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A THEOREM ON ALTERNATIVES FOR PAIRS OF
MATRICES

H. A. ANTOSIEWICZ

The theory of linear inequalities has come into prominence anew
in recent years because of its importance in the solution of linear
programming problems. In this note we present a simple algebraic
proof of an interesting theorem on alternatives for pairs of matrices.
This problem was suggested by A. W. Tucker.

Let A and B be matrices, n by m and n by p, respectively, and
let x, y, u be column vectors of dimensions ra, p, n, respectively.

STATEMENT I. Either Afu>Q, B'lQtO for some u or Ax 4-By=0 for
some #>0, y^>0.ι

STATEMENT II. Either A'u>0, B'ύ^Ofor some u or Ax-\-By=0 for
some x>0, y^>0. [7].

We shall prove the following theorem.
THEOREM. Statement I implies, and is implied by, Statement II.
Note that for the special case when A=— a (column vector) State-

ment I (or II) reduces to a result of Farkas [2]. If B=0, then State-
ments I and II are two theorems of Stiemke [6]. More importantly,
if the matrix [B, C, — C] is substituted for B, where C is a n by q

matrix, and y is replaced by the vector then Statement I gives
V%)

the well-known transposition theorem of Motzkin [4, 5]. We refer to
[4] for several proofs and further references.

Before proving our theorem, let us make the following preliminary
observations. Define the matrix M=[Af B] and the column vector

z= \x , and consider the system of equations Mz=Q. Assume that

the vectors su s2, •• ,sfc span the linear manifold S^oΐ solutions of
this system. Then every solution z can be written in the form z=S'c
where S/==[slf s2, , sfc] and c is a ^-dimensional (column) vector.
Observe that the rows of the matrix M span the orthogonal complement
^ * of £f, that is, every solution of the system Ss* = 0 can be rep-
resented as z^^M'd where d is a ^-dimensional (column) vector.

It will be convenient to write S=[Slf S2~] where Sλ and S z are the
k by m and k by p matrices, respectively, into which S can be parti-

Received February 3, 1954. This work was performed under a National Bureau of

Standards contract with The American University and was sponsored by the Office of

Scientific Research, ARDC, USAF.
1 Throughout, transposition is indicated by a dash; also, x>0 means x^β with ^ = 0

excluded.
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642 H. A. ANTOSIEWICZ

tioned accordingly, we introduce two column vectors v, iv with ra and

p components, respectively, and write z* = 1^ .

Clearly, the alternatives in each Statement are mutually exclusive
as can be seen by multiplying Ax-\-By=0 on the left by uf. To prove
the theorem suppose, at first, that AΊί>Q, B'C>0 for no u and
Ax -f- By=0 has no solution #>0, ?/2>0. Then there exists no c such
that

Hence, by Statement I, the system S1v-hS2w=0 must be satisfied for
some v^>0, W^>LO. Since every solution of

is of the form z*=M'd, there must exist a vector d such that A'd>0,
B'C>0, which is a contradiction. Thus Statement I implies Statement
II. Conversely, if A'u>0, BfιQ>$ for no u and Ax-}-By=0 has no solution
#>0, y^>0, then there exists no c such that SK>0, S^c^O. Hence, by
Statement II, the system SιV + S2w=0 must be satisfied for some v>0,
w!>0, that is, there must exist a vector d such that A'dyQ, B'd^>S);
but this is a contradiction. Thus Statement II implies Statement I.

For applications to linear programming Statements I and II are
modified by adjoining in them the inequality u^>0 to B'u^S), that is,
by replacing the matrix B by \B> /] in this form they can be used to
prove the duality theorem, [1, 3].
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ON SECOND-ORDER NON-LINEAR OSCILLATIONS

F. V. ATKINSON

l In this paper we establish criteria regarding the behaviour,
oscillatory or otherwise, near #=oo of the solutions of

(1.1) yr' + fyW-^O ,

where f=f(x) is positive and continuous for x^O and n is an integer
greater than 1. A solution, not identically zero, will be said to be
oscillatory if it has infinitely many zeros for x^O .

The three possibilities to be distinguished are that the solutions of
(1.1) might be (i) all oscillatory, (ii) some oscillatory and some not, and
(iii) all nonoscillatory. We give here a necessary and sufficient condition
for (i) to hold, and a sufficient condition for (iii).

In the linear case, n=l, a number of criteria have been found for
cases (i) and (iii) in the linear case (ii) is impossible. A very sensitive
procedure is afforded by the chain of logarithmic tests studied by J.
C. P. Miller [3], P. Hartman [1], and W. Leighton [2]; some further
developments in this field have been given recently by Ruth L. Potter
[4], who has in particular a result [Theorem 5.1] bearing on the
limitations of this procedure. There does not, however, seem to have
been found any simple necessary and sufficient condition for (i) to hold
in the linear case, so it is noteworthy that such a criterion exists in
the nonlinear case.

2. The result in question is :
THEOREM 1. Let f=f(x) be positive and continuous for x^O, and

let n be an integer greater than unity. Then a necessary and sufficient
condition for all solutions of (1.1) to be oscillatory is

(2.1)

We remark that in the linear case the criterion is necessary but
not sufficient.

It should be mentioned that no solution of (1.1) becomes infinite for
any finite positive #-value this is ensured by the positiveness of f(x).

We prove first that if (1.1) has a nonoscillatory solution, then
(2.1) cannot hold this will prove the sufficiency of the criterion.

Received October 29, 1953.
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644 F. V. ATKINSON

Let then y denote a nonoscillatory solution of (1.1) y will then be
ultimately of one sign, which we may without loss of generality take
to be positive. It follows from (1.1) that y" will be ultimately negative,
so that y' will tend either to a positive limit, or to zero, or to a negative
limit, or to -co. The last two cases can be excluded since they would
imply that y is ultimately negative. Thus y must be ultimately mono-
tonic increasing, and y' must tend to a finite nonnegative limit.

We next integrate (1.1) over (0, x), getting

(2.2) V'(x)-V'(θ)

Since yf(x) tends to a limit as #->oo, this implies that the integral on
the left of (2.2) converges as x->co we may therefore integrate/(1.1)
over (x, oo), getting now

whence, since y'(

(2.3) y'(χ)>\~fym-ιdt

Still with the assumption that y is ultimately positive, let a be an
rvalue such that y(x)>0 for x^a. We integrate (2.3) over (a, x),
where x>a, and get

y(x)-y(a)>\Xdu [Xfjr'1dt^[\t-a
Jα Ju Ja

and hence, for

which we re-write in the form

(2.4) (x

We now take any xl9 x 2 such that α<^χ<^ 2 , and integrate (2.4)

over (xu a?a). This gives

(x—ά)fdx .
1

If now we make x2-+oo, the left side remains finite; this proves that

\ (x — a)fdx< oo ,
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which is equivalent to

(2.5) [°°xfdx<™ ,
Jo

in contradiction of (2.1). Thus the sufficiency of the criterion is proved.

As to the necessity, we shall show that if (2.5) is the case then
for any prescribed value of 2/(00), for example 1, there exists a solution
of (1.1) such that

(2.6) 2/(co) = l , ^ ( c o H O ,

which is obviously nonoscillatory.
It is easily verified that if the integral equation

(2.7)

has a solution y which is continuous and uniformly bounded as x-+<χ>,
then it is also a solution of (1.1) with the supplementary conditions
(2.6). The existence of a bounded continuous solution of (2.7) may be
established by the Picard method of successive approximation. We
define a sequence of functions

ym(x) (771=0, 1, . . . ) , # > 0 ,

by

The remainder of the argument need only be sketched. We can prove
by induction that if x is so large that

[~(t-x)f(t)dt<l ,
Jo;

assuming now (2.5), then 0<z/m(#)<l. We have also

V*M ~2/«+i (*) = (" (ί -x)f{t) {(vMY"-1 - (2/m+i(<)r-1}* »
Jx

whence, for sufficiently large x,

\ym(t)-ym+1(t)\\~(t-x)f(t)dt .

From this we deduce the convergence of the sequence ym(x) (m==0,l, • •),
for x so large that
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(2n-l)\~{t-x)f(t)dt<l 5

the continuity of the limiting function is easily established. This proves
the existence of a nonoscillatory solution of (1.1) for sufficiently large
x, which is enough for our purpose.

This completes the proof of Theorem 1.

3 We conclude with a simple sufficient criterion for nonoscillatory
solutions which happens also to be true in the linear case [4, Lemma
1.2].

THEOREM 2. Let f(x) be positive and continuously differ entiable for
x^O, and let / ' < 0 . Let also

(3.1)

Then (1.1) has no oscillatory solutions.

We observe first of all that the result

?Aίy+lftr\ ft
dx 12 2n ) 2n

implies that, for any solution, yf remains bounded as #-*oo.
Supposing if possible that (1.1) had an oscillatory solution, let x0,

xu be its successive zeros. Let xm be for convenience a zero for
which y\xm)>0, and let xm be the unique zero of y' in (xm, a?w+i).
Integrating (1.1) over (xm9 x'm), we have

or

J X

X-m

5 Xm

ftr^
Xm

Now yr is positive and decreasing in (xm9 x'm), and y(xm)=0 hence
for xm<^x<^x'm we have

Thus from (3.2) we derive

and so
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This however becomes impossible as xm becomes large, since y'(xm) has
been proved to remain bounded as #TO->°o, while by (3.1) we have

Since we have obtained a contradiction it follows that (1.1) has under
these assumptions no oscillatory solutions. This proves the theorem.
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FOURIER ANALYSIS AND DIFFERENTIATION OVER
REAL SEPARABLE HILBERT SPACE

F. H. BROWNELL

1. Introduction* Let l% denote as usual the space of square sum-
mable real sequences, the prototype of real separable Hubert space.
It is well known that lz possesses no non-trivial, translation invariant
Borel measures. However, lz does have infinitely many subspaces X,
locally compact in the lz norm relative topology, which we may call
translation spaces and for which such measures φ exist [2]. Here the
spaces X are not groups under l% vector addition, so the notion of
translation invariance must be appropriately modified. For any such X
we may of course use the corresponding φ to define over z e l2 a Fourier
transform F of / e A(X, &, φ) by

However, in order to get the expected inverse formula, it seems neces-
sary to be able to make X into a group—roughly speaking to define a
vector in X corresponding to x + y when this Zs vector sum φ X. This
is a severe restriction on our translation spaces X, and the only natural
ones still available seem to be essentially modifications of Jessen's in-
finite torus [9]. With orthogonal coordinates this is the space Xo de-
fined below, a modified Hubert cube.

Since Xo is a locally compact abelian topological group, Fourier
analysis upon it becomes standard procedure. We are able to extend
some standard one-variable theorems (see [1]), relating Fourier trans-
forms and the operation of differentiation, to the situation here, which
seems new. In a summary at the end we discuss the significance of
these results as related to the work in functional analysis of Frechet,
Gateaux, Levy, Hille, Zorn, Cameron and Martin, and Friedrichs.

2. Fourier integrals on Xo. Let

X0={xel2 I —hn<Cxn<kn for integer ri>l}

where the fixed sequence of extended real hny 0<7iw<4-°o, has

for some fixed integer iV>0. For simplicity we assume hn= + co for

Received January 13, 1954.
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650 F. H. BROWNELL

l<n<N if Λ7">1. Define -f' addition as l2 vector addition modulo the
subgroup 7o= {x e lz \ xn=0 for n<N, xni2hn=mni an integer, for n>N+1}.
Define P(x) for xelz as the unique element of Xo in the coset x 4- Io

thus clearly # 4- 'y=P(x + y)e Xo for α and yeX0. After defining the
inverse — '#=P( — #) for xeX0, we see that Xo becomes a group under
4-' and —'. However, the operation + ' is not continuous under the
metric \\x—y\\ defined by the Z2 norm

Thus, following Gelfand [5], we introduce the modified norm |||a?|||==
\\P(x)\\ for xel2. That + ' and —' are continuous under the resulting

metric |||a? —2/||| is clear from the easily verified statements

-y\\[ and | | | (-^)-(- ' a ? ) | |μ | | | t f - a ? | | | .

Thus Xo is a topological group under the metric topology of the modi-
fied norm. Note that P(x) is continuous from lλ onto Xo under the ap-
propriate lz and modified norm metrics, since

\lP(χ)-P(vnH\P(χ-y)\\^\\χ-y\\.

We can easily verify that the as yet unused condition

is necessary and sufficient for Xo to be locally compact under either
the l2 norm or modified norm metric topologies. Thus Xo, under the
latter topology, possesses a regular Haar measure φ defined over &,
the Borel subsets of Xo and φ is unique up to constant factors. Hence
φ is non-trivial and invariant under 4-', though, as we remarked above,
this φ could be constructed for 4- alone without making Xo into a
group, (see [2]). To fix φ, let

V^{xeX, I \xn\<i for rc<iV}

thus Vl9 being non-void and open with compact closure, must satisfy
0<jp(VΊ)<C+ °° We specify φ uniquely by requiring φ(V1)==l.

In order to get Fourier analysis on Xo following Godement [6] or
Weil [11], we need to determine the continuous characters on XQ, that
is all continuous complex valued functions ψ(x) on xeX0 with \ψ(x)\=l
and ψ{x-\-'y)=Φ{x)ψ{y). Here let

eZ2 I 2 n = 7 Γ ^ with pn an integer for
K
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oo

Note that since Σ ^ 2 < C+°° and zel2 make hn-+0 and «w->0 asw->oo,

each £eZ 0 must have #„=() and thus z n=0 for sufficiently large n.
Let

denote the lL inner product.

LEMMA 1. The group of characters Xo is isomorphic with Zo, each
character having the form ψ{x)=eiiz^ with zeZ0.

Proof. Let exp [iΦ(x)]=ψ(P(x)) for any ψ e Xo, with 0(0) = 0 and Φ{x)
defined uniquely by requiring continuity. Thus Φ(x) is a continuous linear
functional over l21 so Φ(x) = (x, z) = (z, x) for some unique zel2. For
hn^Λ- oo, taking Xj=2hn if j=n and ^ = 0 if not, we see that P(#)=0.
Hence 2πpn=Φ(x)=(z, x) makes zn=πpnlhn, sozeZ0.

Let Z0Ql2 be topologized relatively from l2. Clearly this topology
is equivalent to the product of the euclidean EN topology with the
discrete topology on the part ri^>N, where zn=πpnjhn and hn->0. ZQ so
topologized forms a locally compact abelian topological group under l2

vector addition, η denoting its Haar measure. Clearly this topology on
ZQ is equivalent to the Hausdorff space topology with neighborhoods as
finite intersections of sets of the form

^NPyF(z0)={zeZ01 \(z—z0, x)\<ip for xeF} ,

£>>0 and F a norm bounded subset of XQ. Equivalently on Xo this
topology is given by

Nt,F(Ψo)={ψeXQ I \Φ(x)-Φ»(x)\<* for xeF} .

Now (X, & , ψ) is a ^-finite measure space, so L^Xo, &, ψ) is the

conjugate space of Li(X0, ^ , <p) Thus the argument of Godement,

[6, p. 87], is valid and Zo is homeomorphic to Xo££«,(Xo, ^ > ψ) under

the weak topology defined by LI(XQ, &f <p).

We may normalize rj uniquely by requiring the Fourier inversion

formula (2.2), which must hold as stated in Lemmas 2 and 3 following.

The formulae are:

(2.1) () \
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(2.2) /(*)

Here we note that any feLi(X0, &9 ψ) has its Fourier transform F(z)
defined and continuous on Zo by (2.1); and if such FeLλ(ZQi &r, rj),
&1 being the Borel subsets of ZQ9 then the right side of (2.2) also
exists and is continuous. For Lemmas 2 and 3 let ~/S be the class of
all convolutions

\μ*v\(x) = I u(x — ry)v{y)dψ(y)

of continuous functions u(x) and v(x) vanishing outside compact subsets
of XQ. (For proof of these following well-known lemmas see [6, p. 90-
94]. The density of Λ? in Lemma 2 follows from the regularity of φ.)

LEMMA 2. ^-/S is dense in Lι{XQy &, φ) and L2(XQ, &, φ), and
each f e Λ? has its Fourier transform FeLλ(ZQ, &',rj) with (2.2)
holding at each xe Xo for the inverse transformation.

LEMMA 3. If f' e L2(X0, &, ψ), then there exists a unique Plancherel
transform FeLz(Z0, &', η) such that every sequence {/fc}C /̂/̂  with the
Lt norm \f — /Λ||a->0 also has \F—Ffc||2->0. Moreover, every sequence
{/JC^/f with ||F-^||2->0 also has | |/-/J2->0. This Plancherel
transformation takes L2(X0, &, φ) onto L2(Z0, &', rj) as a Hilbert space
isomorphism,

(2.3) f f(x)φ)dφ(x) = \ F{zJG(z)dyj(z) , f,geL2.

In order to determine η explicitly, let S be the set of all integer
valued sequences ζ={pn} over n^>N such that pn=0 for large enough
n for each sequence; thus S is countable. Let z=(ω; ζ) be defined
for ωeEN, ζeS by za=ωn for n<N and za=πpnlhn for n>N. Letting
XA(Z) be the characteristic function of any A e ^ ' , with μN Lebesgue
measure on EN,

(2.4) V(A) =(1V Σ jt XA(<* 0 d ^ w M I Σ

follows, by applying Lemma 3 to the Gaussian

to determine the normalization.

3* Fourier transforms and XQ differentiation Here let Xn denote
Xo with the nth coordinate omitted, φn the corresponding measure over
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the cr-algebra έxϊ n of Borel subsets of Xn, and ^ the Borel σ-algebra
of Eλ if n<N, of (-kn, hn) if rΓ>N. Then [7, p. 222], we see that
/ / y ^ ^ x ^ as the uncompleted product; also, using the uniqueness
of Haar measure, φ=φnxμi or =φnx(μiβhn) according as n<Nor >iV.
Now consider f e Lι(X0, &, ψ), let x denote x with the nth coordinate
omitted, and define Kn(t, xn) = l if —hn<Ct<Lxn, K{t, xn)=0 if not. Clear-
ly Kn(t, xn)f(x19 , xn-i, t, xn+Λy ) is measurable ( , ^ w x ^ x ^
= (.. '̂ x ^ ) over (5, #n, ί) e Xn xEx xE1 if ^<iV, or Xn x (-hn, hn~\
x( — hn, hn] if n>iV. Thus if we define

\/(a?)da?n=l Kn(t, xn)f(x, t)dt,

then the Fubini theorem makes \f(x)dxneL1(XnxIf^
f,φ) for any

finite xn interval /.
For the following theorems we will say that f(x) is xn absolutely

continuous if for all xeXn — A, where A is some set e &n having
φn(A) = 0, we have f(P(x,xn)) absolutely continuous as a function of xn

over every finite interval of Eλ.

