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ON THE CONVERGENCE OF ASYMPTOTIC SOLUTIONS
OF LINEAR DIFFERENTIAL EQUATIONS

R. M. REDHEFFER and W. WASOW

1. Introduction. In the differential equation

(1 ) L[y, e]=i/c»>+ Σ Mx. ε)y(n-» = 0

let the coefficients Aό{x, ε) be analytic functions of x and e. For all
values of x and ε for which these coefficients are holomorphic in both
variables the differential equation admits a fundamental system of
solutions with the same property. But if some coefficients of (1) have
poles, as functions of ε, for a certain value of e, say for ε=0, then the
solutions of the differential equation will in general have singularities,
as functions of e, at ε=0. The purpose of this paper is to collect
some observations on the question of when solutions holomorphic at
ε=0 exist even in this case.

The theory of asymptotic integration of such differential equations
[6], [8], [3], [9], [10] teaches that in this case there exist fundamental
solutions which are asymptotically represented by generally divergent
expansions of the form

(2) e ^ Σ t f v f ^ ,

where r is a positive integer and P(x, e) is a polynomial in ε~1/r. Our
problem might naturally be generalized to include the question of the
convergence of any, or all, of these asymptotic series, whether P(x, ε)
be identically zero or not. But this will not be done here.

The analogous problem for differential equations without a para-
meter, at a point where the coefficients have a singularity has been
quite thoroughly investigated (cf. [1, 486-489]). By contrast, there
seem to exist no studies of corresponding questions for the dependence
on a parameter, nor does it seem possible to transfer the results
obtained for one problem to the other by an easy analogy. In view of
this situation the results of this paper may be of some interest.

2. Necessary conditions* Let us assume that Aj(x, ε) are of the
form

( 3 ) Aj(x, ε) = ε-7' Σ AJk(x)εk , ( i=l , - , n)
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where at least one AjQ(x) is not identically zero and h is a positive
integer. The series are supposed to converge when x is in a fixed
region X of the #-plane, and for ε in a circle E: |ε|<ε0, ε0 being
independent of x. The functions Ajk{x) are to be holomorphic in X.
In order to shorten the terminology the self-explanatory expressions
s -holomorphic and ε-holomorphic will sometimes be used. A function
that is holomorphic in both variables may be called (x9 ε)-holomorphic.

The differential equation (1) can be rewritten in the from

( 4 ) e*L[y9 ε] = ehN[y, ε] -f M[y, e] = 0 .

Here,

(4a)

(4b)
μ = 0

and the αv(#, e) and 6μ(#, ε) are (a?, ε)-holomorphic in the product space
of X and E. The δμ(α?, ε) are polynomials in ε of degree less than h.
The coefficient bo(x, 0) is not identically zero. Furthermore, 0<m<w.
By formal substitution of a power series Σ~=o2/j(#)ej into (4) it is seen
that nontr i vial/ormαZ power series solutions can be constructed if, and
only if,

( 5 ) m>0 .

If (5) is satisfied, then the function yQ(x) may be any solution of the
" reduced " differential equation

(6) %o-hΣ^o)f" μ ) =θ-
μ = 0

and the functions y3(x), j>l can be successively calculated, in infinitely
many ways, as solutions of a sequence of nonhomogeneous differential
equations whose homogeneous part is M[yJ9 0],

Let us call a solution which is ε-holomorphic at ε=ϋ, a regular
solution. Unless it is important in the context, we shall not specify
the a -domain for which such a solution is regular. A set of regular
solutions will be simply called independent, if the solutions are linearly
independent at e=0, and hence in some neighborhood of e=0. From
the preceding discussion it follows that the differential equation (1)
cannot have more than m independent regular solutions.

