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1. Introduction. Nash’s equilibrium-point theorem for many-person
games can be approached by two methods: first, the Kakutani-type
fixed-point theorem' is very useful for this game problem; second, in
case of finite-dimensional multilinear payoffs, J. Nash himself has given
an elegant procedure [7] which is directly based on Brouwer’s fixed-
point theorem. In a previous paper [10] one of us proved a general
minimax theorem in making use of a procedure analogous to that of
Nash. The present note is a continuation of this paper, and its main
purpose is to offer further improvements of Nash’s method so as to
treat noncooperative many-person games played over infinite-dimensional
convex sets, based on a generalization of von Neumann’s symmetrization
method* of game matrices. The results thus obtained contain further
weakening of (especially topological) assumptions of the equilibrium-
point theorem.

Next we shall discuss the equilibrium-point problem of some general
noncooperative games by reducing them to suitable convex games. This
will clarify the relevance of convex games to general games.

2. Definitions and notations. We mean by a convex game [3] a
noncooperative n-person game with the following conditions :

a) The ith player’s strategy space is a compact convex set X, of
a topological linear space E,.

b) The 4th player’s payoff K, +--, 2, ++-, @,) is concave with
respect to his own strategy variable x,eX,.

¢) The sum of payoffs 7. Kz, +«+, @, -+, ,) is continuous over
the cartesian product space X,QX.®---QX,.

d) For each fixed x;,, K/, =+, @1, Ly Tiv1y =+, L) 1S @ continuous

Received October 27, 1953. This work was partly sponsored by the Ministry of Edu-
cation of Japan. The writers wish to express their thanks to Professor S. Iyanaga, Tokyo
University, for his comments.

1See [6], |4], [5], or [9]. A supplementary note to [9] will be published shortly.

2Gee G. W. Brown and J. von Neumann, Solutions of games by differential equations
in [1], and D. Gale, H. W. Kuhn and A. W. Tucker, On symmelric games in [1].
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function of the (n—1)-tuple [@,, -+, @1, X111, +++, 2,]€X®- - - B X, ®X; 1@
-+ +®X, respectively.

REMARK In view of the usual classification of games in terms of
total gains, ¢) may be of interest. Indeed, in case of constant-sum
games, c¢) is automatically fulfilled. If all the payoffs are continuous
over X;®---®X,, c) and d) are also fulfilled.

A point [y, &,, -+, £,]e X, QX,Q---®X, is said to be an equilibrium
point if the a,-function K&, &s + -+, Zice, Tiy &y4r, =+ +, &,) assumes its
maximum at x,=&, (1=1, 2, ---, n).

REMARK The notion of equilibrium points first appeared in the
celebrated work of Augustin Cournot (see [2]) and was investigated by
him by means of differential calculus. But the contemporary concern
about it is to see the existence of these points in the global sense by
topological methods. The equilibrium-point problem under conditions
a)-d) cannot, however, be treated by the Kakutani fixed-point theorem,
gince the required upper semi-continuity is not always assured in these
cases. Thus, the proof in the following section may deserve some
general attention.

3. Generalization of von Neumann’s symmetrization and proof of
the equilibrium-point theorem. To see the existence of equilibrium
points for a convex game, we introduce an auxiliary function. To begin
with, denote by

17=[2171, Loy "’vxn] ’ y=[y1, Yoy =y yn]
two mutually independent variables with the same domain
X=X®X.®.---®X, ,

which is again compact and convex.
Next put

(1 ) d)(m, y)= g.} Kl(yly 2y **y Yi-19 Ly Yin1y ***y yn) .

It is noted that @(z, y) is also concave with respect to xeX. The im-
portance of this function is clarified by :

LEMmMA 3. 1. A point
?A/:[@l’ g‘ly ctcy @n]EX

s an equilibrium point for the given game, if and only if @(x, §) assumes



NOTE ON NONCOOPERATIVE CONVEX GAMES 809

its maxrmuin of r=7.

Proof. The necessity is obvious. If, conversely,
2y, N=0(x, i)
for any xeX, setting

T=[i, Yoy s Yio1y Ti» Yaers * = Ynl

gives

Ki(f/ly ?A/Zy ety f/-ﬂ—ly ?A/“ f/uly Tty g7z):_>:Ki(@719 M) ’.&i—ly Xy ?A/le R 'ZA/n)

for any wx;eX,.

REMARK For a zero-sum two-person game, we have
¢(x’ 2/)=K(93u y:’.)—K(ylv xz) ’ ‘D(y, ?J)=O ’

where K(x;, x,) is the payoff from player 2 to player 1. This implies
the funetional form of von Neumann’s symmetrization procedure®. We
shall later present an interpretation of this function with regard to
player’s behavior.

With this setup, we next prove:

THEOREM 3. 1. A convexr game always has at least one equilibrium
point.