THEOREM 4. // feLι(X0, &, φ), if f is xn absolutely continuous,
and if f'n, the resulting xn first partial, is e L^XQ, &, ψ) also, then
the (2.1) defined Fourier transforms Fn and F of f'n and f have Fn(z) =

over zeZ0.

Proof. Consider first hn<C + °° > so we know almost everywhere (φ)
on XQ that

Now

\ elZntdt=O for

so

But

~hn

ΐ h n • (ΐs )

elZnS\\ f'n(x,t)dt\ds
J~h U - A '

-Λ»
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by integrating by parts, and

f H fn(x, t)dt=f(P(x, hn))-f(P(x, -Λn))=0 .
ιι"il

Thus F(z)^-(llizn)Fn(z) for zΛ=M). If zn=0, then

Jin

f'n(x, t)dt=

makes Fn(z)=0, so Fn(z) = — iznF(z) for all zeZ0.
Secondly if Λw=-foo, we know

almost everywhere (φn) over xeXn. Thus f(x,xn)-+C(x) as #„-> —α>,
so f{x,Xn)eL^(E^ in xn almost everywhere (φn) requires C(£)=0,

f(x)s=\fή(x)dxnf and similarly \ f'n(x, t)dt=Q almost everywhere

(Φn). Thus

J'n(x, t)dήds

V - f'n(x,t)dt\ - Λ e^sf'n(χ, s)ds

F ^ ^ - - i - F M ( 2 ) for zn

If sn=0, then Γ fΊ/(x,t)dt=0 makes Fw(ί2;) = 0, so Fw(«)=-ώj?7^) for
J - o o

all 2620.

For the next lemma we need to remark that T(x; y) = (x; y—rx) is
a homeomorphism of X o x^ o into itself, and hence leaves unchanged
the Borel class ^ ' x ^ , [7, p. 257]. Thus Ae & has Γ ( I o x A ) e ^
x .<?>', so clearly any /(a:) measurable ( ^ ) has f(x+'y) measurable
( ^ x ^ ) . Let ne e Z2 be defined by nek=δntk9 and we then easily see, using

{(x y)e XoxXQ\yk=0 for k^n} e & x &,

that such / also have /(#+'£we) measurable (,^ x ^j) over a e l o and
t real.

LEMMA 5. // f eLr(XQ, &, ^) wi£A reαZ r > l , if / is xn absolutely
continuous, and if the resulting fr

neLr{XQlf &, ^), ί^e^ defining
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nMx)
h

over real h^O yields

Proof. Since xJrfhne=^P(xΛ-hne)J we know that

't »*) ~ f"n(x
h Jo

almost everywhere (φn) over xeXn. With 1/r'= 1 —1/r if r > l , 1/r'
replaced by 0 if r = l. The Schwarz-Holder inequality thus yields

; (^+'«n«) - / ; w \r
l/r

Then by the Fubini theorem

. 1 Γ
Jo

< sup \\gt-gt
\t{<)lι\

where g(x)^f'n{x)eLr and ί/ t(^)=^(^+/ίnβ). The functions ẑ (̂ ), con-
tinuous on XQ under the modified norm topology and vanishing outside
compact subsets of XQ, are Lr norm dense in Lr(XQ, &, φ) by the
regularity of φ; and such it have \\ut—u\\r->0 as t->0 by their uniform
continuity. Also \\gt — ut\\r=\\g — u\\r by φ invariance, so

llnΛ-/ή||r<I2||0-%||r4- sup | |^~w| r
]ί|<l/M

and hence ||n/Λ—/»||r->0 as Λ->0 .

We also have the following converse for r==2.

LEMMA 6. // / and geL2(X0, &, φ) and if lim||n/Λ-flr||2=0, then

f(x)=f(x) almost everywhere (φ) for some f(x) measurable {&) which

is xn absolutely continuous and has its derivative fή{x)=g(x) almost
everywhere (φ).

Proof.

by the Fubini theorem, so using a Riesz-Fischer subsequence &=4
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we have

lim
— llγi

lim \

for almost (φn) all x e Xn. This reduces our statement to the one real
variable analogue, where the result is well known (see for example
Bochner, [1, p. 131], if λn=-l-oo). Since we may take

f(x) = \ g(x, t)dt+f(x, 0)
•o

almost everywhere (φn) with

1 Γa ί fs

f(x,0) =—\ ]f(x9 s)—\ #(#, t)d
a Jo ( Jo

for 0<α<Λw, clearly /(α?) may be taken measurable (,

The L2 counterpart of Theorem 4 now follows.

THEOREM 7. If f eL?(XOy &, φ)9 if f is xn absolutely continuous,
and if the resulting fr

n e L2(X0, £/?, φ) too, then the Plancherel trans-
forms F and Fn of f and f'7i satisfy Fn(z)= —iznF{z) almost everywhere

Proof Using the Fubini theorem in (2.1) and the translation in-
variance of φ, we have

nFM(e
h

for the transform of nfh in case / e LλC[L^ and hence for all / e L2 by
the Plancherel Lemma 3 wτith LXΓ[L2 dense in L2. Since

l i m — ( e - ^ - l H - i S n
h

and since \\nFh—i^||2->0 as h~>0 by Lemma 5 and (2.3), the Riesz-
Fischer theorem yields Fn(z)=—iznF(z) as desired.

It is easy to get an extended converse of Theorem 7.

THEOREM 8. Iff and geL2(XQ, &, φ) and have transforms F and

G satisfying G(z) = (—izn)
kF(z) for integer k^>0, then f(x) = f(x) almost

everywhere (ψ) for some f(x) measurable (&) such that f(x) possesses

everywhere up to (k—l)st order xn partials which are eL2(X0, &, φ),
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the (k — l)st f%ή ?.,n(χ) is χ

n absolutely continuous, and

f (fc) (rΛ Π(Ά

almost everywhere (φ).

Proof. From (-izn)
kF(z) and F(z)eL2(Z0, έ%\ rj) clearly (~-izn)

pF(z)
eL2 also for p=0, 1, , k — 1, and by taking inverse Plancherel trans-

forms we get pgeL2(X0, &, φ) transforming into (—izn)
pF(z). As we

have seen before the difference quotient pgh of pg will have the trans-
form

\_(p ~iznh __Λ\(__ή7

Since |{ } |<1 and { }->l, this transform -*(-izn)
p+ιF(z) in I 2 norm

as Λ->0. Hence | | ^ —2J+i^||2-
>0 as A->0 by the Plancherel lemma, and

so Lemma 6 with og=f and fc(/=# gives the result.

The following converse of Theorem 8 is considerably deeper than
Theorem 7. We remark that if / and geL^Xoy &, φ), then f*geLλ

also and has the Fourier transform F(z)G(z), where

exists almost everywhere (φ). More important for us, if / and
geL2(X0, &, φ), then f*g is the inverse Fourier transform of
F(z)G(z) e L^ZQ, &, rj), defined pointwise by (2.2), and hence also the
inverse Plancherel transform if FG e L2. This follows by noting

that eKz^F(z) is the transform of f{x—'y) as a function of y and by
using (2.3).

THEOREM 9. // feL2(X0, <3? y φ) and possesses everywhere up to
(k — l)st order xn partials, if fQnJ.?n{χ) ̂ s χn absolutely continuous, and if
fc£..,n(

χ) e L2(X0, &, φ), then also fc£..Jx)eL2(X0,^,φ)for p=l, 2,
• , k, and such /$£?..,n have the transforms {—izn)

pF{z).

Proof. First we construct rather arbitrarily a smoothing transform

G(z) = exp ( - 1 Σ «>) - I Tnzl) P(ζ)

for z=(ω; ζ) of ωeEN and ζeS using the notation of (2.4), where
rn=0 if n<N and γn=l if n^>N. S being countable we may set
S={*C} and define p(ζ) on S by setting p(^)=e-k. We see clearly from
(2.4) for each integer p>0 that (-izn)

pG(z)eLιΠL2Γ\Lo. for the measure
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space (ZQf &', η), since

is bounded and 0{e~\Zn\) as |zw|->co. Also G(z)>0 everywhere on ZQf

these two conditions being all we really need. Take g as the unique
element of L2(XQ, &, φ) transforming into G, and by Theorem 8 we
may take g(x) to possess all order derivatives in xn with g%l.tneL2

transforming into (—izn)
pG(z).

Now for hn<C+oo and 0<p<&, by integrating by parts we see that

ί gi%A* - ry)f(v) dyn = ! g(χ- f

existent finite for almost (φn) all yeXn for each x e Xo, using the
periodicity of g(P(x — y)) and f(P(y)) at the endpoints yn=±hn. If
^=4-oo we still get the same result by a slightly different argument.
Here we know fCnX.,n{x) eL2(— oo, oo) over xn for almost (φn) all xeXn,
so by the Schwarz inequality follows

as |#w|->oo for such x. Thus by further integration

as |#w|->oo for such xf 0<Lp<Jc — l. Now clearly

g(x)=e~hXn2

gi(x) ,

so

as \xn\—>oo. These two estimates are enough to make the endpoint
terms vanish in integration by parts, so

- fy)f(y) dyn=

Thus with K=l or Ij2hn we have

existent finite in the order written for 0<p<k and all x e Zo.
Now for p=k we are given /^?..,»eL2, so the Schwarz inequality

shows g(x — fy)fCnr.^n(y) t° be eL l β Thus by the Fubini theorem
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at all xeX0. By our remarks preceding this theorem, since (-izn)
kG(z)

and G{Z)BLOO make (~izn)
kG{z)F(z) and G{z)Fk(z) e L2, for the Plancherel

transforms we have [(-izn)
kG(z)]F(z) = G(z)F*(z) . Thus since G(z)>0

everywhere, Fk(z) = (-izn)
kF(z) with FkeL2 the transform of / ^ . , n e L 2 .

Thus Theorem 8 gives the result.

THEOREM 10. // / αmZ geL2(X0, &, ψ) and if their transforms F
and G satisfy

then there exists a sequence of functions nf{x) measurable {&) such that
„/(#)=/(#) almost everywhere (φ), nf(%) is xn absolutely continuous as
well as its everywhere existent first xn derivative nf'n(%)9 nf'n and

M

nfnn€L2(Xc, &, φ), and Σ nf'ήn converges in L2 norm to g as ikf~>oo.

Proof Let gneL2(XQ, &y φ) be defined uniquely by requiring
Gn(z)=-zlF{z), since \zlF(z)\<\G(z)\ makes z*F(z)eL2(Z0, &',yj). Now

X Zn is actually a finite sum for each z 6 Zo, and also

M

11 = 1

M

so by dominated convergence 2 Gn(z)-+G(z) in L2 norm as Λf->oo, and
M

hence also X #w—•# in Z2 norm. Finally Theorem 8 for each n gives

the desired nf(x)=f(x) almost everywhere (φ), nf'n and w/;'weL2, and
nfnn{χ)^gn{

χ) almost everywhere (φ) as desired.

THEOREM 11. Let f and geL2(X0, &, ψ) and let a sequence of
functions nf{x) measurable (&) satisfy the conditions: nf(x)=f(x)
almost everywhere (ψ) nf everywhere possesses a first xn partial nf'n

M

ivhich is xn absolutely continuous; n/^eZ 2(X 0, ^ , φ); and X nf'ήn-*9

in L2(X09 &, φ) norm as AT—>oo. Then the transforms F and G satisfy

G(Z)=-(±ZI)F(Z)

almost everywhere {η).

Proof, By Theorem 9 we also have w/^eL 2 and nf'ήn has the
M

transform Gn(z)=—z2

nF(z), From Σ nf'ήn-+9 in L, we thus know
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M

Σ Gn->G in L2 norm as M->oo, where
1

Since J£s£ is actually a finite sum at each zeZ0, Riesz-Fischer sub-

sequences yield

as desired.

4* Significance of results. The main results of this paper are
Theorems 7 through 11 relating Fourier transforms over Xo, a modi-
fication of the Hubert cube, to the operations of differentiation in an
L3 sense. It is clear that Theorems 10 and 11 allow one to use Fourier
transforms to define a generalized Laplace differential operator for
scalar functions on Xo. This definition is in a global L% sense, which
gives a pointwise definition only by using Riesz-Fischer subsequences.
The ideas of pointwise infinite dimensional derivatives seem to go back
to Frechet and Gateaux. Hille [8, pp. 71-90], Zorn [12], and others
have developed a notion of analyticity from similar complex differenti-
ability on complex Banach spaces.

To be precise, for real l2 consider a real valued function f(x) over
xeL and define the gradient Vf{x)=y at each x such that there exists
y e l% having over u e l2

(4.1) lim||u||-1|/(a? + w)-/(a?)-(M, 2/) 1=0 ,

such y being clearly unique. This is a Frechet type definition. If we
let {wn} be a complete orthonormal system in l2, we have where Vf{x)
exists thatexists that

(4.2)
dλ

This equation could also serve as a Gateaux type definition of Vf{x),
possibly depending on {wn}, wherever the squares of the right hand
terms are summable. For the divergence, if T(x)elz for each xeU,
we may formulae the Gateaux type definition

(4.3) (F, T(x)) = ± (wn9 Vφn{x)) for ψn(x) = (T(x), wn) ,
W = l

which is independent of the choice of base {wn} if
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(4.4) ΣIIWaOIK+«> and
l

0= lim |N|
HwIM)

Finally we can define the Laplacian P2f(x) = (F, ¥/{%)), so that

shows this definition to agree pointwise with the expression in Theorems

10 and 11, ± f'Ux).
n = l

Levy has also constructed a vector analysis for Hubert space,
though he is led to define

as the Laplacian, [5, p. 248]. He differs more seriously from our ap-
proach by using a development of mean values of functions instead of
integration with respect to a non-trivial, translation invariant measure.
Thus he has no need to reduce l2 to Xc, though naturally his theory
of mean values must pay for this by certain anomalous features.
Cameron and Martin have also done a great deal of functional analysis
in terms of Wiener measure on the continuous functions ([3] and
others), but since this is not translation invariant, it has little contact
with our work.

It seems that our results relating Fourier transforms and different-
iation over real Hubert space may be useful in a mathematical formu-
lation of quantum radiation theory, just as finite dimensional differential
operators are very conveniently defined self-adjointly in terms of Fourier
transforms. Friedrichs has discussed such problems and is led to still
a different method of integration over Hubert space, [4, p. 60]. How-
ever, the set functions induced by his method are not ^-additive and
apparently not translation invariant either.
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REMARK ON THE AVERAGES OF REAL FUNCTIONS

R. E. CHAMBERLIN

1. Introduction. Let f(x) be a continuous function defined on the
closed interval [α, 6], It is known that if for each x in the open
interval (α, b) there is a positive number t such that

[x-t, a? + ί]d(α, b) and f(χ)^l^

then /(a?) is linear (see [2, p. 253]). The same method of proof shows
that if there is such a t for each xe(a, b) with

then f(x) is linear. Suppose f(x) is such that for each xe (α, b) there
exists a £ with [x — t, x-hf\cz(a, b) and

( i )

Is /(a;) necessarily linear ? On page 231 of [1] it is shown that if (1)
holds for each x and all t such that [x — t, x + fjczfat b) then f{x) is
linear. The question arises whether or not one can relax the require-
ment that (1) holds for all t in the above intervals and still conclude
that f(x) is linear.

In this note a continuously differentiable non-linear function f(x)
is given which satisfies (1) for every x e (α, b) and an infinity of £'s.
The values of t depend on x but they may be chosen arbitrarily
small for each x. Conditions which together with (1) make f(x)
linear are given and the note is concluded with some remarks on the
approximation to a function by its averages

DEFINITION. A continuous function f(x) on [α, b] will be said to
have property (1) if for each x e (α, b) there are arbitrarily small
values of t for which (1) is true.

2. An example. We give an example of a continuously differentia-
ble function having property (1) which is not linear. Let

Received January 14, 1954.
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y c o s i φ n π x

It is clear that f(x) is not linear and is continuously differentiate.
To show that f(x) has property (1) we begin with the following

LEMMA. For every x,

lim|cosl02 M πx\>10~3.

Since the functions cos 1027V# (n^>l) all have 1 as a period it is
clear we need only consider x e [0, 1] in the proof of this lemma.
Since there is no loss in generality we assume hereafter that we are
dealing with the interval [0, 1] and x is in this interval.

Let the decimal expansion of x be .a^---. Then

102wa?=α1αi a.λnΛ- ,a2n+1 αaw+2 and | cos 102n πx | = |cos(.α2n+1 G^+Σ

Suppose i cos 102Λ πx \ <C 10~3. Set .α2w+itt2w+2 = .54 rκ where
Then

2
10" 3> I cos(.α2n+1 a2n+2-~)π | = | sin rnπ | = sin | rnπ | > ' rnπ \,

π

that is — - ^ I rn \. Hence there is an integer b with 0<6<5 such

that |rre|=.OOO6—. Therefore,

! cos

Thus for every x and every n0 there are integers w>ft0 such that
[cos 102??7τ^|>10"3. This proves the lemma.

For the function (2) we have

(3) g(x, «)=-![/(

= Σ - - -1 [cos 102"τr(̂  + ί) + cos 102Λτr(a; - 0]

From elementary trigonometric identities we now obtain

-•- cos i o 2 r a r a Γcos io 2 w rί - s m

1
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We investigate in detail the last expression for g(x, t) in (3).

Given x, let lim |cos 102nπx\=d . From the lemma it is clear there

are an infinity of integers k with the following properties :

(a) |cosl02fcτr#|>.99cZ.

(b) ! cos Wnπx |<1.01 d for n>\kβ~\

(c) &>10.

For these values of k we show that the sign of g(x, t) in (3) is deter-
mined by the sign of the λ>th term in its series expansion if t is
chosen properly. We assume hereafter that k is subject to conditions
(a), (b) and (<ή.

For the given x and subject to conditions (a), (b) and (c) pick k
large enough so that for ί=2 10"2fc, [x-t, α + £]ς:[θ, 1]. Then

g(χ, 10--)= Σ C°S 102nπX [cos

cos Wnπx

where | θn | < 2. Now

(5)

3 102fc ίΛ

1Π /lfe/3]-i 1 \ /1Π\ / fc-1 1 \

< l u io- 2 f c ( Σ io2Cw-fc)Vio3d+(lu)io-2fc( Σ -lo^-^ii.oid
3 \ n~ι n2 / \ 3 / \w-[Jt/3] n /

where we have used the lemma and property (b) of k to get the last
inequality.