It is easy to construct examples for which the number of indepen-
dent regular solutions is equal to m. Let, for instance, Yj(x9 e),
O'=l, •••, m) be m linearly independent functions that are (x, ε)-holo-
morphic in the product space of X and E, and denote by M[y, e] = 0
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the linear differential equation of order m with leading coefficient one
that is satisfied by these functions. If D designates the operation of
differentiation with respect to x, then

( 7 ) εn-mDn~mM[y, ε] + M[y, e] = 0 , n>m

is an nth order differential equation with m regular solutions. The
standard asymptotic theory (see e. g. [9]) shows that the functions
Yj(x, ε) are part of a fundamental system of (7) whose n — m remaining
solutions have asymptotic representations of the form (2) with P(xf ε)
equal to the n — m determinations of ( —l)1/CTO"m)e~1α?.

In spite of this, the occurrence of any regular solution must be
regarded as exceptional. In order to show this we prove the following
lemma, which generalizes a result of Horn [2].

LEMMA 1. Let the coefficients <xjiX(x, ε) of the system of differential
equations

( 8 ) ψL = £-* Σ <XJμ.(x, e)uμ , 0 = 1, , n)
ax μ=i

he (x> z)-holomorphic for x in X and for \ ε | <ε 0 . Let the solution
Uj=Uj(x, ε) of (8) be characterized by the initial values

(9) ί/.(α,εHp/ε) ( j = l , ...,n)

at a point a of X, where the functions p3{ε) are holomorphic for |e|<Le0,
except possibly for a pole at ε=0 . Then

j(x, ε)=Uj*(x, ε)+Uj**(x, 1

εZ7

where U*, U** are x-holomorphic in X, and ε-holomorphίc for |ε|<e0

and |ε|>0, respectively.
Proof. Define the functions Ujr{x> e) by the relations

Γ vM, r = 0
(10)

r>0

where Γax is a path connecting a and x in X. By the standard argu-
ment of Picard's iteration method it follows that for O^ε^lεj^εo, and
for x in any closed and bounded subdomain of X,

(Π) tf/^ e)= Σ tf,r(a;, e) ,
r = 0

where the series, as well as the series of its termwise derivatives
with respect to x, converge uniformly and absolutely in the indicated
domain. If k is the highest order of the poles of the functions Pj(e),
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the formulas (10) show that the iterants are of the form

(12) Ujr(x,e) = ε-^Vjr(x,ε)

where the VJr(x9 e) are (x, ε)-holomorphic for x in X and |ε |<ε 0 . From
(11) and (12) we conclude, by means of Weierstrass's theorem on
interchange of summations in double series that U5(x9 e) admits a con-
vergent representation of the form

which is uniformly valid for x in every closed subdomain of X, and
for 0<e 1 <|ε |<ε 0 , where ε2 is arbitrary, and the Fjv{x) are holomorphic
in X. This proves the lemma.

Suppose, now, that the differential equation (1) admits a regular
solution Y(x> ε) in some subdomain X* of X. If a is any point of X*,
then Y(x, ε) can be uniquely characterized by the values of Y°°(α, ε),
(s=0, •••, n — 1), which are ε-holomorphic for |ε |<ε 0 . Since the differ-
ential equation (1) is equivalent to a system of the form (8), it follows
from the lemma just proved that

Y(χ, ε) = φ1(x, e)-hφ2(ff, ε) , xeX,

where φl9 φz are ε-holomorphic in |ε|<ε0, and |ε |>0, respectively, and
^-holomorphic in X. But since Y(xy ε) is ε-holomorphic for |ε|<ε0 and
x in X*, the uniqueness theorem for Laurent's expansion leads to the
conclusion that φt{x, ε) = 0 for x in X* and all ε. Being α -holomorphic
in X by Lemma 1, φ,(x, ε) vanishes therefore identically in the whole
domain X. This implies, in particular, that Y(x, 0) is a -holomorphic in
X. On the other hand, Y(x, 0) is a solution of the reduced equation
M[y, 0] = 0, and we have proved the following theorem.

THEOREM 1. If the full differential equation (4) possesses a regular
solution Y(x, ε), then the corresponding solution Y(x, 0) of the reduced
equation M[y, 0] = 0 must be x-holomorphic in every domain X where the
coefficients of the full equation are x-holomorphic.

