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1. Introduction. Gale and Stewart [1] have discussed an infinite
two-person game in extensive form which is the generalization of a game
as defined by Kuhn [3] obtained by deleting the requirement of finite-
ness of the game tree and regarding as plays all unicursal paths of
maximal length originating in the distinguished vertex z,. In a win-
lose game the set S of all plays is divided into two sets S; and S;; such
that player I wins the play s if seS; and player II wins it if seS,,;.
Gale and Stewart have shown that a two-person infinite win-lose game
of perfect information with no chance moves (called a GS game here)
is strictly determined if S; belongs to the smallest Boolean algebra
containing the open sets of a certain topology for S. Here we answer
affirmatively the question posed by them: Is a GS game strictly deter-
mined if S, is a G; (or, equivalently, an F',)? The notation and results
of [1] are used throughout, as well as the partial ordering of X given
by: a>y if f“(a)=y for some n_>1.

2. Alternative description of S;. Let I' be the game (x,, X;, X,
X, 7, S, S, Si), where

l_ [\E7z ’

n=1

E>DE,>-.-, and E, is open. Following [3], let the rank rk(x), for
zeX, be the unique % such that f*(x)=x,. As in [1], N(x) is the set
of all plays passing through « (the topology for S is that in which U(x)
is a neighborhood of each play in it). Then for each n,

E,=\U{l(y) : Wy)SE.]
and since for any yeX we have

UWy)=U{l(=): f(&)=y} ,
with

rk(z)=1+7rk(y) ,
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there exists for each n a subset Y, of X such that 7k(y)>n for all
yeY, and

Enr=U {u(y) IS Yn} .

Furthermore, since of any two neighborhoods having a non-void inter-
section, one is contained in the other, each Y, may be chosen so that
U(y), W(y') are disjoint for different y, ¥’ in Y,.

Since seS, if and only if seE, for an infinite number of values of
n, we have: seS, if and only if for infinitely many = there exists ¢
(dependent on n) such that s(i)eY,. Thus, since on the one hand
1=rk(s(?))>n, and on the other for any = there is at most one ¢ such
that s(¢)eY,, letting

Y=\ 7,

=1
we have: seS; if and only if s(2)eY for infinitely many <.

3. Lemmas.

LEMMA 1. If I" is a GS game with

Sr(lM)=4
and
T=8-\J{W(): S5(l)=4} ,
then
I'y=(w0, XF, X5, X7, f7, T, SF, SE)

is a subgame of I,

ST (Lr)2=<A
implies

(<A,
and S((L77)a)=4

Sfor all xeX".

Proof. Since T is a closed nonempty subset of S, /', is a subgame
of I" by Theorem 5 of [1]. The second statement follows from assertion
B [1, p. 260]. Finally suppose that

(L r)e)=4
for some xeX”. Letting, in assertion A [1, p. 260],

F=wW(x)N\T,
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and noting that F' is closed and nonempty and that

(I'T).T‘z(['.'t)l“ ’
we have

S )=d

which is impossible in view of the construction of 7.
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We assume hereafter that /7 is a GS game with S, described in

terms of YC X as in §2, and that
()= 4,
whence

2h()=4

by Lemma 1. The strict determinateness of I’ will follow from Lemma

1 and the fact that
SV p)2<d ,

proved in §4.
LEMMA 2. For xeX”, we have

seSie
iof and only if
seS™ and s(@)eY

for infinitely many 1.
LEMMA 3. For xeX” there exists

0,€ Z]((FT)E)

such that for any

€ 3,((1"2).)

we have
(o0 TH(P)EY

Jor some i>rk(x).
Proof. Let Y, be the set of all

yeYNX*

such that y>a2 and no members of Y fall between = and y. Let I’ ’

be the game
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(w0, X7, X777, X7, f77, 8%, 81, St)
where
Si=8"NU{(y) : yeY,}
and
S;=8"-8;

(that is, the game in which I wins if the play passes through any
member of Y following ). Noting that

=S,
we have
1 ST
and hence
>Sul)=4.

But S; is open in S™ and so /" is strictly determined by Corollary 10
of [1], whence there exists

a2 (1),

which satisfies the conclusion of the lemma.

4. Winning /';. Let
Y'=(YNX)U i@}

For each xeY’ let 5, be as given by Lemma 3, and let 4, be the re-
striction of o, to the set of all z in X” such that a<(z and that there
exists no y in Y’ with o {y<2. We show that the domains of the o,
cover X” and are disjoint: First, if xeX/, then x, belongs to the
domain of ¢,. For

ze X7 —{a}
let
r=max{z :2'eY & 2/ <z} .