For the first sum in the last inequality of (5) we have

—10"2

To get an estimate on the second part of the last inequality of (5),
n

recall that if s w = Σ Λ i
i = l

then

Σ< Sn\Pn Γn+l) ^r-lPr S-mrm+1
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Letting <xn=102(-n-k\ βn=lln2 we get

k-l 1Λ2(»-*) fc-1 /I 1 Π - 2 w \ / 1 1

(<J Λ 2 J — ^ Λ 2 J iw Λ T^To-2 A 2 "T^T^

at least for β>10. Using the estimates obtained in (6) and (7) we
get

O n-1, n 1U l U L o o 1U fC

<—d -y—^ for

Furthermore

(9)

<1.01d

n^tl 1(PW LC

102Cfc+1) 1 -

From (8) and (9) we see that the A>th term of the series for
g{x, 10~2*) is greater in absolute value than the sum of the remaining
terms. Hence the signs of g(x, 10"2*) and -10"2%-2cos Wπx are the
same. For ί = 2 10"2fc the fc-th term of the series for g(x, 2 10"2*) is
10"2fcfe"2 cos 102kπx and in the same manner as above one can show that
the signs of g(x, 2 10~2*) and the A>th term are the same. Since
10-2fcAr2 cos 102fc7r# and — 10-2fcAr2cos 102fcπ^ are of opposite signs, g(x, t)
vanishes for some t e (10"2fc,2 10"2fc). But for g(x, t) to vanish means
that f(x) satisfies (1). Since for each x there are an infinity of fc's
satisfying (a), (b) and (c), there are (for each x) arbitrarily small
values of t for which the f(x) of (2) satisfies (1). Hence this f(x)
has the property (1).

3. Sufficient conditions for a function to be linear*

LEMMA 1. If f{x) is continuously differentiate and /;/(^o)^vO, then
g(x09 t) is of one sign for some open interval (0, t0) (£0>0).

Under the stated conditions we may represent f(x) by

(10) /(«) =

Using (10) and the definition of g(x, t) gives
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(ii) g i X o , o ^
2

2
^ \xo+t\f(χo)+f'(χo)(u-xo)

Thus if /"(a?0)=M), it is clear g(x0, t) is one-signed for sufficiently small
values of t.

THEOREM 1. If f(x) has property (1) and f'(x) is absolutely con-
tinuous then f(x) is linear.

For fn(x) exists almost everywhere and by Lemma 1 it is zero
everywhere it exists because f(x) has property (1). Hence f'{x) is a
constant and f(x) is linear.

THEOREM 2. If f'{x) is continuous, monotone increasing and not
constant in any sufficiently small symmetric interval about x0 then g{xϋJ t)
is one-signed in an interval (0, ta).

One has

"°~+tf'(u)du

and for any xe(x0—t, xo + t) we get

(12) f

where at least one of the inequalities is strict by the hypothesis of
Theorem 2. From (12) one obtains

+ t) +• (̂ o -X±t)f(x0"J

It is obvious from (13) that g(x0, t) is positive. Clearly this result
with the inequality reversed holds if f'{x) is monotone decreasing.

We do not know if property (1) and bounded variation of f'{x)
imply linearity for f(x). In view of the two preceding theorems it
seems quite likely.

4. Remarks on the approximation of a function by its averages.

Suppose f(x) is a continuous function defined on the interval
(α — δ, b + δ) (<Γ>0). We make some remarks on the approximation to
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fix) by its averages

Γ V (0<t<δ), xε[υ, 6].

If /(#) is linear then f(x, £)=/(#). If /(#) is not linear in any
subinterval then there is an everywhere dense subset of points x at
which the approximating functions are all either above or below f(x).
Otherwise the conditions of the theorem of [2, p. 253] are met and
f{x) would be linear.

One might ask if there are necessarily points at which fix, t) ap-
proaches fix) monotonely. From the results of § 2 above this can be
seen to be false. For f>0, fix, t) is continuously differentiate func-
tion of t and

\ ψ m d u U \ g { x , t).
From this it is clear the function of § 2 gives an example of a con-
tinuously differentiable function which at no point is approximated
monotonely by its averages.
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ON A PROBLEM IN THE THEORY OF

MECHANICAL QUADRATURES

PHILIP DAVIS

1. Introduction. In the present note we study a scheme of
mechanical quadratures of the form

- l
f(x)dx~ Σ ankf{λnk) = Qn(f),

l J O

as applied to certain distinguished classes of analytic functions on
[ — 1, -hi]. The question of the convergence of Qn{f) to the integral
in (1) has been solved completely by Pόlya [4] when / is selected from
the class of continuous functions. There seems to be less discussion
of the problem when / is selected from the class of analytic functions
on [ — 1, +1] or from certain of its subclasses.

Let B designate a region in the complex z=x + ίy plane which we
shall assume contains [ — 1, -hi] in its interior. By U{B) we designate
the class of functions which are analytic and single valued in B and
are such that

(2)

With

(3)

as an inner product, and | | / | | 2 = ( / , /) as a norm, the space U(B) be-
comes a well-known and very useful Hubert space of functions, pos-
sessing a reproducing kernel KB(z, w) which is generally referred to as
the Bergman kernel for B [1].

Let E be a bounded linear functional over U{B) its norm (over
the conjugate space of all linear functionals) may be obtained in the
following way. Let φn(z) (w=0, 1, •) be a complete orthonormal sys-
tem for L\B). Then it may be shown that

( 4 )

This may be expressed in the alternate but equivalent form,

(5) \\E\\*=E,EJtB(z,w),
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670 PHILIP DAVIS

where the subscripts on the E mean that the functional operation is
to be carried out on the variable indicated. We have, then, for all
feU{B)y

(6) \E{f)\<\\E\\\\f\\,

with the equality sign being attained for some / e L\B). If now, the
abscissas λnΊc lie in the interior of B, and the segment [—1, +1] lies in
the interior of B, then the linear functional

is bounded (cf. [2]) over D(B), so that we have, for all / e L\B),

(8) \En{f)\<\\En\\

2 Uniform convergence* We shall say that the quadrature scheme
(1) converges uniformly in L\B) if, having been given an ε>0, there
is an nQ=nύ(ε) such that, for all / e U(B) and ri>n0, we have

( 9 )

THEOREM 1. A necessary and sufficient condition that the quad-
rature scheme (1) converges uniformly in U{B) is that

(10) lim \\En\\*

Proof Suppose that (10) holds. Then given an ε>0 we can find
an ô(e) such that ||2ίn||<Ie for all n>no(ε). Hence, by (6), the inequality
(9) must hold. Conversely, suppose that (9) holds. For each n, it is
possible to find a nontrivial function fn(z)eL2(B) such that

(11) \En(fn)\ = \\En\\ HΛH .

By (9), given an ε>0 we may find an n=nL(ε) such that for all n
>nQ(ε) and for all / e D(B) we have \En(f)\< e | |/ | | . Hence, in parti-
cular, for the fn of (11),

(12) II^IMI/n|| = l^n(Λ)i<ε| |ΛI|.

Therefore (10) must follow.

We note that, in view of (4), the condition (10) can, in principle,
be converted into a necessary and sufficient condition on the weights
ank and abscissas λn]c.
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The following special case is of considerable interest. Let iζ, £ >
1, designate an ellipse with foci at ( — 1, 0) and (1,0) and with semi-
major and semiminor axes a and b respectively, and where p is given
by

(13) P=(a + bf, a=(p+ΐ)l2p»\ δ=φ-l)/2^\

Observe that as ^-+1, % collapses to [—1, -f 1], \ίVn{z) (n=0, 1, • •)
designates the Tschebysheίf polynomials of the second kind defined by

(14) ί7w(z)=(l-z2)-1/2 sin ((n+1) arc cos z) ,

then it is well known that the system of polynomials

(15) Ψn(z)=2J9ϊ±A(pn+i-.p-n-ί)-^Un(z) (rc=0, 1, 2, ... .)
r π

will be complete and orthonormal over L2(£ζ). Thus we have:

THEOREM 2. A necessary and sufficient condition in order that the
quadrature scheme (1) converge uniformly in L2(S^) is that

(16) limit A Σ(fc+1)

3. Interpolatory quadrature* An important class of quadrature
schemes is formed by those which are of interpolatory type. For such
quadratures we have

(17)

whenever / is a polynomial of degree not larger than n. If the
scheme is of interpolatory type then (16) becomes

(18)

In view of the inequalities

(19) p-ι.p-*<(pk+i-p-

condition (18) is equivalent to

(20) Km J

If we now define
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f 0 (k odd) ,
(21) ok=\ 2

I (k even) ,

then (20) becomes

(22) lim

The following sufficient condition for the uniform convergence in

D( %) of an interpolatory quadrature scheme can now be obtained.

Set

(23) Mn^% \anj\,

and observe that for real absissas λ in [ — 1, 4-1] we have

(24) \Uk{λ)\<k+l .

Then, using (21) and (23), for fixed p^>l we get

(25) f

< 4 Σ ((k+l)pk)-' + 4Mn Σ (A:+1)/O-J: + MB

3 Σ

where Cx and C2 are two positive constants which may depend upon p
but are independent of n. Thus, we have the following result.

THEOREM 3. Let

(26) lim Mnn
3l*p-n'2=0 .

T%e?2 an interpolatory quadrature scheme converges uniformly in L2( c£9)

Pόlya [4, p. 285] has remarked that if

(27) lim (Mnγin=l
W-K5O

then an interpolatory quadrature scheme converges for all functions
which are analytic in the closed basic interval. Under hypothesis (27),
we have

ilί n=(l + ew)Λ, εn-0,

so that (26) holds with all /o>l. Thus, under Pόlya's hypothesis, we
see that the convergence is also uniform in every L'(g^), /cΓ>l.
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4. Newton-Cotes quadrature. We turn now to a specific quad-
rature scheme on [—1, +1], namely, the Newton-Cotes scheme. In
this scheme, we have

(28) Q.(/)=<W(
(w=l, 2, •),

where the Cotes numbers ank have been determined so that

holds for an arbitrary polynomial of degree <jn. We have now the
following estimate due to J. Ouspensky [3] (Ouspensky's basic interval
is [0, 1]):

(29) β β - -
n k n — k

where 7n>fc-*0 as 92->oo uniformly for fc=l, 2, , n— 1, while

2

(30) α n 0 = : α n w = (l + e n ) , en->0 .
92 l o g 92

Thus,

(31) Aί.- Σ M
^ log 92

where Λve have wri t ten ηnk<Cdn (k = l, 2, , rc —1), dn-+0. Hence,

A(32) Mn<^^+
^ ( l θ g 92)̂  92 l o g 72

Condition (26) now holds with pιl'zy>2. We have therefore arrived at
the following result:

THEOREM 4. The Newton-Cotes quadrature scheme converges uniform-
ly in L2( %) whenever

Investigation of the convergence of the Newton-Cotes quadrature
scheme has an interesting history which is worth retelling here. T.
Stieltjes in 1884 first proved the convergence of the Gauss mechanical
quadrature for the class of Riemann integrable functions, and in a let-
ter to Hermite raised the question of the convergence of the Newton-
Cotes scheme. In 1925 J. Ouspensky [3] arrived at the asymptotic
result (29), and from the growth of Cotes numbers concluded only
that the Newton-Cotes scheme is devoid of practical value. In 1933
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G. Pόlya [4] showed that this scheme is not valid for all continuous
functions, and, indeed, is not valid for the class of analytic functions.
Pόlya's counterexample, referred to the interval [ —1, +1] is

(33) Λt0)=-±a

for which the Newton-Cotes scheme diverges. The functions f(w) is
regular in the strip

(34) \^(w)\<~2Λoga

and has a natural boundary along the sides of the strip. The widest
such strip must be less than

The function (33) cannot, therefore, be continued analytically to 8^=4,
for which the semiminor axis is δ=.7500. Theorem 4, therefore, re-
habilitates the Newton-Cotes quadrature scheme for functions which
are regular over a sufficiently large portion of the complex plane.
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ON CLOSED DIFFERENTIABLE CURVES OF ORDER
n IN n-SPACE

DOUGLAS DERRY

1. Introduction* Let Cn be a closed curve in real protective n-
space Sn whose coordinates xt (l^i<Ln+l) are given in the parametric
form

xt=xt(s), l<i<Ln + 1 , q<L8<jq 4-1,

where xfo) are real continuous periodic functions of period 1, and q
is any real number. The point with coordinates xt(έ) (l<I£<Iw 4-1) will
be designated by its defining number s.

The curve Cn is to satisfy the following order condition.

No hyper plane of Sn contains more than n points of Cn.

A simple consequence of the above condition is that any kΛ-1
(0<Lk<Ln) distinct curve points s2, s2, , sk+1 span a linear fe-subspace
[su s2, , sfc+1]. (The square-bracket symbol [A, B> •••] will be used
throughout to designate the linear subspace spanned by the sets A,
B, - . )

The curve Cn is to satisfy the following differentiability condition.

For each point s of Cn and for each integer k (0<Lk<Ln — l) a linear

k-subspace (k, s), known as the osculating k-space at s, exists for which

[si> S2> ••• 9 sk+ιi converges to (k, s) as 8l9 s2, •••, sk+1 all approach s in

any way whatsoever.

The curves C3 were considered by A. Kneser [2] who studied pro-
perties which are invariant to certain continuous displacements. One
of his results is that the set of planes of the projective space each of
which contains exactly i; ( i = l or 3) points of a C3 builds a connected
set. In the present paper the methods used by Kneser are adapted
to study the properties of the curves C». All the proofs make use of
those lines I each point of which is included in n distinct (rc —1, s).
Thus the paper is, in a sense, a study of this line system. Among

Received August 25, 1952, and in revised form March 2, 1954.
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the results is a generalization of the foregoing Kneser result to n
dimensions. This in turn lfeads to the result that those hyperplanes
which contain less than n points of Gn are exactly those hyperplanes
which contain at least one line I. This result is related to a result,
implicit in a paper of Scherk [4], which states that the above hyper-
planes are exactly those hyperplanes which contain certain limiting
positions of the lines I.

2. Multiplicities* As all the critical boundary cases involve multi-
ple intersection points, these points will have special importance. In
this section we record the definition for multiplicity and note some
known results which we shall use.

DEFINITION 1. A linear subspace Q is defined to intersect Cn ex-
actly k-fold (0<.k<jn-l) at s if (h-1, s)gQ, (k, s)<£Q, and n-fold if
(n-1, s) = Q.

A point P is defined to be included in (w —1, s) exactly k-fold
(0<Jc<jι-l) if Pe(n-k, s), P$(n-k-l, s), and n-fold if P=(0, s).

The following multiplicity convention will be assumed throughout.
Let slf §2, ••• , Sj be any point system, and let st occur Avtimes ( l<^<j)
in this system. A linear subspace Q is said to contain this system
provided ( i ( - l , S/)5£Q (l<Ii<^). A point P is said to be included in
the system (n — 1, sλ), {n — 1, s2), ••• , (n—1, Sj) provided Pe(n — kίf s*)
( l ^ ' ^ i ) Unless otherwise stated the points of any given set are not
necessarily all distinct.

For reference we state the easily proved:

LEMMA 1. For n^>2, the projection of Cn from one of its curve
points s' is a Cn^. The space (k, s), 8±?s'> 0.<Jc<Ln — 2, projects into
the space (k, s) of the projected Cn-λ and the space (k, s'), l<fe<w —1,
into the space (k — 1, s') of Cn-X.

By use of Lemma 1, it can be proved by induction that Cn satis-
fies the sharpened order condition, that no hyperplane cuts Cn in more
than n curve points where multiple intersections are now counted with
their proper multiplicity. This leads to the fact that the system sλ,
s2, ••• , Sfc+i (0<Ck<Ln — 1) is included in a unique &-space which we de-
signate by Oi, si9 ••• , sk+ι]. We note without proof that Cn satisfies
the sharpened differentiability condition that [sl9 s2, ••• , s7c+1] converges
to (k, s) as slf s2, ••• , sk+1 all approach s.

Use will be made of the duality theorem of Scherk [3] which
states that all the (n — 1, s) build the dual of a Cn. This implies that
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no point P is contained within more than n (n — 1, s) and also that the
intersection of (n — 1, sj, (n — 1, s2), ••• , (n — 1, sk) (l<Jc<jί) approaches
(n — k, s) as slf s2, ••• , sk all approach s in any way whatsoever.

3. Notation. Throughout the paper the symbols lf Zμ will be
tacitly assumed to represent lines each of the points of which is with-
in n distinct (n.— l, s) of a given Cn; L, Lμ will be assumed to represent
the (n — 2)-spaces with the property that every hyperplane through
such a space cuts Cn in n distinct points.

Where a proof involves both Cn and Cw_i the symbol (k, s)n^1 will
be used to designate the osculating &-space of the curve Cn-1.

4. A construction for the lines L

THEOREM 1. //, for r£>2, A and B are any two distinct points of
a given line I, then curve points si9 th of Cn exist so that Ae(n — 1, st)9

Be(n — 1, U) (l<ii<sn) and s i <ί 1 <s 2 < .<^<^<s 1 - f 1 (=sn+1).
Conversely if A and B are points for which Ae (n — 1, st), Be (n —

1* ti)> Si<C^i<s2<ί2< <sΛ<ί?,<s14-l (=8^+1), then AB is a line I.

PROOF. Let P(s) be the intersection lf)(n — l, s). Note that Zί
(n — 1, s); for otherwise I would contain a point of (n — 2, s), which
point would be within (n — 1, s) at least twice contrary to the defini-
tion of I. Therefore P(s) is defined uniquely for all s. As s moves
continuously on Cn in a fixed direction, P(s) moves continuously on I
because (% —1, s) is continuous. Also, P(s) moves continuously in a
fixed direction; for if P(s) were to experience a reversal of direction
at P(s0) then, in every curve neighborhood of sQ, points s£, sR would
exist so that s z <s 0 <s Λ , P{s£) = P(sli). Then, as P(s) is continuous,

P(so)e lim (w-1, sL)f)(n-l, sB)=-(n-2, s0)

and I would contain a point not in n distinct (n — 1, s) contrary to the
hypothesis. Let (n — 1, st) (l<^i<jι; s ^ s ^ ^ ^ S i + 1 (=sw+1)) be the
complete set of (n — 1, s) which contain A. As s increases continuously
from sx to s2, P(s) makes one complete circuit of I in a fixed direction.
Consequently it crosses the point B exactly once. Hence tγ exists on
Cn so that Be(n — 1, tλ) (si<ίi<s2). Likewise within each arc s*<s<
si+1 (2<Lί^jn), a point tt exists on Cn so that s έ<ί έ<s ί + 1, Be(w-1, tt).
Thus the theorem is proved.

To prove the converse, let C be any interior point of one of the
segments AB of the line through A and 5, and D any interior point
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of the other segment. As P(s) is continuous and

at least one solution P(s) = C, or P(s)=D must exist for which s x <s<
£lβ Likewise each of the 2n arcs Si<s<έί, ί i<s<s i + 1 (l<lί<lw) contains
at least one solution P(s) = C or P(s)=D. But as C is contained in at
most n {n — ly s) there must be exactly n solutions P(s) = C. As these
are all distinct and C is arbitrary, AB is a line I. The proof is now
complete.