This is a rather strong restriction on the coefficients of M[y, 0] = 0,
in particular on bύ(x). For the equation M[y, 0] = 0 has, in general,
singularities at all zeros of bo(x), and there will rarely exist a solution
of M\y, 0] = 0 that is holomorphic at all the zeros of bQ(x) which lie in
X.

Theorem 1 sheds some light on Theorem 9.2 of Lll]. That paper
was concerned with the special case in which the expression N[y, e]
—N[y\ of (4) was of order four and independent of ε, and M[y, ε] was
of the form
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where bo(x) had a first-order zero at x=Q. In Theorem 9.2 it was
proved that the full equation

(13) εN\y] + M[y\ = 0

possesses in this case a solution y= V(x, ε) that approaches, uniformly
in a full neighborhood X* of x=0, the ^-holomorphic solution v(x) of
Λί[2/]=0, as ε->0 along a given ray of the ε-plane. It would seem
plausible to conjecture that V(x, ε) is ε-holomorphic at e=0. But
Theorem 1 shows that this is, in general, not the case, at least, if bo(x)
possesses other zeros besides x=0.

3. Some remarks on sufficient conditions for convergence. The
problem of finding sufficient conditions for the convergence of an
asymptotic series in ε seems to be much more difficult than the topic
discussed in the preceding section but some special classes of differen-
tial equations admitting regular solution can be constructed.

a) Constant coefficients. If the coefficients of the differential
equation (4) are independent of x it possesses a solution of the form
y=e

λ^* corresponding to every distinct root λ(ε) of the polynomial
equation

I n \ m

V=l ) μ = 0

Let Λ=Λ0 be a root of the equation

then by classical implicit function theorems H(λ, ε) possesses an
ε-holomorphic root for which λ(O) = λo, provided dHjdλ does not vanish
for e=0, λ=λ0, that is, provided λ0 is a simple root of H(λ, 0). If all
roots of H{λ, 0) are multiple, H{λ, e) = 0 may or may not define an
ε-holomorphic function, as can be seen from the example

which possesses an ε-holomorphic solution for k=2, but not for A=l.
b) Linear coefficients. In formulas (4a) and (4b) let

y(, ) o
(14)

bμ.(x, e) = δoμ

For many differential equations of this type regular solutions can be
found by means of complex Laplace transformation. If we introduce
the polynomials
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(15) "-1 i=o, l,

then the differential equation (4) with coefficients of the form (14)
admits [4, §§ 8, 18] solutions of the form

(16) y(x,ε)=\ v(t,ε)etxdt

where v{t, ε) is a solution of the differential equation

(17) (εhtn + εM0 + B0)v- d

Ί i{ehAλ + 5 > ] = 0

and C a suitable contour.
If a closed contour C on the Riemann surface of v(t, ε) as a

function of t can be found such that C is independent of e and the
integral (16) exists for all small e, then the integral will be either
zero or furnish a regular solution, since C can then be chosen so as to
avoid the points where v(t, ε) is not ε-holomorphic. It is possible, but
not very illuminating, to formulate more explicit sufficient conditions
on the coefficients under which the preceding condition can be satisfied.
Some special differential equations of this type were treated in [12]
and [13]. The equations

(18)

do possess regular solutions. The differential equation

turns out to have a regular solution when the constant Ijk is a
negative integer. For other values of k the solution of the reduced
equation has a singular point at #=0 and the sole regular solution is
?/ΞΞO, in consequence of Theorem 1.

4 The differential equation εy" -\-a(x)yf + b(x)y=0.
a) Polynomial initial conditions. The theorem of § 2 suggests the

conjecture that regular solutions exist if the coefficients of the
differential equation are entire functions without zeros. But the
example εy"' + y"— 2y'JΓy=0 mentioned in the preceding section shows
that this conjecture is certainly not true in full generality. In this
section some sufficient conditions are established for regularity, atten-
tion being confined to the equation ey" J

Γa(x)y' -h b(x)y=0. In agreement
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with the foregoing results, the conditions on a(x) and b(x) take account
of the behavior in the large. For example, a solution #-holomorphic
for | ε | O 0 , |#|<C#o must be in fact x-holomorphic for e=0, whenever
xe Xj the domain of regularity of a and b. A hypothesis ensuring
regularity must therefore ensure, at least implicitly, that the reduced
equation ay' + by=0 has a solution of the indicated type.