Proof. By Lemma 3. 1., we have only to see the existence of a
point ¢eX such that &4, §)=@(x, §) for any e X. Suppose the contrary
were valid. Then, to each yeX, there exists some xeX such that

(2) Oy, y)<0(x, ) .

Put G.={y; O(y, y)<d(x, y)} then G, is open by conditions ¢) and
d), and

XC VUG,

x2EX
by (2). Hence, in view of the compactness of X, we can find a finite

31t is noted that @(x,y) does not provide a 7real generalization of von Neumann’s
symmetrization, since x;’s refer, in special cases, to mixed strategies. We can also con-
struct, however, the function @ in terms of pure strategies, and this will give a real
generalization of von Neumann’s method symmetrizing game matrices; instead of the
cartesian product of mixed strategy spaces we must, then, consider the mixed strategies
over the cartesian product of pure strategy spaces. But in either cases the formal pro-
cedures in constructing @ are exactly the same.
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set A={a,, a,, ++-, a;} X such that
X\ G, -
j=1
This implies &(y, y)< max ;?(a;, y) for any yeX. Now, put

fj(y)zmax [$(a’jy y)_@(y’ y): OJ (.7=17 2y ct Yy S) .

These s functions are all continuous by conditions ¢) and d), and
satisfy f(¥)=0, 3j-1/(y)>0 for any yeX.
The continuous mapping

(3) y= 7w,/ 37 0)
J=1 i=1

maps X into the convex hull C(A) of A and therefore in particular
C(A4) into C(A). Since C(A4) is homeomorphic to a compact convex set
in a Euclidean space, there exists a fixed point by Brouwer’s fixed-
point theorem.

Denote by ¢ one such point. We have then

i= 37 ()ay /3 £ (D)CATX .

But for such a j that f,(y)>0, we have, by definition, @(a,, &) >@(%, 9).
Since @(w,y) is x-concave, this implies @&, ¥)>&(%, ), which is a
contradiction.

REMARK The foregoing proof is essentially a repetition of the
argument in [10]; the application of this argument to many-person
cases is made possible by the use of @(x,y). It should be noticed,
however, that despite the generality of Theorem 3. 1, it does not contain
the result of [10]. The main reason for this fact is : the quasi-concavity
(see [10]) of the original payoff may be lost in constructing @(z, y).
So the theorem in [10] needs separate discussion.

4. An interpretation of ?(x,y). Lemma 3. 1 can be rewritten as
follows: An n-person game has an equilibrium point if and only if
(4) min max [@(z, y) —P(y, y)]=0 .

yeX ze X
Now (4) may be interpreted in the following way: Suppose there are
n persons P, P,, --+, P,. We consider the cases where all the persons
P,, ---, P, except P; cooperate. Denote the coalition consisting of only
P, by @, and that consisting of P,, P;, ---, P, by Q.. @, and @, play
n original games simultaneously, conforming to the following new rules:
We denote these n games by G,, G,, -+, G,, respectively. In G, (i=1,
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2, -++, n), Q participates in the » simultaneous games as the ith player,
while Q. occupies all the other positions. Then

=[x, ) -+, ¢, JeX
indicates the strategies of @,, and

y:[yh Yoy =0y yn]eX

indicates those of @,. If Q. chooses =z and @, chooses y, Q. pays to @
the amount

Kﬁ(yly ety Yiety iy Yivry 200 yn)

as the outcome of G;. On the other hand, @, pays to @, the amount

;Ki(yu 2y * %%, yn)

as the rent for gambling, after the game is over. Thus @(x, y)—?(y, y)
indicates the total gain of Q,, while @(y, y)—@(x, y) indicates that of
Q,. With the notion of this new zero-sum two-person game, (4) gives
a criterion for the existence of equilibrium points for the original =-
person game. If the given n-person game is constant sum, (4) is reduced
to the more natural formula :

min max &(z, y)=n ,
yeX xe X

where = denotes the corresponding constant sum.

5. Reduction to convex games. In this section we assume E, is a
normed linear space. We further assume regarding the payoffs H(z,
Z,, ++-, x,) the following conditions :

(i) The w,-function Hy(x,, -+, ®;_1, &y Tisay =+, £,) 1S UpPper semi-
continuous for each fixed (n—1)-tuple [, @, <+ +, @1, Tiuq, * =, Xy -

(ii) The a;-set

{xi ; max Hi(mh oo, Ty, e, xn)th(xU e Ty, v, xn)}
€ X
is convex for each fixed (n—1)-tuple [y, «++, @11, Ti4a, * 2, @] .
(ili) The family {Hy(wx, «--, a;, -+, 2,); ®,€X;} is a uniformly equi-
continuous family of functions on X,®-:-®X,..0X,;.®:--QX,.
These games are usually treated by means of Kakutani’s fixed-point
theorem. We shall next, however, prove the following :

THEOREM 5. 1. To each game of foregoing type there exists a convex
game with the same strategy spaces whose equilibrium points are exactly
those of the original game.
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As a direct application of Theorems 3.1 and 5.1 we can see the
existence of equilibrium points for games of the foregoing type without
Kakutani’s theorem.