This proof of the converse, due to Dr. P. Scherk, replaces a more
complicated one of my own. I should like to take the opportunity to
thank him for many helpful suggestions which have contributed to
the readability of the paper.

5* Hyperplanes with a given number of curve points.

LEMMA 2. If, for rC>β, Cn_λ is the projection of Cn from one of
its points s, then a line I of Cn is projected into a line I of Cro_i

This is proved in [1].

LEMMA 3. For ?C>3, the projection of a Cn from a line I is a

PROOF. NO hyperplane through I can cut Cn in more than n—2
points. This is true for n=2 as it is equivalent to the fact that a
line I of C2 cannot contain any curve points. Assume the assertion
is true for Cn.λ (rf>2). Let H be a hyperplane which contains L
The result is clear if H contains no points of Cn. Let s be a point of
Cn within H. Project from s. Then Cn is projected into a C-i by
Lemma 1, and I into a line I of Cw_i, by Lemma 2, which is within
the projection H of H. By the induction assumption H contains at
most n—S points of Cw_lβ Therefore Ή> which contains the points Cn into
which these are projected together with s contains at most n — 2 points
of Cn.

The space of all 2-spaces through I is an (% —2)-space Sn-2 whose
hyperplanes are the hyperplanes of the original space which contain L
The elements |7, s] of Sn~2 build a curve C, and C has order n — 2 by
the result of the previous paragraph. This implies

[Z, s'
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Thus there is a one-to-one correspondence between the points of Cn

and those of C. Where 0<Lk<Ln-2, let

[l9 s{], \l, s 2 ] , ••• , [l9 sk+1]

be given curve points of C. Because of the order condition these
points span a (&4-2)-space Q which contains I. If slf s2, ••• , sk+1 all
approach s, then Q->[1, (h, s)] because of the differentiability condi-
tion. Thus the set of elements [I, s] of Sn.2 is a Cw_2 with osculat-
ing A -spaces [I, (k, s)]. As this set is equivalent to the projection of
Cn from I, the lemma is established.

Most induction proofs for the curves Cn make use of Lemma 1; in
the following proof Lemma 3 is used for this purpose.

THEOREM 2. Where 0<ίk<Ln, k=n (mod 2), let su s29.—, sk £1? ί2,
•• ,ίfc δβ αwi/ points of Cn; then:

(a) If, for n^>l, Hτ, Ή2 be hyperplanes which contain su s2, •••, sk

î> t2," , 4 respectively, and no additional points of Cn, then hyperplanes
H{p) (0<Ip<Il) ea ΐsί, continuously dependent on p, each of which contains
exactly k points of Cn and for which H(0)=Hι, H(1)=H2;

(b) // Si=ti (l<Li<Lk), then H{p) can be chosen so that it contains

exactly the points st (l5ίi<I&, 0<Lp<Ll)',

(c) if ri^>2, 0<zh<jι--2, for a given line I, a hyperplane W exists
so that it contains exactly the points s1} s2, •••, sk, together with the
line I.

PROOF. We first prove (c). If n=2 then k=-0 and the result is
equivalent to the fact that Hι=-l does not cut C2. Assume the result for
for all curves Cn_1 (w>2). Project from I. Thus Cn is projected into
a Cw_2, by Lemma 3, and su s2, ••• , sk into points of Cn_2 with the
same numerical coordinates. If k=n — 2f a unique hyperplane

H' = [8l9 s2, ••• , s j

exists in the projected (n — 2)-space through these points. If k<Cn—2,
then by the induction assumption a hyperplane Hr exists in the pro-
jected space which contains exactly the points slfs29 , sk of Cw_2.
Consequently, if H1 is defined to be the hyperplane of the original
space which is projected into H\ this hyperplane contains exactly the
points 8l9 s29 ••• , sk of Cn. As 1<QH\ (c) is proved for Cn. The proof
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can now be completed by induction.

To prove (a) and (b), consider first the case k = 0. With this re-
striction neither Hx nor H2 contains points of Cn . As the curve is
connected, it lies entirely within one of the two open regions of the
projective space whose boundary is the set of points of Hx and H2.
Hence an affine coordinate system exists so that the equations of HV9

H2 are x1=09 a?i=l, respectively, and Cn contains no points for which
O ^ a ^ l . Now (a) and (b) follow for k=0 if H(p) is defined to be the
hyperplane with the equation Xι=p, 0<Ip<ll.

Now let k=n; (b) is trivial in this case. Let fι(p) (0:Cp<Il, 1<1
i<Ln) be any real-valued continuous functions for which fι(0)=-sίf / 4(l)
=£*. Then (a) follows if H(p) is defined to be the hyperplane spanned
by the points with coordinates / t(p) (1<^<^).

In particular this establishes (a) and (b) for C1 and C 2 . Assume
bDth results for all Cn.λ (w>2). We may assume ΰ<Ck<Ln—2. Let I
be arbitrary. By (c), hyperplanes H\9 H\ exist which contain exactly
the points slf s2, ••• , sk tl9 t2, ••• , tk, respectively, together with the

line L Let Hl9 H\, Cn^ be the projections of Hu H[, Cn, respectively,

from slβ By the induction assumption (b), hyperplanes H(p) (0<Lp<Ll)

exist in the projected space, continuously dependent on p, each of

which contains exactly the points s2, ••• , sk of Cn_i, and for which

H(0)=Hlf H(l)=Hl.

Let H(p) (0_^p^(l/3)) be the hyperplane of the original space which is

projected into H(Sp). Then H(p) depends continuously on p, contains
exactly the points su s2, ••• , sk of Cn, and H(0) = Hu H(lβ)==H[. Like-
wise H(p) ((2/3)_^p^l) exists so that it depends continuously on p,
contains exactly the points tlf t2, ••• , tk of Cn, and for which

After a projection from I, a similar argument can be used to con-
struct a hyperplane H(p) ((l/3)<ip^(2/3)) which depends continuously
on p, contains exactly k points of Cn9 and for which

H(1IS)=H[, H(2l3)=Hi.

This proves (a) for Cn. Also (b) is clear if H{p) is defined as above
with the additional conditions that

The proof can now be completed by induction.
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6. Hyperplanes which do not contain n points of Cn •

DEFINITION 2. Σ(CW) is the set of all points included in at least
one space L of the curve Cn (cf. § 3).

LEMMA 4. //, for ri>Z, P e Σ(Cn-i), where P is the projection of
a point P from a point sr of Cn, P=N=s', and Cn^ that of Cn, then

Proof. If Pe Σ(Cn-i), then points sl9 s29 — , sn-.λ tl9 t29 ••• , <n-i of
the projection Cn-ι exist so that

P e [sl9 s29 ••• s n .Jn[ί i , t29 — , ίn_!]=

and

by the dual of Theorem 1. Moreover,

\βι9 S2f ••• , Sn_i], [βit t2, ••• f ^ t t- i j

may be chosen to be any two distinct hyperplanes through L within
the projected (n — l)-space. Therefore these hyperplanes may be
chosen so that tn_l<Cs'<Csl

Jrl. Let the numbers

S\i S2f **• , S n _ i , t\9 t2, ••• , tn-u S

now represent points of Cn . Then Pe[tλ, t2, ••• , ίn_x, s']. As ίlf ί2,
• •• , ίn-χ, sr are represented by linearly independent vectors the inter-
section

Hence, because P^s\ at least one value i exists with

P$[tu t29 ••• , ί i - ! , ti+l9 ••• , ί n - ! , S r ] (l^^Z-l).

For such a value i

[ β i t t2y ••• , t i - i f J r , ί i + i , ••• , t n - u S i — [ t ί f t2f ••• , t n - D S J .

Let ίn be a point of Cn with ί n>s'. Then

approaches [tl9 t2, ••• , tn_l9 s'~\ as ίn approaches s'. Because of the con-
tinuity of the curve points of Cn9 \tϊ9 t29 ••• , t^19 P, tί+1, ••• , tn~\ will
contain a point t\ of C7i for which si<^t'i<^si+l provided tn is sufficiently
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close to s'. If tn is such a point, and sn is defined as s', then

P e [slf s2f ••• , sw]π[<i> U, ••• , ίi-i, ίί, tί+1, ••• , ίn]

and

Si<«i<S2< ^K^KSi+KSn^n^i + 1 .

It follows from the dual of Theorem 1 and Definition 2 that P e Σ(C n ).
The lemma is thus established.

COROLLARY. //, for n^>3, P is a point for which Pe[(k, s^, s j
, s,),

PROOF. If n=S then Pe[sl9 s2] (sr^=s2, P^=su P=^s2). Let ί,, ί2 be
points of C3 for which s ^ ί ^ s ^ ^ S i + l. Then P$[A, £J for other-
wise tly t2, sl9 s2 would be coplanar in contradiction to the order con-
dition. Hence [P, tl9 £2] is a plane. This plane must contain a third
point t of C3, as C3 is closed. Now P=^ί because [su s2] cannot contain
a third curve point. If P is the projection of P from t then

where sx, s2> î> ^ now represent curve points of the projection C2 of

C3 from ί. This implies, by the dual of Theorem 1, that P e Σ(C2),
and so by the Lemma that P e Σ(C 3). Thus the corollary is true for
92=3. Assume it to be true for all Cn_i, w>3. The result for Cn then
follows from the Lemma by a projection from Si if the least possible
Ic==n — S and otherwise by a projection from a point of Cn different
from sx and s2.

LEMMA 5. (a) For n^.2, Σ(Cn) is open, (b) /f α boundary point

P of Σ ( C J ^ approached by a sequence Pμ of points interior to Σ(Cw)>

and L is the limit of a space sequence Lμ for which P μ e Lμ, then (k, s)

(O ̂ Λ^Jtt — 2) exists for which Pe(k, s ) g L .

PROOF. If P e Σ ( C * ) then a space L exists for which P e L . By
the dual of Theorem 1, su s2, ••• , sn tu t2, ••• , ίTO exist so that

££[>!, s2, ••• , sn]c\[tlf t2, ••• , tn~\ and S ! < ί i < s 2 < - <^<Si4- l .

If P ' is sufficiently close to P then it is contained within an (n — 2)-
space L r which is so close to L that it has the form
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By the dual of Theorem 1, P' e Σ(Cn)> and so (a) is proved.

To prove (b), let Hf9 H$ be any two hyperplane sequences with
LμSi2f, Ifξ^Hξ, which converge to two distinct limits Hx and H2, re-
spectively. By the dual of Theorem 1, βf, βf, •••, sμ; tf, tζ, ••• , ίg exist
so that sϊ:<tϊ<8i<—<t*<8f + l and

#Γ = I>f, βf, - , eg], # ? = [#, ί2

α, - , «]

As i?tt, i?μ converge, the sequences sf, if (l^i<Ξ>ι) also converge. If
Si, £4 are the respective limits of these sequences,

£=[>i, 82, •••, 8Λ]π[<i, ίa> ••• , £j and s ^ ^ s ^ . ^ r ^ - f - l .

At least one equality sign must occur in this system, for other-
wise PeL and so PeΣ(C w ) ; this is impossible as P is a boundary
point of the open set Σ(CW). We may suppose, after a possible adjust-
ment in the notation, s1=t1. Hence s^L. If n=2 this proves the
Lemma, as

Assume it holds for all curves Cw_x, w>2. If P=su then it is already

true for Cn. If Ψ^slf project from βlβ Let Cn_! be the projection of

Cn and P' that of P. Then FφΣ(Cn-i), for otherwise, by Lemma 4,

. Moreover,

pf € [«„ s3,...,

and this space is approached by the system

[βf, «f, ,<ln[ί?, ^,—,«],

where all the numbers now represent points of Cn_χ. Thus P' is a
boundary point of Σ(C«-i) Therefore by the induction assumption
(k, s)n-i exists so that

Consequently, P e [8lf (k, s)]gL. Because ϊ^Si , it now follows from
the Corollary to Lemma 4 that P€ (fc, s), or s=sx and Pe(fc + 1, s).
Either of these possibilities shows the lemma to be true and so the
proof is complete.

LEMMA 6. If, for C>3, Zμ is a sequence which converges to I, and
p an integer for which 7-5Ξ(p, s), I^(p —1, s) (0<p<w —1) then [Zμ, (g,

, s) ( p - l
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PROOF. The space [lμ

y (q, s)] is a (g-f2)-space because q<Cn — l

while lμ and (g, s) have no common points. Consider first the case

for which q=n — 3,p=n — 2. If the lemma were false then a conver-

gent subsequence of \lμ, (n — 3, s)] would exist whose limit would be

a hypόrplane Q for which Q±*(n — 1, s). As Ίμ->1 ,

[7, (rc-3, s)] = (w-2, s)£Q.

Consequently Q would cut Cn in s at least (w —l)-fold. As Cn is closed,

Q would cut Cw in one additional point s', and s'=^s as Q^(n — 1, s).

Hence, if lμ is sufficiently close to U [lμ

9 (ft —3, s)] would cut Cw in

a point s" so close to s'. that s"^s. Therefore the hyperplane [lμ,

(n — 3, s)] would cut Cn in more than n — 2 points in contradiction to

Lemma 3. Thus [lμ, (n — 3, s)] must approach (n-1, s), and the lemma

is proved in this case. In particular, it is completely proved for

n=3. Assume it is established for all Cn-i, ?C>3.

Consider next the case for which q<Cn — 3. Project from any point

t of Cn different from s. As £$(p, s), 7 is projected into a line T,

and V is projected into a line Γμ defined for the projection Cn^ of

Cn by Lemma 2, Clearly

7 rS(p, s)n_x and 7 ' $ ( p - l , s)n_!, .

for otherwise

s) = ( p - l , β).

Therefore, by the induction assumption, [lfμ, (q, s)n_1]->(gr + 2, s)n_x.
This implies [^, (g, s), £]->[(#-f 2, s), ί], and, because £ is arbitrary,
that \lμ

y (q, s)]->(<7 + 2, s). Thus the lemma is proved in this case.
Finally let q=n — 3, p<Cn — 2. If [lμ, (n-3, s)] does not converge

to (rc — 1, s) this set contains a convergent subsequence with limit Q,
Q=^(n—1, s). Now l<Ip<?2 — 2, and so ?C>4. Hence by the result of
the previous paragraph [lμ, (w—4, s)]->(w — 2, s). Consequently (w — 2,
s)gQ. This leads to the contradiction encountered in the first para-
graph. Thus [lμ, (n — 3, s)]->(w — l, s), and the lemma is proved for
Cn. The proof can now be completed by .induction.

DEFINITION 3. σ(Cn) is the set of all hyperplanes each of which
contains at least one line I of the curve Cn .

σ(Cn) is the dual of the space Σ ( ^ )

THEOREM 3. For ri^Z, σ(Cn) consists of all the hyperplanes which
do not contain n points of Cn.

PROOF. By Lemma 3 each member of σ(Cn) contains less than n



ON CLOSED DIFFERENTIABLE CURVES OF ORDER n IN TZ-SPACE 685

points of Cn. It remains to show that every hyperplane which con-
tains less than n points of Gn contains at least one line I. Let H be
a hyperplane and slf s2, ••• , sfι be the points of Cn contained in H,
where §<Jι<Cn. As Cn is closed, h=n (mod 2). By Theorem 2 •(<•),-
for a given line I, a hyperplane Hι exists which contains I and ex-
actly the points slf s2, ••• , sh of Cn. By Theorem 2 (b), a system H(p)
(0<Lp<Λ) of hyperplanes exists, continuously dependent on p, each of
which contains exactly the points sl9 s2, ••• , sh of Cn and for which

By Definition 3, H(0)eσ(Cn). Assume H$σ(Cn). By the dual of Lem-
ma 5 (a), σ(Cn) is open. Therefore a least value p of p exists for
which H(p)$σ(Cn). Let pμ be a sequence for which pμ-±p, pμ<Cp. As
£f(pμ)e<7(Cw), lμ exists for which Z*giJ(pμ). By replacing pμ by an
appropriate subsequence if necessary we may assume lμ converges. If

ΐ be the limit of lμ then, by the dual of Lemma 5 (b), (k, s) exists
so that

We may assume (k +1, s)$H(p); for otherwise (k, s) may be replaced
by an osculating space of a greater dimension so that this relation
holds. Consequently s occurs exactly (& + l)-fold in the set slf s2, ••• , sh,
and k±l^£h<Ln — 2. This is impossible if h<Ll in which case Heσ(Cn).
In particular this proves the theorem for h<L3. We assume therefore

?ι>3. As k<Ln — 3 and £§Ξ(/b, s), the number q of Lemma 6 may be
specialized to k. It follows then from this Lemma that [lμ, (k, s)]->
(A:4-2, s). Hence, as [lμ, (k, s)]^H(pμ)f (k4-2, s)£H(p). This con-
tradicts the fact that sx, s2, ••• , sΛ are the only points of Cn in H(p)
among which s occurs exactly (fc-f l)-fold. Therefore Hβσ(Cn). Thus
the theorem is established.

7. A characterization of the lines I.

THEOREM 4. For n^>2, a straight line is a line I if, and only if,
every hyperplane through I contains less than n points of Cn.

PROOF. Let m be a straight line which is not a line I. Then at
least one point P exists on m which is not within n distinct (n — 1, s).
A sequence of points Pμ exists with PX->P for which each Pμ is within
less than n (n — 1, s). (This can be conveniently proved by induction
in the dual formulation.) If A is a point of m for which A^FP then
[A, P^m. By the dual of Theorem 3, Lμ (cf. § 3) exists for which
PμeLμ. Now [Ay Lμ] contains [A, Pμ] and also n points of Cn by the
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definition of ZΛ The limit of a convergent subsequence of [A, Lμ] is
a hyperplane which contains m together with n points of Cn. This
proves that if every hyperplane through a straight line contains less
than n points of Cn then every point of the straight line is within n
distinct (n — 1, s) and so must be a line I.

No hyperplane through a line I can contain n points of Cn by
Lemma 3. Thus the proof of the theorem is complete.
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BOOLEAN ALGEBRAS WITH PATHOLOGICAL
ORDER ΊOPOLOGIES

E. E. FLOYD

If L is a partially ordered set, there are a variety of known ways
in which L may be given a topology compatible, in some sense, with
its partial ordering (see [1, 6]). Examples, by Northam [3] and Floyd
and Klee [2], have very recently appeared of complete lattices which
are not Hausdorff in their order topologies. It appears, then, that the
various topologies will not be central in the study of all complete lat-
tices. The question remains as to whether or not there is some wide
and natural class of lattices in which some compatible topology has
nice properties. We give a very simple example of a complete Boolean
algebra which is not Hausdorff in any topology compatible with the
order. We also give an example of a conditionally complete vector
lattice in which addition is not continuous in any compatible topology.
This is a counterexample to a result of Birkhoff [1, p. 242], who over-
looked the possibility that convergence in the order topology differs
from order convergence.