We consider the following statements :
STATEMENT (A). The equation εy" J

ra{x)yf+ b(x)y=Q has a solution

(19) y(x, ε)^Σiyn(x)εn^0

convergent for |ε|<ε0, \x\<jx, and satisfying yJ0)=P(n)9 y'n(0)=Q(n),
where P(n) and Q(n) are polynomials of degree <k.

STATEMENT (B). The equation admits a regular solution y(x, ε) such
that 24(0, e)iy{Q, ε) is a rational function of ε, whose numerator and
denominator have degree <&.

STATEMENT (C). The equation admits a solution of the form

where the h's are holomorphic near x=Q.

STATEMENT (D). We have Hk[f(x)]^0 for a linear function f(x)=^0,

where the operator H is defined by

ap dx-¥ \ \ {b — a')p dx dxx .

o Jo Jo

It will be shown, now, that these statements are closely related, a(x)
and b(x) being holomorphic near x=0 :

THEOREM 2. Statements (A) and (C) are equivalent (B) is equiva-
lent to them provided α(0)^0 and (D) implies all three.

To establish the theorem, suppose Statement (A) given, and equate
coefficients to find

(20) -yn-i=ay'n + bynf for n>l , 0=ayΌ-hbyQ ,

which becomes

S X \X rx

(ay'n + byn)dx=-ayn\ +\ yn{b-a')dx
0 0 Jo

(21)
X

Further integration yields

( ί l
(22) 2/.rt_1-P(w-l)-a?Q(7i--l)=( ί lyn{b-a/)dxdxι- Vayndx±a(0)P(n)x .

Jo Jo Jo



824 R. M. REDHEFFER AND W. WASOW

Let Yn = Δ*+ιyn, the (β + l)th difference. We have, by (22),

(23) rB.1 =

Regularity of a and δ, convergence of Σ?/ttε
w, ensure that for |#| <#*<>„

we have

\Yn\<BA\

where A, B, and M are suitable positive constants (that may depend
on x*). Thus, we have by (23) in every circle |#|<I<5<1, with δ<Zx*.

max|Γw.1 |<3^M(max|FJ)<(2^M)w+1(max|Fw+m |), m - 0 , 1 ,

the latter relation following by iteration. Choose δ so small that
4δM<l/A. Then

Letting m->oo shows that |Y"w|=0, and hence

-\rgk(x)nk .

It follows that y(x, ε) has the form

(24) Σ

as we see by using factorial polynomials in place of powers of n.
Multiplying through by (1 —ε)fc+1 shows that (A) implies (C).1

To see that (C) implies (A), express the given polynomial as a new
polynomial in 1 — ε and divide by (1 —ε)*+1. We are led to a solution of
the form (24), and expansion of (1 —e)"^1 gives the initial conditions
described in (A). We have incidentally established the rather curious
fact that yn(x) and y'n(x) are polynomials in n for every small fixed x,
if for the single value #=0.

Suppose now that (C) is given. We may assume (24). With
s=l/(l —ε), equating powers of s in ey" Λ-ay'+ by=O gives

(25) L{y)=y"-{-ay'-\-by ,

0 =

and conversely, the system (25) for some f^O ensures a solution of
1 A simpler proof has been given by Robert Steinberg, starting with the observation

that has Y»(0)= ΪV(0) =
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the form (24), hence of the form described in Statement (C).

We have H(p)=L(p), and hence, when the constants of integra-
dx2

tion are taken as zero in (25), this system is equivalent to

r/o'=o

Λ = H(fo)

(26)

0=H(fk) .

Hence H%=0 is sufficient to ensure a solution of (25), and indeed with
_fί(0)=/<(0)=0 for i^l. Thus, (D) implies (C), and hence (D) implies
(A). The converse is false but if we define

H(p,q)f=Hf+px + q .

