We shall show (¢*) is uniformly convex. It is easily verified that
if «, f# are >0, and p=>1 then

3o+ P2\ a + f|7+ | — 3|7,

Apply the inequality to the integrand below, where we assume ¢
and ¢ are in (c"), [¢]=[¢|=1, [(@+¢)/2|=1—¢.

el (737N ) o (2") ]

R R C R G
<2 |(tass+ b+ 9) + (@it b3 gy pamay
+ SS]aqS,gﬁa +b,0,4,+ cpd|Pda dy
<2 SS(“"" +bg, +og)rdady) (Sﬂg(a¢z,+b¢;j+¢c'-’)"dxdy/;””}"
B S 5(1/ agt + bt + cd*V/ agt + b+ ey )'dw dy
+y/ gg(a¢;+ b+ cordadyy/ gg(ag’ﬁ. b+ og)da dy—3
Hence

[((a(25 Y +0(27 ) we(*5 7)) dw dy=z—sa-ey,

and

» 1720
1o=9l=] [{(ato—92:+56 =90, + g —9y) day |
<2(3[1— (1 —¢)*])*"<2(8°")(2pe) " =g (&)
for ¢<1, since the function y=[1—(1—2a)*]—2p2x vanishes at 0 and is

a decreasing function of x for 0<{a<1.

LEMMA 9. Let B be a Banach space, Y a set in B with the property
that if v, y. are in Y, then so is (y,+y.)/2. Let the linear manifold
spanned by Y be a uniformly convex set in B. Let
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p=inf | y[ -0,
YEY
let y, be a sequence in Y with
];%m “ Yn ||=P, pn=” Yn || .

Then there exists a unique x in B such that |z |=p and we have

lo—va|<po( ") +pa—p
p

where g(e) is the function in the definition of uniform convexity. If p==
inf |y |=0, and lim|y,||=p, then there is a unique x in B such that
YeY n—>00 ,

Hw":p’ and we have "w_yn I‘ZPn—P-

Proof. Let 2z,=y,/p. so that |z,|=1. Write
Tt L(ﬂ@tyﬁ): yn(i _ },;) + y(i 1 ) ,
2 e\ 2 2\ow P/ 2\pw p
ZatZn | 1| UntYn| _ Hyn”(,l_l)-w(l_l)
2 pl 2 2 \p p/ 2 \p pu

>1 .,,_&(, L _1_>_&n(_l._ 1 >=1_(Pn,—,P):*:(P,m',‘P), _

2\p p/ 2\p p. 2p

Hence

Thus there exists z=limz, in B. Let x=pz=limpz,=

N—>oc0

lim p,z,=limy, .

N—>o0 n

Then ||=lim|y,|=p. Also |z,—2z|<g((rn—p)/2p) implies

| =y | =] 2= pu2n || p2— P20 | + | P20 — P12 IISpy(&‘Z%B) +pu—p -

To show z is unique, suppose also y,€Y, lgxlﬂy;, |=p, @' € B, |z’ |=p,

#'=limy, . Then form the sequence {y,}=w, ¥, ¥, ¥, ete. of ele-

N—>co

ments of Y with limy,=p. As above, gz’ e B with z/'=limy, =

7—>00

lim y,=limy,. The last part of the lemma is obvious, since only ||0|=0.

N—>co N—>o00

To apply the lemma, let B be the completion of (¢*), Y the set of
admissible functions,

?/n=g+Gr,,, p=inf Dp[sl,]]/zp ,

for admissible ¢. By the lemma, there is a unique & such that |z|=
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p. Assuming that x=¢, is in Y, we can choose polynomials @, of degree
at most j such that

=9-6Q,1=0(%2) .

Then
—p=|g+Gr;| =<l g+ GQ; |11 & |

=g+ GQ;— s+ ¢ || ¢ |<| o — g — GQ,|=0 (g(a))_

By the lemma,
—_— v =P\ A 00G)
(v=g=Geyk<2p(@ny (P ) 4 pmp=0( 90

a better result, O(0(j)/5*-*), is obtained in the case p=0.
Since
Dlu]<(D"[u])"|RI"" ,
where |R| is the area of R and (1/p)+(1/g)=1, we find

Dlu ]<( 0(.7) )1/,,

where hm 0(75)=0, when we take u;=¢,—9g—Gr;. A proof similar to
that of Theorem 3 can now be constructed for the following result.

THEOREM 5. Let R be a bounded region whose boundary I" consists
of a finite number of simply closed regular arcs of class ¢, k=>3. Let
G(z, y) be a function of class c¢® on R+ I, vanishing on I", positive in R, with
3G[0v=>6>0 on I". Let a, b, ¢ be bounded and integrable on R, and

a>0, b0, ¢c>0 on R. Let g(x, y) be any function of class ¢* on R+ 1.
Choose polynomials =; minimizing D*[g+ GQ,] in the set of all polynomials
Q; of degree at most j. Then, if ¢, yields minimum value to DY[{] for
¢ in the set of functions of class ¢ on R+ 1" assuming the values of g on
I', we have

¢y —g—Grjl= O<‘/ (17_32(_921 > " log ﬁoéifj;&‘ ) ,

where N 18 any fixzed positive constant, 0(j) depends on ¢,—g and
lim 8(4)=0.
J>mo v
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If k=>16p+2, then

7 -V(9+Grj)l=0([ 0(j) ]’)

k-3 16p
)
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