DEFINITION. Suppose that (P, > ) is a partially ordered set, and
suppose that T is a topology for the set P (that is, T is a collection of
subsets of P closed under arbitrary unions and finite intersections, and
with φeT, PeT). We say that T is σ-compatible with > if and only
if whenever (xι) is a sequence in P with

and /\Xi=x

or

then the sequence (xt) Γ-converges to x.

THEOREM 1. Let L denote the complete Boolean algebra of all regular
open subsets of the unit interval /, partially ordered by inclusion ]>.
Suppose that T is a topology for L which is σ-compatible with ^>. Then
the topology T is not Hausdorff.

Proof. Recall that a subset b of / is a regular open set if and
only if b is the interior of its closure. L is known to be a complete

Received January 11, 1954. This research was supported by National Science Foun-
dation Grant, NSF-G358.
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Boolean algebra [1]. Let W be a Γ-neighbourhood of the empty set
φeL. We show that Ie IF. Suppose that Uu U29 •• , is a basis for
the open sets of 7, with each £7* nonempty. There exists for each i a
sequence (Aj\j==ly 2, ) in L with

so that -4ί>i4£> and

Since (A]) converges to φ, there exists A\e %f. Define Bι=-A\. Since
the sequence (B^A)) converges to Blf there exists j with B^A^e ^/.
Define B2=BX\/A). Similarly there exists B3=B2\/Ale %S,.... Now
(Bι) is a sequence in W with Z?i<2?2< . Moreover, since the only
regular open set containing \JBt is /, we have \ZtBt=I. Hence /e ^/
and the theorem follows.

The following remark answers Problem 77 of Birkhoff [1, p. 167].

THEOREM 2. If L is the complete Boolean algebra of Theorem 1,
then there exist, for i = l, 2 , sequences {XUi\j=l, 2, ) with (XlyJ)
order-converging to φ for each i but such that for no function j(i) is it
true that (XtίjW) order-converges to φ.

Proof Let (Xit)) denote the sequence (A)) of the proof of Theorem 1.
Consider any function j(i), then

Hence

Hence the sequence (Xt,m) does not order-converge to φ.

THEOREM 3. Let L be the complete Boolean algebra of Theorem 1,
and let M be a Stone representation space for L. Let N denote the lat-
tice of all continuous real-valued functions on M. Then Nis a condition-
ally complete vector lattice in which the function x — y is not T-continuous
simultaneously in x and y for any Trtopology T for N which is σ-com-
patible with ^>.

Proof. It is known [4, 7] that N is conditionally complete. We
may consider L as identical with the algebra of all open and closed
subsets of M. There is a function t: L-+N which assigns to u e L the
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characteristic function t(u) of the open and closed set u. We show
that t is an embedding of L in N. It is seen that t is an isotone one-
to-one map of L onto t(L), and t~ι is an isotone map of t(L) on L. We
prove that if K<ZL then

where \ft(K) denotes the least upper bound in N. Clearly

Now \/t(K) is a nonnegative continuous function whose value is > 1
on the set \JK, and hence > 1 also on its closure. But the closure of
\JK is \JK [7]. Hence

t{\JK)<\Jt{K)

and equality holds. The dual also follows. So t embeds L in N. It
follows that t(L) is not Hausdorff in the topology T restricted to t{L).
Hence N is not Hausdorff in the topology T. But if x — y is Γ-continu-
ous in x and y, it is known that N is then regular [5, p. 54] and hence
Hausdorff.

COROLLARY. Suppose, in addition to the hypotheses of Theorem 3,
that the function y-> — y on N is T-continuous. Then x + y is not T-
continuous in x and y simultaneously.

This answers, in the negative, a part of Problem 4 of Rennie
[6, p. 51].
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ASYMPTOTIC LOWER BOUNDS FOR THE
FUNDAMENTAL FREQUENCY OF

CONVEX MEMBRANES

GEORGE E. FORSYTHE

1. Introduction* Let the bounded, simply connected, open region
R of the (Xj ?/)-plane have the boundary curve C. If a uniform ideal
elastic membrane of unit density is uniformly stretched upon C with
unit tension across each unit length, then λ, the square of the funda-
mental frequency, satisfies the conditions (subscripts denote differentia-
tion)

Δu=uxx-\-Uyy=—λu in R,

λ=minimum ,

with the boundary condition

(lb) u(x, 2/) = 0 on C .

Variational methods of the Rayleigh-Ritz type are frequently used
to approximate λ. They always yield upper bounds for λ, and the up-
per bounds can be made arbitrarily close.

Another common practical method of approximating λ is to calculate
the least eigenvalue λh of a suitably chosen finite-difference operator
Δn over a network with small mesh width h. For one choice of Δh it
was shown by Courant, Friedrichs, and Lewy [3, p. 57] without details
that λnr+λ as /&->0. For convex regions R of a special polygonal form
the author has shown [4] that a special case of (11) below is valid for
a common choice of Ah, and hence that λh is asymptotically a lower
bound for λ as &-»0. For an unusual finite-difference approximation to
problem (1) when R is the union of squares of the network, Polya [12]
has found that λ^>λ for all h, and also for the higher eigenvalues.
The author knows of no other study of the sign or order of decrease
of λ-λh to 0.

In the present paper the investigation of [4] is extended to a much
wider class of regions: those with piecewise analytic boundary curves
and convex corners. The new theorems are stated and proved in §§ 3
and 4. Theorem 2 contains the theorem of [4] as a special case.
Lemmas used in the proof of Theorem 1 are given in § 5. Identity
(31) of Lemma 7 is interesting in itself.

Received December 2, 1953. Presented to the American Mathematical Society Sep-
tember 4, 1953. The preparation of this paper was sponsored in part by the Office of
Naval Research, U.S.N.
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When C is no longer made up of line segments of the network, it
is necessary when using finite-difference methods either to move C or
to alter Δh near the boundary. The latter procedure is potentially
more accurate, and has been adopted in deriving the rather delicate
results proved below. The definition of Δh given in § 2 is a self-adjoint
modification of Mikeladze's approximation [10; 11], and is believed to
be new. The cruder approximations to Δ near C proposed by Collatz
in 1933 and expounded in [2, p. 357], while easier to compute in prac-
tice, appear to introduce an unmanageable term 0(Kι) into (19). It is
therefore doubted that Theorem 2 would remain valid for these cruder
operators.

The technique of the present paper could be applied to study the
asymptotic behavior of λh also for other difference approximations to Δ
in the interior of R—ioτ example, for those associated with a triangular
net [2, p. 367].

It is not clear that one could revise the argument of the paper to
prove an inequality of the type

- < 1 + bh2Λ-o{Kz) .

2. Definitions. Assume the bounded, simply connected, open region
R to have a closed boundary curve C: x(s) + iy(s) ( 0 < s < s m ) which is
pίecewise analytic. That is, x(s) and y(s) are real analytic functions of
the arc length s of C in each of a finite number m of closed intervals

O=sQ<s<sι, sί<s<s2J , s m _ 1 <s< t s m .

Moreover, we demand that the corners of C be convex that is, at any
point x(Sj)-\-iy(Sj) (0<j<Cm) where distinct analytic curves meet, the
interior angle of C must be less than π.

For h^>0, let a net consist of the lines x=μh, y=vh (μ, v=0, ±1,
±2, •). The points (μh, uh) in R are the interior nodes Rh of the
net. The boundary nodes Ch of the net consist of (i) all points (μh, vh)
on C, and (ii) all isolated points of intersection of the net with C.
Thus each node (μk, vh) of Rh has two neighboring nodes in Rh\JCh

on the line x=μh, and two in Rh\JCh on the line y=vh. Moreover,
each node in Ch has at least one neighbor in Rh\jCh.

We now move toward a definition of the difference operator Δh.
Let.us denote the neighboring nodes of the node

(2) (x, y) of Rh by (x-hu y), (x + h2,y), (x, y-h3), and (x, y + hj,

where 0<hι<h for i = l, 2, 3, 4. For nodes remote from Ch, all ht=h.
Let v be any net function defined on the nodes of Rh\JCh, vanishing
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on Ch. Define Df^v as the (constant) second derivative of the quadratic
polynomial function of x assuming the three values v(x — hu y), v(x, y),
and v(x+h3, y). That is,

3 \ TΊOOΛU™ nΛ u i V\ΛJ-T ivii y) — v{Xf y) V\X, y)

7 • τ ' h, h

a? — ̂ i , 2/) Ί β

λ J '

Also, Ώψv{x, y) is defined analogously. We next define

, y)

v(x, y)( +
( 4) \hιhz hji

, y)

h'Ah -\- hi) hA/

The operator Δ^ is the approximation to Δ recommended in [10].
It linearly transforms the net function v defined over Rh into the net
function Δ^v, also defined over Rh. But # / ι ) is not a self-adjoint linear
operator that is, the matrix ACK) of the linear transformation of v in-
to Δ^v is not symmetric.

We define the matrix Ah as the symmetric part of the matrix AQι):

(5) Λ = i [ A ^ + 4 w η ,

where T means transpose. Finally, we define Δh to be the self-adjoint
linear operator corresponding to Ah.

The explicit expressions for Δh assume 16 different forms, depending
on the location of (x, y) with respect to Ch. Although we shall not
need these expressions for the present paper, we describe them briefly.
If, in any of the four directions from (x, y), the neighboring node—say
(x — hi, y), for definiteness—is in Rh, then hx=h, and there is another
node (x — h — hi, y) in Rh\JCh. Then the t e r m 2v(x — hu y)lh1(h1-hh2) of

(4) is to be replaced by

For any (x, y), the expression for Δh is obtained from (4) by making
replacements like (6) corresponding to all neighbors of (x, y) in Rh.

When (x, y) is more than two nodes away from Ch, so that all
h{=hi''=h, the values of both Δ°^ and Δh reduce to the familiar form
used in [4]:
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(7) Δhv(x,y)=Δ<»v(x,y)

=—[v(x—h, y)-hv(x + h, y) + v(x, y—h) + v(x, y-hh) — £v(x, y)] .
h"

Let λh satisfy the following difference equation for a net function
v defined in Rh\JCh :

Δhv=-λhv in Rh ,

λh=minimum ,

where v is extended to satisfy the boundary condition

(8b) v = 0 on Ch.

It is readily shown that λh is the minimum over all net functions
v satisfying (8b) of the quotient

Rn.

(This is simply the minimum principle for a definite quadratic form.)
By (5), we can write ph(v) in the following equivalent form, simpler to
use:

( 9 ) ^ ) β - * % " "

Rn.

The reason for not using the least eigenvalue μh of Δ^ in this
investigation is that μh does not have the foregoing minimum property
and, in fact, might turn out to be complex. On the other hand, it is
known [9, p. 27] that lh<& (μh), so that when μh is real it could con-
ceivably be a better approximation to λ than λh is. The relative
magnitude of UΛ —Λ| to \μh — λ\ is not known.

3 The results* The following new result will be proved in § 4:

THEOREM 1. Let R be a bounded, open, simply connected region
bounded by a piecewise analytic curve C whose corners are convex in the
sense of § 2. Let τ be the angle between the tangent to C and the x
axis. Let u solve problem (1) for R, and let un be the normal deriva-
tive of u on C. Define λh as in § 2. Let

1 \ (u2

xx 4- u2

yy)dxdy -f \ un

2 sin2 2τ dτ

(10) a=a(R)= "B
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Then — oo<α<oo and, as h->0, one has

(11) ^<l-α/*2-fo(&2) (Λ->0).

In Theorem 1 the quantity a can probably be negative for certain
nonconvex R, because dτ in (10) will be negative at some points of C.
But if R is convex we get a stronger result, as an immediate con-
sequence of Theorem 1.

THEOREM 2. Under the hypotheses of Theorem 1, if Ris also convex,
then 0<α<oo, and there exists A0>0 such that 4<Λ for all

For the operator Δh of § 2 the methods of [3] can undoubtedly be
followed to show that λh~±λ as h—>0 the author has not attempted to
carry through the details. When λh->λ as &->0, the lower bounds λhQ

can be made arbitrarily close by choice of hQ sufficiently small. Thus
for these R the Rayleigh-Ritz methods and the finite-difference methods
(8) are theoretically complementary, and together could confine λ to an
arbitrarily short interval if one knew an upper bound for h0.

The author has not developed an upper bound for h0 in Theorem 2,
although it would be desirable to do so by estimating the term o(h?).
One could always make an intelligent guess based on the behavior of
λh for certain h.

The constant a of (10) is the best possible for certain rectangular
regions see [4]. That the corners of C be convex seems essential to
the validity of Theorem 1. Indeed, for one nonconvex polygon some heuris-
tics and an experiment mentioned in [4] make it appear that λh=λ +
Ahφjrθ(hφ), where >l>0. It would be interesting to know the sign
of a for the general case of Theorem 1, or in particular when C is a
nonconvex analytic curve.

Corners of angle π are frequent in engineering practice, and it
would be desirable to know how λh behaves when R has such corners.
For such corners Lemma 2 is no longer valid. Lewy [7] provides new
tools for an attack on corners of angle π.

4. Proof of Theorem 1. Let u henceforth be the solution of
problem (1) for the fundamental eigenvalue λ. It is known that

(12)

The proof of Theorem 1, following [4], consists in setting the
values of the function u at the nodes of Rh\JCh into the Rayleigh
quotient (9) of problem (8). It will be shown that
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(13) P-^^l-atf + oih*) (A->0) .

Since λh<^ph(u), the theorem follows from (13).
The denominator Kι Σ ^2 of ph{u) differs from a Riemann sum for

ifdxdy at most by the terms corresponding to squares or part-squaresI \

at the boundary C. The total contribution of these terms does not
exceed the order of magnitude LhmsiXRu\ where L is the length of
C. Hence a fortiori

(14) h% Σ u 2

Rh

Let the nodes of Rh be divided into three classes:

RJ: those within a distance h of some corner of C

Rj? : those not in RJ but within a distance h of C

JRΛ

3 : the other nodes of Rh .

(15)

Split the numerator of ph(u) accordingly:

* - - >-*•

There are a fixed number of corners, not exceeding m, and at
most two nodes of Rh

ι per corner. Moreover \f7u(x, 2/)|3->O as (x, 2/)->a
corner of C, by Lemma 1 in § 5. At any node (x, y) of Rh

ι with
neighbors denoted as in (2), we find from (3) that

__ 4/&2 max ψu\2 ,
mm /

where the ut are the values of u at the four neighbors of (x, y), and
where the maximum of \pu\% is taken over all points within a distance
2h of some vertex. Hence

(16) \Sh

ι{u)\<8mh2 max \yu\*=o(

Using the notation and assertion of Lemma 3, we have

(17) sh

2{u)=-hΣuM

Since u satisfies (la),

(18) -h? Σ uΔu=λh% Σ ^2

By (17), (18), and Lemma 4,



ASYMPTOTIC LOWER BOUNDS FOR THE FUNDAMENTAL FREQUENCY 697

R1 Σ

Thus

(19) Σ
R,?

Similarly, using the notation and assertion of Lemma 5, and by
(la), we have

(20) Sh\u) = λh* Σ ^ ~ ~ Σ u{ιϊxxxx + < w y ) .
12/e

Now

(21) h* Σ %2=Aa Σ %a-Λa Σ w8=As

R*R R Rι

since %(a?, ?/)->0 as (a?, 2/)-^C, and since there are at most 2m vertices
in Rh\ Adding (19) and (20), and using (21), we find that

Sh

2(u) + Sf?(u) = IK' Σ ^ " , o Σ U(%ϊχxxx + Uyyyy) + θ(/^)
Rh 12 743

" ' '"IXXXX 4" Uyyyy)dxdy 4" θ ( ^ ) ,

by Lemma 6. Adding Sh

ι(u) to the above, and dividing by (14), we
find that

Σ sh>(u)

h Σ ^
(22) Rh

7,2 \\ u{uxxxx

Finally, dividing (22) by /!, and applying Lemma 7 and (12), one proves
(13) and hence Theorem 1.

5* Some lemmas. The following lemmas are basic to the proof of
Theorem 1. In all of them R satisfies the conditions stated at the
start of § 2, while u^u(x, y) solves problem (1).

LEMMA 1. The function u is an analytic function of x and y in
R\JC, except possibly at the corners of C. Let r be the distance of (x, y)
from a corner P with interior angle πjoc, l<^a<^&>. Then for m = 0 , 1,
2, , any partial derivative ofu of order m has the local representation
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(23)
oxμ'dyy

(x, y)

where fm is continuous at P.
Proof. By [1, p. 179], u is analytic in R. The representation

(270 below shows that the interior normal derivative uH is integrable
on C. Then the analyticity of u on C (corners excluded) was shown
by Hadamard [5, p. 25].1

Let t=ξ-\-iτ] and z=x-hiy. For each teR let w=Φ(z, t) map R

conformally onto the circle M < 1 , with Φ(t, t) = 0. We may assume
without loss of generality that P is at z=0, and that 0(0, £) = 1.
Lichtenstein [8, pp. 255-256 and footnote 273] showed2 that for m=0,
1, 2, , and zeR,

(24) ! ^

where ψm is continuous at z=0. It follows from (24) that

(25) ^ψ'V^φ^t),
uZ

where ψm is continuous at 2=0. Let G(z, t) = G(ξ, η x, y) be Green's
function for Au in R. Since

G(z, ί)=~(2τr)-1 log |/(2, ί)| ,

it follows from (25) that for m=0, 1, 2, and zeR,

(26) dn§^)

where Ψm is continuous at 2=0.
Now the function u has the integral representation [1, pp. 182-183]

u(x, (x, y; ξ,

Hence

(27) , y)-u(x, y)
Ax

1 The author wishes to thank Professor Lewy for this reference.
2 Lichtenstein actually asserts that (24) is without question true for all α, but that his

proof is valid only for irrational α. Warschawski [13] has found a simple proof of (24),
valid for all α in the range | < α < o o .

Added in April 1954: For asymptotic expansions of φ at a corner, see R. Sherman
Lehmann, " Development of the mapping function at an analytic corner," Technical Report
No. 21, Applied Mathematics and Statistics Laboratory, Stanford University, California,
March 31, 1954, 17 pp.
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Δx

(x + ΘΔx,y; ξ,y)u(ξ, y)dξdy ,

where 0<#=#(#, y, Δx)<Cl. Since G(z, t) = G(tf z), it is clear that dG/dx
= dGldξ and, as a function of t, dG/dx behaves like lί — ^!"""1 at any
corner ί0 of i?, uniformly in z for 2 bounded away from C. Hence
(dGjdx)u(ξ, 7j) in (27) is dominated by an integrable function of ξ, -η,
uniformly with respect to Δx. By Lebesgue's convergence theorem,
letting Δx-*0 in (27) proves that

(270 - ~ = λ\ ~(x, V, ξ, Φ(ξ, V)dξdr].
OX JJβ OX

Setting the expression (26) for m=μ=l into the last equation proves
the case m=μ=l of (23).