Statement (A) or (C) is equivalent to

(27) UH(pit qt)f=0 ,

for some constants pίf q.t. Here / is the first function f.t in (25) which

is not identically zero.
If (B) is given, suppose y(0, ε) has a zero of order /&>0 at e=0. Then

2/o(O) = ί/i(O)= - ^ ( O H O . The system (20) gives yo=c expΓ - Γ (b/a)dχ]

where c is constant. If α(0)=M), it follows that yo(x)=O for small x
and hence for all xsX. Similarly, ylf •••, 2/Λ_i=0 for small x. Hence
the function ε~hy(x, ε) is ε-holomorphic for ε=0 and small x.

If yx(0, e)/2/(0, e)=P(ε)/Q(e), where P and Q have degree <Jc, then
the function ε~hy(x, ε) satisfies the same condition. Combining this
observation with the preceding, we see that one may suppose 2/(0, 0)^=0
in Statement (B), provided α(0)=M).

Putting t==l — ε, dividing numerator and denominator by tk+\ and
relabeling coefficients, transforms the given condition into

2/(0, e) S(ej

where

and similarly for B(ε). The function
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Y(x,e)^ΛB(ε)

is regular near ε=0; it satisfies the given differential equation; and
also Γ(0, ε)-=5(ε), Yx(0, e)=A(e). Hence Y(x, ε) satisfies the require-
ments of Statement (A).

Finally, it is clear that (B) follows from (C) if 2/(0, ε)^0 in (C).
If 2/(0, e)=0, however, we have yJ0) = 0 in (20), which implies yn(x)=0
for α(0)=M) as above. Hence y(x, ε)=0 contrary to the assumption in
Statement (C).

The condition on the operator H admits a simple interpretation.
If / is the identity operator, then formally

Now, when Hi(cx-{-d) = 0 for £>&, as in Statement (D), then the above
expression is a polynomial in z for p=cxJrd. Suppose, more generally,
that

(l-Hz)-\cx + d) = φ(z, x) ,

a function holomorphic in z at z=l. Then cx-{-d=(I — Hz)φ or, by
differentiating,

0=(l-z)φ" -zaφ'-zbφ .

With e=I-I/2; this yields

εφ" + aφf + bφ=O

where φ is ε-holomorphic near ε=0.
The above treatment is purely formal. If

for p=cxΛ-d and |#|<j5, however, then the formal equalities become
true equalities. We define (I—Hz)-1 by the foregoing series, which
converges uniformly in x near z = l . The function Hkp being analytic
for each k, we may differentiate the series to find that φ(z, x) is in
fact a solution holomorphic in z for |z|<T./0. The corresponding domain
of ε is |1 —ε|>#. Hence a sufficient condition that the equation have
a solution (e, ^)-holomorphic for |1 —ε|># and \x\<Cβ is that lim|fl*p|1/fc

<LΘ for p=cx-\-d^=0. An extension can be given after the manner of
(27).

b) Examples and discussion. The preceding result enables us to
construct equations admitting regular solutions. If the polynomials in
Statement (A) are constant, so that &=0, P(n)=p, Q(n)=q, then
Statement (C) yields y(x, ε)=h(x). The differential equation shows that
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h(x) is linear, whence h(x) = pΛ-qx by the initial conditions. Such a
function is a solution if and only if aq-\-b(p±qx) = 0. The differential
equation then takes the form

(28) ey" + b(x)[(c-x)y' + y] = O

where c is constant. For every choice of b(x) there is obviously a
regular solution; namely, y=x — c.

The case k=0 just considered can be regarded in a different light.
Let a(x) and b(x) be integrable and satisfy \a\<M, |6|<iW for a domain
of the (possibly complex) variable x. The Picard iteration procedure
shows then that

εy"+ay'+by=0

has a unique solution y(x, ε) subject to y(0f e)=c, y'(0, ε)=d, where c
and d are indepenent of ε. Moreover, this solution is an entire function
in 1/e, of exponential type M at most. If we require a solution
Y(x, ε) ε-holomorphic near ε=0 and satisfying the same initial condition, it
is necessary that y=Y. This shows that both y and Yare ε-holomorphic
in the extended ε-plane, hence independent of ε. Thus we are led to
the situation found otherwise above. This discussion resembles that
used previously for the more general equation (4).