We now proceed to prove some lemmas.

Let R and S be normed linear spaces. We denote by ||z|| the norm
of a point xeR. A continuous function f(x) over R will be called
linear if

flax, + a@)=a, f () + ct f ()

for z,, x.€R, a;+a,=1. We define the norm of f as usual:

I[Fll= |2up |f (@)= f(0)] .

Now, let H(z, y) be a function on X®Y, where X and Y are compact
convex sets in B and S, respectively, and suppose that the family of
functions {H(x, y); xcX} is uniformly equi-continuous.

Let further F, be the totality of linear functions f over R such
that (I) ||FlI<1 and (1) f(x)=H(x,y) for any zcX.

Putting

K2, y)= inf f(x),
fE F'y'

we obtain an x-concave function on X®Y. We call K(«, y) the x-concave
envelope of H(x,y). We shall show the continuity of this function by
proving the following lemmas.

LEMMA 5. 1. {K(z,y); X} is a uniformly equi-continuous family
of functions on Y.

Proof. Since {H(x,y); vreX} is uniformly equi-continuous, we can
find for e>0 a 6>0 such that |jy,—u.||<d implies |H(x, y,) — H(x, ¢,)|<e
for any zeX. We shall show that, for this same §, ||y, —¥.||<{d implies
| K(z, y1)— K(x, ¥.)|<e for any zeX.

Indeed, if fer,, then

f(@)=H(x, y) =H(x, y.) —e

for all zeX, and |[f+el||=||fI|l; namely, we have f +eeF, .
In the same way, we have g+eckF, for gekF, .
Hence, if ||y, —#.]|<8, we obtain

K(z, y1)+e— inf f(z)+e= inf [f(x)+e]=> inf g(x)=K(x, v.),

JE€ 1y, €Fy, gekF,,
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and similarly K(w, y.)+e=>K(x,y;) for any xe X. This means that
|K(w, ) — K(z, ¥,)|<e for y,y.€ Y, |ly—9/|<d, and all ze X.

LEMMA 5. 2. K(w,y) is continuous on X for each fized ye Y.

Proof. Let y be an arbitrary fixed point in Y. If ||o —&||<le, then
JSeF, implies

|f (@)= F@IIA e —2]|<e .
It follows that

| inf f(x)— inf f(&)|=e,
SEFy JeF,

proving the desired continuity.
LEMMA 5. 3. K(w, y) ts continuous on XQY.

Proof. We have this lemma immediately by taking Lemmas 5. 1
and 5. 2 together into consideration.

LEMMA 5. 4. Suppose H(x,y) is upper semi-continuous im x for
each fixed yeY, and the w-set

I'y={x; max H(z, y)=H(x, y)}
reX

18 a convex subset of X for each fized yeY. Put

v {x ; max K(.’l}, ?/)=K(w, y)} .
reX
Then we have [',=4, for each fixed yeY.

Proof. Let y be any fixed point €Y, and put

w,= max H(z, y) .
rveX

Then the linear function g(x)=w, belongs to F,. Hence we have

H(z, y)<K(, 2/)=finf f(@)=a,
€

Y

for all xeX, which implies /", 4,.

Conversely, by the above formula, it is obvious that if Zed, then
K(#, y)=w,. Thus, to see that 4,CI",, it suffices to show that K(&,
y)<o, for 2¢rl,.
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Let & be any point not belonging to /°,. Then
dist (&, I",)=2a>0 .
Putting
M= {x; dist (z, {'))<«a} ,

we obtain an open convex set M and a closed convex set M (the closure
of M) in R. Moreover, it is clear that 2¢M.

Let e(x) be such a linear function that e(x)—=0 on M and e(d)=—1;
its existence is a well-known fact (known as Mazur’s theorem) in the
theory of convex sets. Denote by N the complement of M within X;
N is compact and, in view of the definition of M, we have

w,— max H(x, y)=r>0; min e(a)=7<0 .
reEN r€EN

Put

oe(x)

f(x) =w,+
Inl

’

where 6 >0 is so small that 6=y and dllel|<|5|. Then ||f]l=1, f(2)=wo,
on M, and

f@)=o,+ b‘f;f)>+[’l| —w,—y=H(x, J)
7

for any xzeN.
Hence feF,. Moreover,

N A N
f(ﬁf)r_a)y+ oe(x) =W, — 0
|7 17|

<wy,,

which means K(&, y)<w,, proving the lemma.
The proof of Theorem 5.1. is now immediate. Indeed, let us
construet the z,-concave envelope Ki(xy, «++, a;, <+, &,) of
Hyxy, «ooy @y o0 0y @) (t=1, 2, -+, n).

Then K(xi, ., - -+, x,) is clearly z;-concave, and is continuous by Lemma
5. 3. Thus, we obtain a convex game. Moreover, the set of equilibrium
points of this game coincides with that-of the original game, by Lemma
5. 4.
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