In a similar way one can prove all the cases m=0, 1, 2, 3, 4 of
(23), and the lemma is established.

LEMMA 2. The functions u2

xx, uxuxxx, uuxxxx, u2

yy, uyιtyyy, anduuvmfare

Lebesgue integrable in R. The Lebesgue integrals \ uxuxxdy and
[
1 t(/ylΛ/yyaJϋ eXvSΊ/

Proof. By Lemma 1 the functions uxx, , uuyyyy are continuous
in R\JC except possibly at the corners, where they are O(r2Λ"4). Since
0<tf, the first sentence follows. The second sentence is proved analo-
gously.

REMARK. The proof of Lemma 2 breaks down for corners of angle
π (cc — ϊ), as r"2 is not integrable.

LEMMA 3. At any node (x, y) of Rh whose neighbors are denoted as
in (2), one has

where —1<CΘX<^1, —l<^θy<Cl, and where

u'xxx=uxxx(xf, y) , x—h

{ uyyy=Uyyy(x, yf) , y-)

Proof By Lemma 1, uxxx is continuous in the open line segment
from (x — hu y) to (x-\-h2, y)f but may become infinite if the endpoint is
a corner of C Since u is continuous in R\JC, it nevertheless follows
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from Taylor's formula as stated in [6, p. 357] that, if we fix y and
set φ(x)=u(x, y),

±£=φ,{χ)Λ_ h2φlf(χ)+ hlφ,
h% 2 6

where O<0 2 <1.
Writing a similar formula for hx and subtracting, we find in the

notation of (3) that

If one writes k=m&x(hu ht)<h, the last term can be bounded in ab-
solute value by

and hence can be written in the form (2hjS)θxu
/

xxx. Addition of a
similar expression for Dy

h}u(x, y) proves the lemma.

LEMMA 4. For each node (x, y) of Rh

2 defined in (15) use the nota-
tion of (28). Then, as λ->0, one has

(29) A Σ a ( l a U + K^ | )=o( l ) (h-+0) .

Proof The lemma is proved much like Lemma 6 of [4]. The func-
tions u\uxxx\ and u\uyyy\ are continuous in R\JC, except at a corner of
interior angle πa, where Lemma 1 states that they behave like r2α"3

with 2a — 3 > — 1. The sum (29) can be majorized by the Lebesgue
integral of a step function over a polygonal arc in R which converges
in length to C as λ->0. The integrability of r2Λ"3 in (0, 1) permits the
application of Lebesgue's convergence theorem as h-+0. Since w=0 on
C, (29) follows. Details are omitted.

LEMMA 5. At each node in Rh

d, defined in (15), one has

Δ^U = ΔUΛ~ --- h?(UΛXXX + Uyyyy) ,
Λ-Δi

where

uxxxx=uxxxx{x-\-θ'h, y) , -

Proof In [4] the points of Rh* all have four neighbors in Rh\
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each at a distance h.

LEMMA 6. At each node of Rh\ defined in (15), use the notation of
(30). Then, as h->0, one has

+ Uyyyy) = \ \ U{Uχχχχ 4" Uyyyy)dxdy 4" θ(ΐ)

Proof. In [4].

LEMMA 7. Define un and τ as in Theorem 1. One then has

\ \ u(uxxxx 4- UyyyV)dxdy = I I (ulx 4- u2

yy)dxdy + \ ŵ  sin2 2rcZr ,

where the latter is a Riemann-Stieltjes integral.

Proof. The proof repeats that of Lemma 7 in [4] down to (29) of
that paper. It then remains only to prove for smooth convex curves
C that

(31) \ Uyy(uydx + uxdy)=\ un

2si

Let s denote arclength on C, and let primes denote dlds. Differ-
entiating the relations ux=—unύnτ, uy=un cos τ, we find that, on C,

ί uj = —un' sin τ — unτ' cos τ=uxy sin τΛ-uxx cos r ,
(oZ) "I

( Uy ' = ww

r cos τ — unτ' sin τ=uxy cos Γ 4 M W sin r .

Changing %.τa, to — %yy by (1), we can solve (32) for uyy on C:

Uyy=Un sin 2r4-^nr ; cos 2τ .

Since d^=cZscosr and dy=-ds sin r, we obtain

(33) \ Uyy(uydx 4- w xφ) = I (wn

r sin 2r 4- ̂ wr r cos 2r)(wn cos 2τ)ds
jc Jc

= \ un

zτf cos2 2r ds + \ %»%„' cos 2r sin 2r ds .

By partial integration, we have

(34) 1 ^ ^ / c o s 2 r s i n 2 r d s = ^ l (un

2Y sin 4τds

= l[un

2 sin 4r]tf-- \ ww

2rr cos 4r ds .

Since cos 2 2r-cos4r=sin 2 2r, substitution of (34) into (33) shows that
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S uyy(Uydx + uxdy) = I u£τ sin2 2r ds .

Since τ'ds=dτ, the identity (31) is proved, and with it, the lemma.
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ON THE DARBOUX PROPERTY

ISRAEL HALPERIN

A function f(x) with a finite real value for each x in the closed
interval (α, b) is said to have the Darboux property if f{x) assumes on
every sub-interval (c, d) all values between f(c) and f(d). This note
discusses local conditions which are necessary and sufficient in order
that / have the Darboux property (and corresponding conditions for a
generalization of the Darboux property).

For each x in (α, b) let Ir(x) denote the open interval with end
points

fr{x)=\\m sup {/(£) £>a;, t->x} and /r(a?)=liminf {/(£) ί>a?, £-+#};

let It(x), fι(x), fι(x) be defined similarly, using £<>, t-+x. Let ^K
be any family of JV-sets with the properties :

(a) Whenever an open interval is an JV-set, its closure is also an
JV-set.

(b) Every subset of an JV-set is an JV-set.
(c) The union of a countable number of JV-sets is an iV-set.

We shall say that / is ^K-Darboux on (α, b) if f(x) assumes on
every sub-interval (c, d) all values between f(c) and f(d) with the ex-
ception of an JV-set. We shall say that / is ^/-Darboux at x if for
every A>0:

(i) the values assumed by f{t) for x<jt<jv + h include all of Ir(x)
with the exception of an JV-set

(ii) the values assumed by f(t) for x—h<Ct<Cx include all of lt(x)
with the exception of an iV-set, (i) to be omitted when x=b, (ii) to be
omitted when x=a.

We shall prove the theorem :

THEOREM. / is ^K-Darboux on (α, b) if and only if f is ^
boux at every x in the closed interval (α, b).

The theorem was suggested by a paper by Akos Csaszar [1] who
established the theorem for the two special cases : Case 1: the only
JV-set is the empty set, giving the usual Darboux property and Case
2: (iii) also holds, every set consisting of a single point is an JV-set.

We use the following modification of a lemma of Csaszar:

LEMMA. If E is not an N-set then E contains a point y0 such that
IE fails to be an N-set for every open interval I containing y0, and I

Received December 10, 1953.
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fails to be an N-set for every open interval I which has yQ as one of its
end points.

To prove the lemma let Eλ be the set of x in E for which I(x)E
is an JV-set for some open interval I{x) containing x, let E2 be the set
of x in E—Eι such that x is the right end point of some open interval
J(x) which is an JV-set and let E3 be the set of x in E—Eλ such that
x is the left end point of some open interval which is an JV-set. Then

Eι=E1 Σ {I(x), all x in Eλ)

= £ Ί Σ {I(xn} f for a suitable sequence of xn]

= Έt(EiI(En))=union of a countable collection of JV-sets.

By (c), Eι is an JV-set. Since the J(y) are clearly disjoint for different
y in E2, they form a countable collection the closure of J(y) includes
y and is an JV-set because of (a) it follows that E2 and similarly E$,
are JV-sets. Hence EγΛ-EtΛ-Ez is an JV-set, thus not identical with E
which must therefore contain some yQ not in Eι + E2 + Ed. This proves
the lemma.

To prove the theorem, we note that the 'only if' part is an easy
consequence of (b) and (c). To prove the ' if ' part it is sufficient to
assume that the set E of real numbers which lie between f(a) and
f(b) but are not assumed by f(t) is not an JV-set, that yQ is a point of
E as described in the preceding lemma and obtain a contradiction.
For this purpose we shall prove :

(*) For every sub-interval (au bι) of (α, b) with y0 between f(aτ) and
f(bι) and for every ?n^>0 there is a sub-interval (α2, δ2) of (au bλ) such
that yQ is between /(α2) and /(δ2) and

\f(t)~yo\<llm for all α 2 < £ < ^ .

Successive application of (*) with ?n—>co will give a nested sequence
of closed intervals such that at any of their common points f(t) — yo=O9

a contradiction since yQ is in E, the set of omitted values.
Thus we need only prove (*). Since y0 is in E, we have f

for all x. It is easily seen that if f(x)^>y0 then fr(y)^ya and fι
(because of the particular properties of yQ) and hence x lies in some
open interval I(x) on which /(£) — 2/o> — 1/m. Similarly if f(x)<jjo then
x lies in some open interval J(x) on which f(t)—yΰ<O-l/^» By the
Heine-Borel theorem, a finite number of I(x) and J(x) cover (aly δj) and
hence it follows that some /(a?j) and some J(x2) must contain a common
open interval (u\ v) say.1 We may suppose xλ<Cu<Cv<CXi. If yQ is be-
tween f(u) and f(v) we can choose (u, v) to be the (α2, δ2) required by
(*). Otherwise we may suppose f(u)^>y09 /(a?a)<j/o Let α2 be sup t
with f(x)^>y0 on ii^xy-t. Then f(a^<Cy0 is impossible; for if /(α2)<j/o
held, the open interval (f(<h), yQ) would be contained in Λ(α,) and yet
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omitted from the values of / on (u, α2), implying that (/(α2), y0) is an
iV-set and thus contradicting the particular properties of y0. Thus
/(θa)>2/0 and w<;α2<#2. It now follows easily that fr(<h)=yo and that
α2 is the limit of a sequence of tn with £n>α2 and f(tn) <j/o Hence,
for sufficiently large n, tn may be selected as δ2 to give (α2, 62) with
the properties required by (*).

The example f(x)=x for #<0 and f(x) = l for x^O with the open
subsets of (0, 1) as the class ^K shows that the condition (a) cannot
be omitted.
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ON CHAINS OF INFINITE ORDER

T. E. HARRIS

!• Introduction* We consider stationary1 stochastic processes Znf

n = 0 , ± 1 , •••, where Zn can take D distinct values, D^>2. It is con-
venient to let the values be Zn=Q, 1, , D — 1. Let u be any sequence
of integers, u = (ul9 u%, •••)• Then the transitions of the process are
described by the functions Qι(u),

(1.1) Q i ( u ) = P ( Z n = i \ Z n ^ = u l 9 Z n ^ ^ = u i f •••) , i = 0 , 1, . . . , Z ? - 1 .

Our aim will be to relate some stochastic properties of the ^-process
to functional properties of the Qi(u). Because of the fact that the
future behavior of Zn depends in general on its complete past history,
we shall refer to these processes as stationary infinite-order chains.

The first systematic study of such chains was made by Onicescu
and Mihoc [13], and was carried on in further papers [14], [15], and
[16] by Onicescu and Mihoc, and [12] by Onicescu. These authors
considered chains of a somewhat more special type which they called
ckaines a liaisons completes. Further results were obtained by Doeblin
and Fortet [6], who applied the term chaine a liaisons completes to any
chain for which the relations

P(Zn=i\Zn-1=uί, , Zn_k~uk)

are specified for every sequence ulf , uk9 k=l, 2, •••, oo. See also
Fortet [8] and Ionescu Tulcea and Marinescu [17].

The authors cited prove, under various hypotheses on the functions
Qt of (1.1), that P(Zn==ί\Z^1==uu *"9Z-k=uk) has a limit as w->oo, and
obtain various other generalizations of the limit theorems for Markov
chains. Also, in [6] the case of cyclic motions is considered. We shall
not treat this case. The case of infinitely many states, stronger hypo-
theses, is treated in [17].

Our point of view is somewhat different. We introduce the random
variables Xn, w=0, ± 1 , •••, defined by

Received March 4, 1954. This research was supported, in part, by the United States
Air Force, through the Office of Scientific Research of the Air Research and Development
Command, Contract AF18(600)-442, while the author was at Columbia University on leave
from the Rand Corporation.

1 Throughout this paper a " stationary" process, Markov or not, will be a process
which not only has transition laws independent of time but also has a stationary absolute
distribution.
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(1.2) Xn=±ZnJD>.

That is, Xn is the number whose representation in the Zλ ary numeral
system is .Zn_.1Zn_a . (If we make the proper conventions, ambiguities
will have total probability 0.) Thus Xn contains the complete past
history of the Zn process, and is a Markov process whose transition
probabilities are defined in the following way. Let 0 < # < l be a number
whose D-ary expansion is

Observe t h a t Xn=x is equivalent to Zn^=-ulf Zn_2=u2, ••• . Now if
Zn=i, then Xn+1=.iu1u2- = ( i + x)ID . Now let fix) be functions of a?
defined by

(1.3) fi(%)=Qi(u) , i - 0 , •••, Z)- l

where . i ^ is the D-ary expansion of a; and the Q< are defined by
(1.1). If Xn=x, then Xn+1 is formed by applying with probability fι(x)
the transformation [ί 4- ( )]/Z) to Xn that is

(1.4)

The representation (1.2) was used by Borel [3] for the case where
the Zn are independent and equidistributed. Apparently it has not been
systematically exploited for other cases, although an abstract analogue
of (1.2) is used in [17]. The representation (1.2) has the advantage
that Fourier and Laplace transform methods can be used to deal with
the distribution of the complete past history of the ZTO-process.

After making precise the relation between the Zn- and X?rprocesses,
we show the existence of a unique stationary Zw-process whose condi-
tional probabilities

are equal to specified functions Qi9 provided the latter satisfy certain
conditions. This extends a result of Doeblin and Fortet. Next we
study the distribution G(x) of Xn. It is shown that this has one of
three forms, provided certain general conditions of mixing behavior
hold. (1) G(x) has a single jump of magnitude 1 at one of the points
i/(Z>-l), i = 0, •••, J3-1. This is true if and only if P(Z n =i)=l . (2)
G(x)=xf 0 < # < l . This is true if and only if the Zn are independent
and equidistributed on 0, 1, , Z> —1. (3) G(x) is continuous and purely
singular.2

*2 The fact that G is singular if the Zn are independent and not equidistributed was
pointed out to the author by Henry Scheffe.
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Next we consider processes which we shall call grouped Markov
chains. Let Yn> n=Q> ±1, •••, be the variables of a stationary Markov
chain whose states are divided into D mutually exclusive and exhaustive
nonempty subsets Bo, Bly •••, BD_λ. Define Zn=i when YneBiy ί=0, 1,
•• ,D—1. We shall refer to this type of Zw-process as a grouped
Markov chain it is in general not Markovian. We study such chains
for the case where Yn has a finite number of possible states and where
each element of the transition matrix of the reprocess is positive.
Using the Laplace transform, we show how to determine the functions

=--i\Zn_ι=Uι, - - -<, Zn_k=uk)

and

Έ)( ry ή \ 7 oi 7 oi \
JL\Zjn I I ΔJn_\ tl\) ZJn_i l4/2t ' ) 1

as well as the corresponding functions of a real variable /*(#) given
by (1.3). This may be considered a solution of the prediction problem
for grouped Markov chains.

The X?Γprocess is closely related to models which have recently
been used for learning and decision processes by Bush and Mosteller
[4], Bales and Householder [1], Flood [7], and others. The author wishes
to thank these men for stimulating the present line of work.

Theorem 3 can be extended to certain types of these " learning
models." A discussion of certain learning models has been given by
Bellman, Harris, and Shapiro [2] and by Karlin [11]. Karlin's work has
points of contact with ours.3

2* Relation of the Zn- and X^-processes* In this section we make
explicit the relation between the Zn- and Xw-processes and give a general
condition which implies the existence of a Zw-process with prescribed
Qi. Later sections will show that this condition is satisfied in many
instances.4

Let -D>2 be an integer and let ιι=(u1, u2, •) represent a sequence
of integers with 0<jij<D — 1. Let Qt(u) be functions of u, ί=0, 1, •••,
D-l, with

(2.1) Q ^ ) > 0 , i=0, .-., JD-1 f

(2.2) *ΣQι(w) = l

Now if x is a real number, 0<><l , we adopt the following con-
vention about the D-ary expansion of x in the ambiguous cases. The

3 See §4.
1 Further discussion of the relationship follows Theorem 6.
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Z)-ary expansion of x=l will be taken as # = . ( Z ) - 1 ) ( J D - 1 ) . In all
other ambiguous cases, an expansion terminating in 0's will be preferred
to one terminating in (Z>—l)'s. Thus in the decimal system the ex-
pansion of x=l will be .999-•• while the expansion of #=1/2 will be
.5000-•• rather than .499-•• . Thus the D-ary expansion of x is un-
ambiguously defined.

Now define functions /<(#), 0 < # < l , by

(2.3) fi(x)=Qi(u)

where χ=.u1u^ ' .
THEOREM 1. Suppose functions Qt(u) are given satisfying (2.1) and

(2.2) and such that the f^x) defined by (2.3) are Borel-measureable
suppose there exists a distribution G(x), G(0-~ )=0, 6r(l)=l, which satisfies
the functional equation

n-i CDx-j

(2.4) G(x)= Σ fj(v)dG(y) ,
j = 0 JO

Then there exists a stationary process •••ZQ,Z19 ••• , such that Zn has
possible values 0, 1, « , Z ) — 1 , and such that

(2.5) P(Zn=i\Zn-lf Zn^, - .^Q^Z^u Zn-%, •..)

with probability 1.

Proof. We consider a real-valued Markov process •••-Xn, XΛ+i, •••
whose transit ion probabilities are given by

(2.6)

where the /ί(a ) are the functions defined by (2.3). It can be verified
that if G satisfies (2.4), then G is a stationary absolute distribution for
this Markov process we shall suppose that Xn has this distribution.

Define the function h(x), 0 < # < l , by

(2.7) h(x)=lst digit in D-ary expansion of x.

Now define random variables Zn by

(2.8) Zn-^hiXJ, n=0, ± 1 , •••

The Zn then form a stationary process, whose nature is clearly com-
pletely determined by G(x). It can be shown that

(2.9)

since P f X ^ ^ ΰ Z ^ - ^ X J j ^ l for all n. Also
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(2.10) Qt(Zn-l9 Zn^ . . ) =

holds with probability 1. The only sequences (Zn-U Zn-2, •••) for which
the two sides of (2.10) might be different are sequences other than
(D — 1, D — 1, •••) which terminate in unbroken (D —l)'s, and these can
be shown to have probability 0.

It can be shown from this that Qi(u) is a permissible version of

3 Continuity properties of the Qt. We assume that functions Qt

are given satisfying (2.1) and (2.2) and that functions ft are then defined
by (2.3).