Turning now to the case &=1 in Statement (A), we find

(29)

by (25). Adding the three equations, or considering y(xf 0), we see
that s=/0-f/i satisfies the reduced equation as'-hbs=0. Hence, with co

constant,

(30) /o+/i==Cofl(a?) , R(x) = e-&bla>dx

where R must be regular since fQ and fλ are. If co=O one easily shows
that the problem reduces to the case A=0 just considered. Without
loss of generality, therefore, we may take c o =l. In terms of R, the
original differential equation is

(31) εy"+Ra(x)(ylRy = 0

and the system (29) is equivalent to the three conditions (30), fo=cx + d
with c, d constant, and

(32) R'' = [(ex + d)lR\'aR .

The differential equation, then, is
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(33) εy" +

and the solution is given by Statement (C) as

(34) y(x, ε) = R-

That (34) is in fact a solution is easily verified by actual substitution.
In summary, there is a regular solution, with yΛ(0) and y'n(0) linear
functions of n, if and only if the equation can be put in the form
(33) and the sole such solution is then a constant multiple of (34),
divided by (1 — ε)2.

The case k=2 is more complicated. It is found that a(x) must
satisfy a certain first-order nonlinear differential equation, R being
given, and the case corresponding to co=O in (30) reduces to the case
k=l. It would be desirable to find an explicit form of the equation
for k>2, but we have not been able to do this.

Although the foregoing considerations restrict the behavior of a
and 6 in the large (by virtue of analytic continuation) the analyticity
of a and 6 plays no very essential role. Indeed a corresponding real-
variable result might be given, with hypothesis on the local behavior
only. It seems difficult to give criteria in which the complex-variable
character of the problem is more fully used. This difficulty is
illustrated by the following two examples.

Let α=δ, in the discussion leading to (33) and (34), so that R=e~*.
If c=0, d = l the differential equation is

(35) ey"+y'e-χ + ye-χ=0

with solution y=e~x—ε. It is seen that R, a, b, and 1/α are entire
functions of exponential type, as is the solution y.

Consider, next, the equation

(36) ey"+y'ex + yex=0 .

Despite the resemblance to (35), there is no regular solution, as we
now show and thus the conditions just described, stringent though
they be, are yet insufficient.

Suppose there is a regular solution of (36). Since α(0) = l we may
assume 2/(0, 0)=M), as in the above discussion. The function y(x, ε)ly(0, ε)
therefore is regular and has 2/0(0) = l, 2/n(0) = 0, {n>l) in the series
representation. The system (20) gives

where the cn are constants. By induction we see that
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and, in view of the initial conditions, that <\>0. We have therefore

where the terms not written are of the same sign as the leading term,
for real x, since cn drops out. Thus it is that \yn(x)\^>nl e~x\e~nx —1|,
and the series diverges for #=M).

c) Related partial differential equations. Consider the following
problems, with regular a, b:

Problem (A). To find a solution y(x, ε)^0 of ey" + ay' + by=0 which
is holomorphic in ε for |ε |<r, in a given set S of x values.

Problem (B). To find a solution Y(x, ε)^0 of Yxx + aYx9 + bYs=0
which is an entire function of type 1/r in ε for a given set S of x
values, and satisfies

Ϋ(x, 0) = eΛ}h^dx

or Y(x, 0) = 0.
It will be shown, now, that these problems are completely equiva-

lent. If

is a solution of Problem (A) then

Y(x, s)= ±yn(x)ε"lnl

satisfies the differential equation Yxx + aYxe + bYs=0. This can be
verified by termwise differentiation, insertion into the partial differential
equation and use of equations (20). Since Y{x, 0)=yQ(x), the first
equation in (20) shows that the initial condition of Problem (B) is also
statisfied. Finally, it is easy to prove and doubtless well known that
Y is an entire function of ε of type 1/V, if and only if y(x, ε) is
ε-holomorphic for |ε|<V.