Then xeY’ and z belongs to the domain of s,; thus the domains of the
s, cover X”. Now suppose that z,, ,€Y”’, x><x,, and that there exists
x; common to the domains of o, and o, ; then z,<Za; and a,<lx;, so that
either @< x,.<x, or x,<x,<x;, which is impossible in view of the re-
striction imposed upon o, in obtaining o,.

Since the domains of the 4, cover X[ and are disjoint, they have
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a common extension »*, which necessarily maps the elements of X7? on
their immediate successors, and thus belongs to 3%,(/7;).
We show that o* wins /7,. Let

> (1) .

For this r and any « in Y’, let ¢(x) be the least ¢ such that <{s,, o (7)Y,
whose existence is given by Lemma 3. Define {w,} inductively by

Ty =<o", (1(x,)) n=0, 1,
(z, is the distinguished vertex). Since
/"k(wn+l):?:(wn)>lrk(xn) y

and «,, T,,. are on a common path, we have z,,, >z, for all n, and so
if x,€Y’ then

2=, (Ux,))= 0oy, T p(U(x,))EY",
where
Tay € ZII(( r ’/’)Jr;,)

is the restriction of = to X/*. Thus by induction «,€Y’ for all n, and
hence

o*, o(1)eY
for infinitely many values of 4, so that
{o*, ToeS! .
Since ¢ is arbitrary,
e3> (I'y)
so that by Lemma 1, we have
Syt
As this is the consequence of the sole fact that
SH()=41
I is strictly determined.
Reversing the roles of the players in the above gives the result that
a GS game is strictly determined if S, is an F,.
The strict determinateness of a two-person zero-sum game with G

payoff having chance moves can be shown. The proof is more compli-
cated, but uses the same ideas [4].

5. An application. Let
I'=(zy, X;, X;1, X, f, S, 9)
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be a zero-sum two-person infinite game of perfect information with no
chance moves having payoff @ such that there exists a real function %
on X (|A(x)|[< K<) with

@(s)=lim sup A(s(¢)) for all seS.

I" is the result of an attempt to reduce the following situation to
a game: The tree K of a GS game and a function %2 as above are
given; the two players make choices in K in the belief that every play
will terminate in some unknown, but distant, vertex «, at which time
player I will receive the amount A(x) from player II. A payoff function
@ is sought such that @(s) (—@(s)) expresses the utility to player I (II)
of a play s in K.

The payoff @ defined above arises from ascription to players I and
II respectively of “optimistic” and “ pessimistic ” behaviors in this way :
Player I assumes that the play s will terminate in some “ distant” vertex
s(¢) at which 2 assumes nearly its supremum on all “distant” vertices
of s; he thus makes his choices so as to maximize the expression

lim sup A(s(¢))=2(s) ;

and player II supposes that s will terminate in some “distant” vertex at
which his gain —A(s(¢)) assumes nearly its infimum for all such vertices,
and thus seeks to maximize

lixin inf —2(s(2))=—a@(s) ,

that is, to minimize @. The derived game is thus zero-sum. Ascription,
however, of such “optimistic” or “pessimistic” payoffs to both players
yields, in general, a non-zero sum game.

We show now that the game [’ of this section is strictly deter-
mined, using the method of Theorem 15 of [1] which asserts the strict
determinateness of [° for the more special case of continuous @.
(Gillette [2] has shown the strict determinateness of an infinite game
of perfect information with chance moves which consists in repeated
play from a finite set of finite games and has payoff

lim sup 1 3 0.(5)
N—rco n =1
where g,(s) is the gain from the nth game played.)

First, as a converse to the equivalence of §2, let Y X, and denote

by Y, the set of all members of Y having rank greater than n. Then
{s:s(?)eY for infinitely many i} =/\{s:s(9)eY, for some ¢}

n

= f\ U{W(y);yeY,} ,
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whieh is a G.
Now in 77, for ¢ real, letl
t={s:A(s(¢))>t for infinitely many 4} ,
and S, =S-S% Then S! is a G;, and thus the GS game
I'=(x, X,, X,,, X, 1,5, 8, S;))
is strictly determined. Let
v=sup {¢t: 7 (L ,)==A} .
Since S¥=A4, S;¥=S, and S! is a decreasing function of ¢, we have
—K<v<lK, 37 ")==A it t<wv,
and
SV )2eA if t>v.
Given ¢>0, choose
a7 (o) and e fi(L) .
Then for any
o), €3I,
we have
Moy, (1)) >v—e for infinitely many ¢
and do not have
(<o, td(2)) >v+¢ for infinitely many ¢ ;
so that
D((oy, H)2v—¢  and  O({a, 1)) <v+2¢ .
Hence

v—e< sup inf @(<o, r3)<inf sup @(¢s, oH)<v+2¢ ;

thus 77 is strictly determined, and has value v.
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