We shall refer to a point x whose Z>ary expansion terminates in
an unbroken sequence of 0's as a lattice point.

If un=(Uι,u%, •••) is a sequence for each n=l, 2, •••, then un-+u
will mean that for each k, ul=uk for all n sufficiently large.

CONDITION A. For each i and u, un-+u implies Qi{un)->Qi(u) as
n-~>oo.

THEOREM 2. Under Condition A the fι{x) are continuous to the right
for each x, 0<#<Cl> and continuous to the left except possibly at lattice
points. Left-continuity holds at # = 1 .

COROLLARY. Under Condition A the fi(x) are Borel-measurάble {in
fact, belong to Baire class 1.).

The proof follows from the definition of the fι(x). The corollary
follows from the well-known fact that a function with only countably
many discontinuities belongs to Baire class 1.

4* Existence of stationary Zn- and Xn-ρrocesses Our procedure will
be as follows. We consider a Markov process Xn with transition pro-
babilities defined by (2.6), where the ft(x) are given functions. We
give conditions on the /<(#) which insure that the probabilities P{Xn<x
I-XJ=2/) are C-l summable to a distribution G{x) which is independent
of y. The distribution G(x) satisfies (2.4) and is the only stationary
distribution for the .X^-process.

Now let functions Qι(u) be given satisfying (2.1) and (2.2). Making
use of Theorem 1 we show that under certain restrictions on the Qt

there is a uniquely determined stationary process Zn satisfying (2.5)
with probability 1. This process is ergodic. It is discussed in Theorem 6.

Under somewhat stronger conditions Doeblin and Fortet proved
essentially that

limP(Zn=i\Z-lfZ-t, •••)
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exists wi th probability 1 and is independent of Z-λ, Z_2, •••.5 We shall

show the C-l anologue of this under t h e weaker conditions.

The method we use is a development of one used originally by

Doeblin in [5].

Now consider given functions fi(x)>0, i=0, • • - , / ) — 1 ; 0 < # < l

) = l We use t h e notation

to mean that the first m digits in the D-ary expansion of x are the
same as the first m in the expansion of y. We define

(4.2) 8m= sup |/,(aO-/4(2/)| , w=0, 1, ••-.
i, (x~y)m

Doeblin and Fortet used a condition which would be equivalent in the
present context to

(4.3) Σ£*O.
m=0

We shall use Condition B, expressed by the requirements

(4.4)

(4.5) Σ

We shall understand that any of the factors (l— DsΛ in (4.5) which

is zero or negative will be replaced by 1. As an example, Condition B
is satisfied provided we have for sufficiently large k

In addition to Condition B, some sort of condition of positivity will
be required. We shall choose the simplest one.

CONDITION C. For some i, )

It is easy to see how C can be replaced by weaker conditions. For
example, in the case D=2y fo(x)=x, Condition C is not satisfied but it
will be clear from the subsequent arguments that a condition sufficiently
like C is satisfied.

THEOREM 3. Let fι(x), ΐ = 0 , •••, D — 1, be nonnegativefunctions with

5 Simple examples show that the existence of limiting probabilities does not, in general,
imply the existence of a stationary distribution. The existence of at least one stationary
Z?rprocess can be shown under quite weak conditions. The difficulty is to show uniqueness.
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Ξ=1. Let Xn, n=0, 1, , be the variables of a Markov process with
Xo^y, 0<y<l and with transition law defined by (2.6).

Define

(4.6) Gn(y x)=P(Xn<x \ XQ=y) .

Then Conditions B and C imply that Gn(y x) is summάble C-l to a
distribution G(x) which is independent of y. If (4.3) holds then the
ordinary limit exists. In either case the limit is uniform in y.6

For the proof of Theorem 3 we require the following lemma about
sums of (not necessarily independent) random variables.

LEMMA 1. Let xX9x%9 , be positive integer-valued random variables.
Let sΛ=α?H Vxn and let um be the probability that for some j ive have
Sj=m, ra=l, 2, •••. Suppose

(4.7) P(xn>i \xi, a?2, , Xn-i)>Rι

ivhere the Rh are nonnegative numbers which are independent of xl9 •••,

xn-τ and n and satisfy

(4.8) ttRi==°°

Then

(4.9) lim ^Ύ Σ w w = 0 .

The proof of the lemma, which is closely related to a standard
renewal theorem, is simple, and is omitted.

Proof of Theorem 3. The method is related to an idea of Doeblin
[5], who proved the ergodic theorem for Markov chains with a finite
number of states by considering two particles starting in different
states, which move independently until they simultaneously occupy the
same state, after which they merge. An idea similar to Doeblin's
original one is used in [6], and a related device has been used by Hodges
and Rosenblatt [9].

In order not to obscure the main idea by details we give the proof
for the case D=2. Since Condition C holds we can just as well take

Then

1Dsk2

Let to,tl9 •., be independent random variables uniformly distributed
6 We use conditional probabilities Gn(y;x), etc., to mean those probabilities which are

uniquely determined by the Markov transition operator, starting from a given value y.
They are thus uniquely defined for all y.
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on (0, 1). Define processes Xn and X'n as follows : XQ=y, X'0=y'9 0<y, yf

< 1 . Suppose Xn and X'n are determined. Then

Xn for tn<fQ(Xn)

z+-\Xn for tn>f0(Xn);

while

/ 1 X ; for tn<>f0(X'n)

X' - J
•**• n+i •<

~Xn for

It is convenient to let Un (U'n) designate the transformation applied
to I w ( i ; ) . That is, Un=ί[U'n=ί] if X w + 1 =(i
Then

(4.10)

From (4.10) we then have

(4.11) P(Un=U'n, Un+1=U'n+u

independently of Xn, Xn.

Now t h e event {Un=U'ni •••, Un+k=U'n+k} implies7

(4.12) (Xn+k+ι = X ' n + k + 1 ) k + ι

which in turn implies

(4.13) \xn+k+ι-x;ι+k+1\<2-^.

Let us say that an "engagement" occurs on the nth. step if
Un-r^Un-ι9 Un=Ur

n. If we interpret the random variables xu xi9 •••
of Lemma 1 as the intervals between successive engagements, we see
from (4.11), (4.12), Conditions B and C, and Lemma 1 that

C4 14Ϊ Γm E χ P e c t e d no. engagements in 1st N steps = Q

the limit in (4.14) being uniform in the starting points y and y'.
It can be shown from (4.14) that for any £>0, we have,

(4.15) lim - 1 iΣP(|X,-X;|>£) = 0 ,

7 A slight modification is necessary if 2/ = l or yr — \.
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uniformly in y and y'. The argument is roughly as follows. Whenever
Un^rU'n, the length of time till an engagement occurs is small, with
uniformly high probability, because of Condition C. Therefore, if only
a small number of engagements have occurred in the first N steps,
where N is large, then the probability is high that UN=^U^y UN-τ=Ur

N-lf

• •> i7w-fc=i7w--fc where k is large. Thus (4.15) follows from (4.13). (It
is easy to make this argument precise.) A simple type of argument
then shows that P(Xn<,x\Xo=y) is C-l summable to a distribution G(x)
which is independent of y. Moreover the difference

(4.16)

goes to zero uniformly in y at all points of continuity of G{x).
If the stronger condition (4.3) holds, as well as Condition C, we

can replace (4.15) by the stronger statement

(4,17) P(|Xw-X;|>£)->0 .

In fact, with probability 1 we have Un=U'n for all sufficiently large n
in this case. We then get actual convergence, rather than just C-l
summability, of the distributions to G(x).

THEOREM 4. Assume that Conditions B and C hold. Then G(x) of
Theorem 3 either has a single discontinuity of magnitude 1 at one of the
points 0, H(D— 1), 2/(D — 1), •••, 1 or is continuous.

Proof. First let i in Condition C be 0. If / 0 (0)=l it is clear that
G(x) has a jump of magnitude 1 at a?=0, and conversely. If / 0(0)<l,
G(x) is everywhere continuous. First, G(x) must be continuous at 0.
For let K and n be integers, 0<^K<^n. Consider an Xw-process with
an arbitrary starting point X0=y. If the D-ary expansion of Xn begins
with K 0's then Un-ι-=Uil-%=» =E7n_κ:=0. Hence

(4.18)

Now no matter what is the value of Xn-K=x, we have

(4.19)

Because / 0(0)<l and fo(x) is continuous at 0, the right side of (4.19)
->0 as iΓ->co, uniformly in x. Using (4.18) and (4.19), we have continuity
of G(x) at 0.

Similar arguments show continuity of G(x) at other points x. The
argument is almost the same if the i of Condition C is not 0.

THEOREM 5. Under the conditions of Theorem 3, G{x) is a stationary
absolute distribution for the Xn-process and satisfies (2.4). It is the only
stationary distribution.
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Simple examples show that if the fι(x) do not satisfy the proper
continuity conditions, there can be a limiting distribution independent
of the starting point which is nevertheless not a stationary distribution.

The uniqueness of the stationary distribution, once its existence is
known, is an immediate consequence of the existence of a C-l limiting
distribution for Xn uniformly independent of Xo.

In the case / i(i/(D-l)) = l it is readily verified that P{Xn=-il(D-l))
= 1 is a stationary distribution satisfying (2.4). We can thus limit
ourselves below to the case where G(x) is continuous. (Theorem 4.)

Instead of starting with a fixed value for XQ it is now convenient
to give Xo an arbitrary continuous distribution GQ(x) assigning probability
1 to the interval (0, 1). Letting Gn(x)=P(Xn<x) we have

(4.20) Gn+ι(x)= Σ1 \DX~J fj(y)dGM , n=0, 1, • .
j=o Jo

Then Gn(x) is continuous for each n, and we know from Theorem 3
that Gn{x) is summable to G{x). It follows from Condition B that it
is justified to pass to the limit under the integral sign in (4.20) (C-l
limit if necessary), and Theorem 5 follows.

We can now give the main results of the present section. As
before u and uf will denote sequences of integers between 0 and D —1
inclusive. For convenience we let V denote the set of all sequences
which terminate in unbroken (D— l)'s, with the single exception of the
sequence, each of whose members is D — l. For any stationary process
whatever it can be shown that

Prob [(2^,31,, ...)ePΠ=Prob[(Zi,Z2, -- )eV] = 0 .

We use the notation {u^ιιf)m to mean that the first m elements in
the u sequence are the same as the first m elements in the u' sequence.

D-l

Now let Qι(u) be nonnegative functions of u with ^Qi(u) = l and

define

(4.21) βm= sup IQM-Q.^)].
i, (U=u')m

Then the quantities 8m defined by (4.21) are identical with those defined
by (4.2) if functions ft{x) are defined by (2.3).

We shall say that the QL satisfy Condition B if (4.4) and (4.5) are
satisfied. These are requirements that the future is conditioned only
slightly by the remote past. Condition C will mean that for some j

(4.22) Q,(^)>z/> 0 ,

Now let / be a finite sequence of integers,
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and let

(A 2^0 Ωn(v\==:P(7 =o 7 =7* \Z =?J •)

The quantities Qί(u) are to be interpreted as defined, relative to the
" past" u, by means of the Qi{u) they thus have meaning even before
it is known that there is a stationary absolute distribution.

THEOREM 6. Let the functions Qt{u) satisfy Conditions B and C.
Then

a) there exists a stationary process Zn such that (1.1) holds with
probability 1

b) this is the only stationary process for which (1.1) holds;
c) the C-Λ limit of Q%u) exists for every u {except those in the set

V defined above) for every I, and is equal to the stationary
measure of I. The (7-1 limit is approached uniformly in u.

d) For every u not in V we have, for each i=0, 1, •••, D — 1 , '

(4.24) lim P(Z0=i\Z.1=ul9 «, Z-k=uk) = Q^u) ,
JC—>co

provided the left side of (4.24) is defined for each k.
Proof. Define functions ft{x) by (2.3). From Theorem 3 there is a

unique distribution G{x) satisfying (2.4). From Theorem 1 there exists
a stationary Zw-process for which (1.1) holds with probability 1. As
remarked in §2, the nature of the Z^-process is determined by the
distribution G. Hence, since G is uniquely determined, so is the Zn-
process. This proves (a) and (b) above.

The proof of (c) is an immediate consequence of the relation be-
tween the Zn- and Xw-processes, together with Theorems 3 and 5. A
slight modification is required if u=(l, 1, •-•).

The relation in (d) above is, it is well known, true for almost all
u. A simple argument shows that it holds for every u not in V.

5 Further properties of G{x). We now change our point of view
somewhat. Suppose we are given a stationary infinite-order chain Zn

as defined in the introduction. Define

(5.1) Xn=Zn-1\Ώ-\-Zn-<ί\ΏίΛ- - , rc=O, ± 1 , -•- .

Then Xn is a stationary process.
We shall further suppose throughout § 5 that the Zn-process is of the

mixing type.8 The Xn-process then is likewise.

Let the functions Qi(u) be defined by

8 See [1O, p. 36]. Roughly, if A and B are events, and B(n) is the event B translated
n units in time, then P[AB(n)]—>P(A)P(B).
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As in §2 we then define functions ft(x) by

(5.2) fi(x)=Qi(u) , i = 0 , •••, D-l,

where .uλu^ is the Z>-ary expansion of x. The functions Qι(u) are
defined at least for almost all ̂ -sequences (" almost all" in the sense of
the measure on sequences in the J£w-process.)

Let G(x) be the distribution of Xn. It is then clear that the
functions ft(x) are defined for almost all x (G-measure). It is also
readily seen that the ^-process is Markovian and that G(x) satisfies
(2.4) with the fix) defined by (5.2).

Remark on uniqueness. Let G* be a distribution satisfying (2.4),
with G*(0 — ) = 0, G*(l)=l, and suppose G* is absolutely continuous with
respect to G. Then G and G* are identical. This follows from the
general theory of Markov processes.

LEMMA 2. Let Zn be a stationary infinite-order chain as defined in
the introduction. Suppose Zn is mixing. Let

and let G(x) be distribution of Xn. Then G either has a single dis-
continuity of magnitude 1 at one of the points 0, 1/(D —1), •••, 1 or is
continuous.

The proof is similar to that of Theorem 4 and is omitted.
LEMMA 3. Under the conditions of Lemma 2, G(x), if it is continous,

is either purely singular or purely absolutely continuous.
Proof. Suppose we have the continuous case. To obtain a con-

tradiction let us suppose

where Gx and G2 are the singular and the absolutely continuous parts
of G respectively, neither being identically zero.

If we write (2.4) in the operator form G=TG, then we have

(5.3) ciG^TGO^-d-cXGz-TGJ.

Now it is easily seen from the nature of T that TGλ is singular and
TGZ is absolutely continuous. Moreover, neither G1 — TG1 nor GZ — TGZ

can vanish identically. This follows from the remark above on uniqueness.
Thus (5.3) is a contradiction.

LEMMA 4. Under the conditions of Lemma 2, the f.t are determined
uniquely by G up to a set of G-measure 0.

For from (2.4) we have

(5.4) G(x)-
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Uniqueness of the f% follows from (5.4) and the Nikodym-Radon theorem.
THEOREM 7. Let Zn be a stationary infinite-order chain of the mixing

type. Let

and let G(x) be the distribution of Xn. Then G(x) is one of the three
following types.

(a) G(x) has a single jump of magnitude 1 at one of the points
il(D-l), i=0, •••, D — l. This is true if and only if P(Zn=i)=l.

(b) G(x)=x, 0 < # < l . This is true if and only if the Zn are inde-
pendent, each being equidistributed on 0, 1, •••, D — l.

(c) G(x) is continuous and purely singular.

Proof. If G(x) has any discontinuities, then (a) follows from Lemma
2. Next we introduce the moment-generating function (s is any com-
plex number)

φ(8)=[έ»dG(x) .
Jo

From (2.4) it follows that φ satisfies

(5.5) φ(Ds)=φ(s) + Σi(e*-l)\1e'*fJ(x)dG(x) .
J-ι Jo

Setting s=2πki, i = τ / —i, we have

(5.6) φ(2πkDi)=φ(2πki) , k=±l, ±2, . . . .

First suppose φ(2πki)=0, k= ± 1, ±2, . Since φ(it) is the characteristic
function of a distribution on (0, 1), it is uniquely determined by its
values at the points 2πki hence in this case

%t

and G(x)=x. It can be verified directly that (2.4) is satisfied with
G(χ)=χ and fj(x)=llD. From Lemma 4, this is the only case where
G(x)=x can occur.

Next suppose that for some integer k we have φ(2πki)^0. Iteration
of (5.6) shows that φ(it) does not-»0 as £-»oo or £->-oo and hence G
is not purely absolutely continuous. Thus Lemma 3 shows that G, if
continuous and not of type (b), is purely singular.9

9 The fact that G has in general no absolutely continuous component can be seen from
a simple argument not involving Fourier transforms.
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6. Grouped Markov chains* Let Yn be the variables of a Markov

chain with a finite number of states, which we shall call 1, 2, •••, K.

Let the transition matrix be M=(ptJ), i, j=lf - — ,K. We assume

Pij^>0. Otherwise, even if some power of M has all positive elements,

there may be complications. We also assume i Γ > l . Now let the states

of the chain be divided into D mutually exclusive and exhaustive

nonempty subsets Bo, , BD-X. We can define an infinite-order chain

Zn by

(6.1) Z^i^Y^B,.

We shall call such a process a grouped Markov chain. We shall be
particularly interested in the case where the Y^-process, and hence the
Zw-process, is stationary. We show that Conditions B and C are satisfied,
determine the distribution of the " p a s t " of the Zw-process, and show
how the functions Qι(u) and the corresponding fi(x), can be determined.
The Qi or ft give the solution to the problem of predicting the future
values of Zn, given the past.

We first give a result about Markov chains.

THEOREM 8. Let M=(Pij) be the transition matrix of a Markov chain,

i, j = 1, •••, i Γ > l t Pij^>Q- Let Yn be the variables of the chain. Let

(6.2) λ= min

(Note that 0<CΛ<ΊL ) For each n=l, 2, •••, let An be a nonempty subset

of states of the chain. Let g and h be two states. Then

(6.3) \P(Yn+1eAn+1\Y0=g, ^ e A, •••, YneAn)

-P(YΛ+1eAn+1\Y0=h,Y1eA1, - ,Yne An)\<(l~ty ,
rc=l, 2, . . . .

The proof is omitted. It can be carried out with Doeblin's "two-
particle" method.

It is readily shown that for every u, OKutKD — l, the limit

lim P(ZQ=i\ Z-!=ulf - , Z-k=uk)

exists, for the grouped Markov chain. We may take this limit as a
permissible version of Qi(u) for the ZTO-process defined by (6.1). It can
also be seen that

(6.4) \Qi{u)-Qiu')\<{l-λT-1 , m = l , 2, . ,

whenever the first m terms of u and uf coincide. Thus Condition B is
satisfied with10

10 The stronger condition (4.3) is of course, also satisfied.
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Condition C is a consequence of the obvious fact that the Qι(u) are
uniformly positive.