To show, conversely, that a solution Y(x, e) = ̂ zn(x)εn of Problem
(B), leads to a solution of (A) we observe that, by virtue of the state-
ment in the last sentence, the series

converges. The functions yn{x)=zn(x)n\ are then seen to satisfy the
recursion formulas (20) for ή>l. That they also hold for n=0 follows
from the initial condition imposed on y(x, ε). This completes the proof.

We remark in passing that y and Y are transforms of each other:
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[-»Y(x, e)de = y(x, p) .
Jo

The change of variable

s = ε— i a(x)dx , t=^ε
Jo

is suggested by the characteristics, and reduces the partial differential
equation to canonical form

a1

where u(s, t)= Y(x, ε) and the coefficients are evaluated at x. The
initial condition is

u(-[*a(x)dx, θ)==<rSOc&/α>to

 #

With z=e~x — 1 this becomes w(z, 0)=z4-l when a=b=e~x but u{z,ϋ)
= 1/(1 — 2) when a=b=ex. Thus the initial values have a pole at a?=0,
in the second case. We have seen already that tne solution is regular
in the first case but not in the second.

A related partial differential equation arises in another way if we

seek a solution y(x, e) which is an entire function of type k and such

that

\y(x, ίσ)\2dσ<Coo .

Such functions are equivalent with those representable in the form

euf(x, t)dt, Γ \f(x, £
J -k

One obtains, formally,

Integration by parts yields

Γ ε(Fίrrr-aFr-
J-fc

where

(»,ί)=Γ f(x,t)dt.
— Ίc
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Letting ε-»0 shows that the integrated part vanishes. Hence the
original problem leads to a two-point boundary-value problem

F(x, k)=c expί — \ (bja)dxj ,

F(x, -Λ)=0 .

Conversely, from such an F we can construct, at least formally, a solu-
tion to the question first proposed.

Many of the foregoing considerations apply with only slight change
to the equation

(37) εy" + a(x)y' + b(x)y=c(x) .

The condition /0" = 0 in (26) is replaced by /0"=c(#), and we are led to
consider Hkp with p=f0. Similarly, the condition Q^ayΌ + byo in (20)
becomes

with corresponding change in the boundary condition for the associated
partial differential equation. (The equation itself does not change.)

That there is always a solution regular in ε, for some c(x)9 is
evident when we take y=l, c=b(x). Actually, one can find a c(x)
such that the regular solution depends on ε. For example, let /
satisfy

αf + 6/=0, / ^ 0 ,

and let c(x)=-f"{x). Then 2/=/(a?)/(l-e) is a solution of (37).

5* A hydrodynamic application* Differential equations of the type

(4) with

(38) M[y, ε]^xM*[y, ε]

where the leading coefficient bo*(x, 0) of M*\y, 0] does not vanish at
x=0 occur in the theory of hydrodynamic stability. This application
will be explained below. We shall be concerned here with necessary
conditions on a differential equation (4), for which (38) is satisfied, in
order that it possess a full contingent of m solutions that converge to
solutions of M*[y, 0]=0, as ε->0, uniformly in a full neighborhood of
x=0.

Before stating our theorem concerning this case we recall ([4], p.
126) that for linear differential expressions there exists division algo-
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rithm involving only rational operations and differentiations, by means
of which N[y, ε] can be represented in a unique fashion in the form

(39) N[y, e]=Q[Λf*ϋ/, e], e] + R[y, ε] .

Here Q[u, e] and R[y, ε] are linear differential expressions with (x, ε)-
holomorphic coefficients. The order of R[y, ε] is at most m — 1 . Let
us call R[y, ε] the remainder of N[y, ε] with respect to M*[y, ε].

THEOREM 3. Assume that the differential equation

(40) εN[y, ε] + xM*[y, ε] = 0

possesses m solutions of the form

(41) Yj(χ, e) = yjo(x) + evj(x, ε) , ft' = l, , m)

where the yj0{x) form a fundamental system of the reduced equation

(42) M*fe,0]-0

and the Vj(x, ε) are bounded, together with their first n derivatives with
respect to x, at x=0, and for ε in some point set E* having ε=0 as an
accumulation point. Then the remainder R[y, ε] of N[y, ε] with respect
to M*[y, ε] vanishes for x=ε=0, identically for all y(x).

The conditions on Y3(x, ε) in this theorem are much weaker than
regularity. The meaning of Theorem 3 is essentially that even these
weaker conditions will only exceptionally be satisfied, since for arbitrary
N[y, ε] and M*[y, ε] the remainder will, in general, not vanish identically
in y, for # = ε = 0 .

Proof of Theorem 3. Without loss of generality we may assume
that

(43) 2/S5-υ(O) = ̂ , {j,k=l, . . ,τw)

If (39) is inserted in (40) and y is replaced by Y3{x, ε), then use of (41)
leads to a relation of the form

(44) ε*φj(x, ε) + εxφό{x, ε) + εR[yj0, 0] = 0 , ( i = l , , m)

where φ/0, ε) and ^(0, ε) remain bounded as ε->0 in E*. Setting
x=Q and letting ε->0 in £7*, this yields

R[yJ0,0] = Q, for ^;=0 (j=l, --,m).

Because of (43) we conclude that every coefficient of R[y, 0] vanishes
at # = 0 . This proves the theorem.

Application. By a simple change of variables the Orr-Sommerfeld
equation in the theory of hydrodynamic stability, [5],



ON TΠK CONVKRGKNCK OK ASYMPTOTIC SOLUTIONS 833

can be written in the form

(45) e(y^ - 2αV' + a*y) -f ZφOO/'' - αfy) - 6;'(a?)2/=0

with 60(0)=0- (The dependence of bo(x) on the complex parameter c is
not set in evidence in our notation. The letter a denotes a positive
constant.) The special case that b'0'(x) also vanishes at x=0 is of some
interest in hydrodynamics. If c is real, for instance, and &ό'(0)=0, one
has the case of a periodic disturbance of the flow such that the critical
layer where the disturbance and the main flow travel with equal
velocities, coincides with an inflection point of the main flow profile
ιv(z), [7]. In the present case

and the remainder R[y, ε] in Theorem 3 is independent of ε. A straight-
forward calculation, not reproduced here, shows that this remainder
vanishes for x=0, if and only if

(46) ft=0 , ffi-bβ^O .

Since the coefficients βj depend on c these conditions can be satisfied
for very exceptional profiles and very special disturbances only. Now,
it is known, [14], that corresponding to every solution of the reduced
equation there exist solutions of the full equation (45) having the
form (41), with Vj(xf ε) and its derivatives bounded in some region
S of the #-plane. As we have just seen, S will not include the origin,
at least not for all such solutions, unless very exceptional conditions
are satisfied. From this it can easily be deduced that S cannot be
a doubly connected domain surrounding the origin completely, i.e.,
some solutions which converge in certain regions to a solution of the
reduced equation, must diverge in certain other regions. It follows
from this fact (cf. [14], [5]) that the damped disturbances of the
corresponding hydrodynamic flow possess a so-called " inner friction
layer/' i.e., a layer in which the effects of viscosity cannot be neglected
no matter how small the viscosity coefficient.

Thus Theorem 3 leads to the result that even if w(z) — c and wn{z)
vanish at the same point for a certain damped disturbance, an inner
friction layer will be present unless the disturbance and the velocity
profile are of an extremely exceptional type.

It can be shown that the vanishing of R[y, ε] at # = ε = 0 is only
one of infinitely many conditions necessary for the existence of m
regular solutions. It is therefore very likely, but not yet proved,
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that bQ(x)=x (Couette flow) is the only flow for which inner friction
layers are ever absent. In the Couette case the remainder R[y, ε] is,
of course, identically zero for all x and ε, and every solution of the
reduced equation is trivially a regular solution of the full equation.
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