THEOREM 9. Let Zn be defined by (6.1). Let

(6.5) Xn= ±Zn-jlD>

and let G(x) be the distribution of Xn. Then G(x) is continuous, 0 < # < l ,
and strictly increasing, 0 < # < l .

Theorem 7 is applicable since Zn is of the mixing type. Since Zn

has a positive probability of taking at least two distinct values (we are
assuming Z7>1), continuity follows. The strictly increasing character
of G follows from the fact that the event (Z-1=ul9 , Z-k=uk) has
positive probability for every sequence 0<uly . ,^fc<Z> — 1.

DEFINITIONS. Let Yn and Zn be as in (6.1) and let Xn be defined
by (6.5). Define

(6.6) Hj(x)=P(Xn<x\Yn=j) , 0^x<h 3 = 1, 2,.- ,K,

(6.7) θls)=Ϋes*dHό{x) , j=l, 2,-- ,K,
J

s any complex number.
Let πjf j=l, , K be the (unique) set of stationary probabilities

satisfying

(6.8) τr,= i > r p r J , 3 = h .- ,ίΓ.
r = l

Let pfj be the set of inverse probabilities

(6.9) Vts=V^lπi .

Let M(s) be the matrix defined as follows:

(6.10) M(s)=(p*es^)

where κ(j) = k when i belongs to the group of states Bk.

THEOREM 10. (See preceding definitions.) The function θj(s), j=l9

• , Kj is the sum of the elements in the jth row of the convergent
matrix product

(6.11) M(8/D) M(sjDη M(s/D3)....

Proof. Let FJ be the variables of a stationary inverse Markov
chain with transition probabilities given by (6.9) and let Z*=^i when
Y* e Bt. It is clear that Z* is inverse to the Zw-process in the sense
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that the process Ztn obeys the same probabilistic laws as the ^-process.
Define

(Incidentally Xtι and Xt follow the same law, not inverse laws.)
It is clear that Hj(x), as defined in (6.6) above, is also given by

(6.12) Hj(x)=P(X^<x \Y*=j) .

We now use (6.12) to find the functions Hj(x).
Suppose r is an integer, 0 < r < Z > - l , and suppose r/D<ix<C(r

that is, x=.ru2u3- ••. Then

(6.13)

PfmHm(Dx-r),

Next we note that X* has the same distribution G(x) as Xn. Moreover

(6.14) G(x)=P(Xϊ<x)= Σ πrHr(x) .

Since G(x) is continuous (Theorem 9), the Hr(x) must also be continuous.
Now (6.13) implies the differential relationship

(6.15) dHj(x)^ Σ pfmd[Hm(Dx-r)]
B

Denning θj(s) by (6.7) and letting θ(s) be the column vector whose
components are the ΘJ9 we see that (6.15) implies (multiplying both sides
of (6.15) by eDsx and integrating)

(6.16) Θ(Ds)==M(s)Θ(s) ,

where M(s) is defined in (6.10). Iterating (6.16) and replacing s by sjD
gives

Θ(s)=M(slD)- -M(slDn)Θ(slDn) .

Since ^(0) = l, Θ(sjDn) approaches the column vector each of whose
components is 1 as n-><^, while M(sjDn) approaches the stochastic
matrix (pf;). The powers (pt<)n converge exponentially as w->oo, and it
is readily seen that the elements of the difference M{sjDn) - (p*) are
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O(D~n), where O is uniform in s for any bounded s-region. Hence the
matrix product in (6.11) converges uniformly in any bounded s-region,
and Theorem 10 follows.

The θj(s) and the Hj(x) can be calculated in various ways. One
possibility is to determine the coefficients in the power-series expansions
of the θj by differentiating (6.16) at s=0. The values of the θό on
some interval near 0 on the imaginary axis can be calculated, and (6.16)
can then be used to determine the θό on the rest of the imaginary
axis.

We can now find the functions Qi(u) and fi{x) for grouped Markov
chains. In theorem 11, Zn is a grouped Markov chain as defined above.

THEOREM 11. Let uly •• ,wfc be integers, 0<CUj<CD—l. Then

where

and

+ukIDk , x^Ui

G(x)= Σ π,HJix.

+ ukIDk + D-k ,

The proof is merely a reinterpretation of Theorem 10.
We thus have an expression for the conditional distribution of Zn

if a finite segment of the past is known.
Next we consider the situation when the complete past is known.

Consider the XB-process and the associated functions f-{%). Then, if
X=.U1U-1 ' ',

(6.17) —A-
dG(x)

where (6.17) holds for every x, 0<JE<O, provided we take right-hand
derivatives on the right side. Thus (6.17) gives the conditional distri-
bution for Zn if the complete past is known.

Example. Suppose

3

1
K 2

4

3

2

3
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Then 7Γi=4/ll, 7Γ2=3/11, 7Γ3=4/11, and in this case ptj^Pij- Take states
1 and 2 as Bo, state 3 as Blf so that D=2. The ̂ (s) then satisfy the
equations

(6.18) 0,(28)= * 0!(s) + -*-0a(s) + J β flsίs)

which, with the conditions ^(0) = l, determine them uniquely. The
Hj{x) can then be determined by Fourier inversion.
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ON CERTAIN SERIES EXPANSIONS INVOLVING

WHITTAKER FUNCTIONS AND

JACOBI POLYNOMIALS

PETER HENRICI

1. INTRODUCTION

1. l Outline of the paper* By substituting polar coordinates in
the partial differential equation

(1) ^ + Vu + 4/. + 1 du + 4v + l du
dx* dy1 x dx y dy

and separating variables, one is led in a natural way to certain com-
binations of Whittaker functions and Jacobi polynomials (called for
brevity J.-W. functions in this paper). With a view towards deriving
some functional relations involving hypergeometric functions, we
develop in the first part of the paper a technique for the construction
of expansions of arbitrary regular analytic solutions of (1) in terms of
these J.-W. functions. The method of our investigation consists in
setting up a one-to-one correspondence between the class of even
analytic functions of one complex variable regular in a circle around
the origin and a certain class E of regular solutions of (1). This
correspondence associates with a solution u{x, y) e E the function
u(Xy — ix) obtained by considering u (α?, y) on the (imaginary) characteristic
x — ίy=0 of (I).1 Since the maps of the even powers of a single variable
in this correspondence are shown to be the J.-W. functions mentioned
above, the expansion problem in question is reduced to the problem of
finding the Taylor expansion of a given analytic function of one variable.

Applying this technique to some special solutions of (1), we are
led to three expansions involving various kinds of hypergeometric
functions. The first of them contains a number of well-known theorems
on special functions as special cases, namely, among others, Bateman's
addition theorem in the theory of Bessel functions, Ramanujan's
formula for the product of two confluent hypergeometric series, and
Erdelyi's addition theorem (with respect to the parameters) for the
product of two M-functions. The second application gives rise to

Received October 9, 1953. This paper was prepared under a National Bureau of
Standards contract with American University. The author is indebted to Prof. A. Erdelyi,
who saw a first draft of this paper, for some most helpful critical remarks.

1 This procedure is related to Bergman's operator method in the theory of elliptic par-
tial differential equations with regular coefficients; see the remark at the end of §4.
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another addition formula (in the ordinary sense) for the product of two
M-ίunctions, while the third may be looked at as an alternate formula-
tion of Bailey's decomposition formula for a special case of AppelΓs
function F±.

1. 2. Definitions, In (1) the parameters μ, v, λ, k are arbitrary
complex numbers with the only exception that μ and v are subject to
the condition

(2) 2^-f2H=-2, -3, -4, ... .

Sets of values (u, v} λ, k) satisfying (2) are called admissible values of
the parameters.

If & denotes a domain of the complex (x, ?/)-space which contains
the origin, we denote by E$ the class of analytic functions u(x, y)
of the two complex variables x and y which

(i ) are regular in & ,
(ii) are even fuctions of x and of y, and
(iii) satisfy (1) for certain admissible values of the parameters.2

We denote by J/Γr the circle |£|<V of the complex £-plane, and by
,^x3ί^ the bicylinder | z | O , |2*|<> i*1 the space K'1 of the two complex
variables z and 2*.

Our notation of special functions follows the traditional lines. For
the ordinary and the generalised hypergeometric series we found it
convenient to use Bailey's notation [1, p. 8]

2. JACOBI-WHITTAKER FUNCTIONS

Our first aim is to construct a set of solutions of (1) by the
elementary method of separating variables. Introducing in (1) the new
variables

( 3 ) P -

we obtain for v(p, τ)=u(x, y) the equation

^ dp* dp δ 2
dp dp δr

]r] + kp(λ
dτ V 4

If v(p, τ)=R(p) T(τ) is a solution of (4), one finds by the usual sepa-

2 We do not investigate the problem of the extent to which the three conditions (i),
(ii), and (iii) imply each other.
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ration method that K(p) and T (τ) have to satisfy separately the
equations

(5) +2(l + μ + v) + \ +
dp1 P dp L ρz p 4

and

( 6 ) ( i - ^ ) « £ ^

where s is a separation parameter. Writing s=w(2/*4-2v-f 1 + ri), we
find that solutions of (5) which are regular near ^=0 are represented
for n=0, 1, 2, ••• by

( 7 )

where Λf denotes the Whittaker function of the first kind, while (6)
has for the same values of s the polynomial solution

r

where P stands for the Jacobi polynomial in the notation of Szego [11,
p. 61]. Provided (2) is valid, solutions of (1) regular near x=y=0 are
thus given by the functions

( 9 ) fn^\ρ, τ; λ, k) == cJPn<*^\τ)k

where

is a normalisation factor introduced for later convenience. We shall
call these functions for brevity Jacobi-Whittaker functions (J.-W.
functions) of order n. The arguments λ and k in /w

Cμ>v) will usually be
omitted, if it is not necessary to exhibit them explicitly.

For later reference we note the following special and limiting
cases of the functions fn

Cμ^:
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( i ) For Λ=0 we have [6, p. 13]

f^^Hoy r; 0; k)

where / is a modified Bessel function.

(ii) Putting λ= κ and letting k-*0, we obtain the function
4J

(12) ™ V Ak

where J denotes the ordinary Bessel function. Evidently (12) satisfies
the differential equation

(13) ^ + ̂  + - 4 * ± ί 3 ^ + 4?i±l 3 w- + m = 0 .
3 a ? a a ? / 2 ^ 3 ^ y d y

We will refer to (12) as to the " reduced M case of the functions
/w

C μ 'v ). The limiting values of λ and k leading to it are included in
the admissible values of the parameters.

(iii) For λ=h=O we have from (9), (11) or (12)

(14) fn^
v\Pi τ; 0, 0) = cnP

nPn^ ^\τ) .

We study next some properties of the J.-W. functions considered
as functions of the two complex variables z and z^ defined by

(15) z^xΛ-iy , z*=x—iy .3

As such they satisfy the differential equation

(16)
dzdz* z + z* I dz dz*) z-z% I dz

which is readily constructed by inserting in (1) the variables (15).
From (3) it is evident that

Thus we have for

3 It is assumed throughout the paper that x and y are independent complex variables,
so that also z and z* take on independent complex values.
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the representation

(17) Fn^\z, z*)

2

Using the relations [11, pp. 58, 61]

and

pC2μ,2V)M_(2 i" + 2

^ ( r J ~ ~ nΓ \TJ 2 ' l-2n-2μ

and observing (7), we may write this also as follows:

ra /r-lV „ Γ-n, -ίi-2/ι; 2 Ί
\TJ 2 ' l-2n-2μ-2v

1~τ\

kzz*

From this representation it is easy to draw the following conclusions
LEMMA 1. For all admissible values of the parameters,

LEMMA 2. For all admissible values of the parameters,

In order to prove Lemma 1 we observe that the last two factors in
(18) are entire functions of zz*, while, since the series 2Fλ in (18) termi-
nates after at most n terms, the first two factors form together a
polynomial in z and z*. The solution (18) of (16) is thus an entire
function of z and z*. Furthermore the conditions of symmetry im-
posed on the elements of E, which for functions of z and z* amount to
the relations

(19) F(z, z*)=F(-z, -z*) , F(z, z*)=F(z*, z) ,

are satisfied by (18). Lemma 2 follows simply from the fact that for
z* = 0 the last three factors in (18) reduce to 1. It is easy to see that
both Lemma 1 and Lemma 2 remain also true in the reduced case.

We come now to a simple equiconvergence property of series of
J.-W. functions.

LEMMA 3. Let r > 0 and let
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(20) /(z)

be regular in <5^. Then for fixed admissible values of the parameters
the series

(21) F(z, s*) = Σ α Λ ( μ '>(s, z*; λ, k)

converges uniformly in every closed subregion £# of & =3ίίrx^Γr and
represents there a function e Έ& with the property

(22) F(z, O)=f(z) .

Proof. Obviously the second statement of the lemma follows
immediatly from the first and from Lemma 2. In order to prove the
uniform convergence, we again use for the J.-W. functions the re-
presentation (18). It follows in the general case from a well-known
theorem on M-iunctions [8, p. 93] and in the reduced case from an
analogous theorem on Bessel functions [13, p. 44, formula (1)] that for
bounded (z, z*) and for n large the product of the last two factors in
(18) is asymptotically equal to 1. It suffices therefore to consider the
case λ=k=O. We make now use of the well-known generating func-
tion of the Jacobi polynomials [11, p. 68. formula (4.4.5)]. Replacing
the variables a, βf x, w in Szegδ's formula by 2v, 2μ, (z2 + z*'z)l2zz*, tzz%

respectively and observing (17), we obtain the power series in t

(23) ΣfinιFn^\z, z*; 0, 0)tn=E(z, z*; ί) ,
W = 0

where for given r r / >0, E(z,z*;t) is a certain analytic function of zf

s* and t regular in (z, z*)e {J3ζΓ,, x J££,} Γ\ {\t\<r"-*}. Let now ^ b e
enclosed in a bicyUnder ._>££ x <ί^, where r r < r , and choose r", r"'
such that r'<Cr"<Cr'"<r. Applying to (23) Cauchy's estimate for the
coefficients of a power series with \t\=r'"~2 yields

(24) \Fn^\z, z*; 0, 0)\^K\cn\r"'*» ,

where

K= max \E(z,z*;t)\

is finite and does not depend on n. Therefore the terms of (21) are
dominated in & by the terms of the series
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which converges absolutely, since |cw/cn_i| —> 1 (%->oo) and (20) converges
for some z = r " " with r ' " O " " < > . 4

3. A UNIQUENESS THEOREM FOR SOLUTIONS OP (1)

LEMMA 4. Let & be a domain CZ K2, containing the origin, and
let F(z, s*) be a function e E such that F(z, 0) = 0. Then F(z, z*) = 0 in &.

Remark. The proof of this lemma does not follow from the
general uniqueness theorems for hyperbolic initial value problems
(see, for example, [7, p. 321]), since some of the coefficients in (16)
are singular.

Proof. In view of the relations (19) the power series expansion of
F, which by assumption converges in a certain neighbourhood of the
origin, must be of the form

(25) F (z, 2*)= Σ Σ cm, nz'm-nz*n ,
771 = 0 W = 0

where

If we call s + t the weight of the monomial z?z*\ we may say that
(25) contains only terms of even weight. By assumption and by (26),

(27) Cnh0^cmi2m=0 , m=0,l ,2,

By differentiating (25) and substituting into (16) we obtain, after multip-
lying by z2-z*2,

= 0 ,

where the symbol Rm denotes terms of higher weight than m. We
prove now that cm,n=0 for all values of m and n in question by induction
with respect to the weight.

By (27), ^ o ^ O . Let us assume that we have proved

(29) c fc)%=0 for n=0,1, ••• ,2k; k=0, 1, , m - 1 .

Consider now in (28) the terms of fixed weight m. Then the terms
Rm will be multiplied by coefficients cKn with k<m, which are zero by

4 The author is indebted to a referee for the following remark: Using the theorems
about the growth of a power series of one complex variable whose coefficients satisfy
certain conditions, one could obtain bounds for the functions (21) in terms of the coeff-
icients an.
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(29). Considering now the fact that the coefficients of each fixed
power z*m-nz*n must vanish separately, we are led to the recurrence
relations

(30) ς,i(w+// + ̂ )+2cm,Mμ-v)=0 ,

cm, n+ι(n 4-1) (2m - n 4- 2μ 4- 2v) + 4cm> w(ra -n){μ-

— 0 , rc=l, 2, ••• , 2 m - l .

Since cm.t0=0 and since m+w + v=4=0 for admissible values of the para-
meters, we have from (30) cmΛ=0 and hence from (31) cTO| o + 1 = 0 as long
as 2m — n + 2μ + 2v=%=0, for n=l,2, •••, 2m — 1 . It follows that (29) is
true for /£=m and hence for all k.

4. EXPANSION THEOREM

The following theorem, which will be the principal tool for the
special functions work in the later part of this paper, is now easy to
prove.

THEOREM. Let r>0, & = ,?£ x ^ and let F(z, z*) e E$. If

(32) F(z, 0) =

then the series

(33) ΣαnFβ<^>(s, z*)

(which by Lemma 3 converges in <5&) is equal to F(z, z*) in & .
Proof. By Lemma 3, (33) represents a function e E$ which is

equal to F(z, 0) for z* = 0. By Lemma 4 the function

F(Z, Z^-JtanFn^iZiZ*)
w = 0

vanishes identically in & .

The expansion (33) will sometimes be called J.-W. expansion of
F(z, z]ί). The function (32), the knowledge of which is sufficient for the
construction of the J.-W. expansion of F(z, s*), will be called the
generating function of this expansion.

Remark. For fixed admissible values of the parameters Lemma 3
sets up a mapping of the class of even analytic functions of a single
complex variable regular in a J ^ o n the class Ejcrχj{r. This mapp-
ing is one-to-one by Lemma 4. The inverse mapping is given by the
formula

f(z)=F(z,0),
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which is essentially identical with the inversion formula for Bergman's
so-called integial operator of the first kind,5 whose existence, however,
has been established in general only for the case where the coefficients
of the differential equation are regular analytic functions in the con-
sidered domain. Our theory presents an example of a representation
of an operator analogous to that of Bergman in a case where the
considered differential equation has singular coefficients.6

We proceed now to construct explicity by our method the J.-W.
expansions of several special solutions of (1), which are again obtained
by the method of separation of variables.

5. APPLICATIONS OP THE EXPANSION THEOREM :

CARTESIAN COORDINATES

If the function u(x,y)=X(x) Y(y) is introduced in (1) (with &=1),
we find that the differential equation is satisfied if X and Y satisfy
separately the equations

( 8 4 ) ^ * **

+

dy2 y dy

provided a + β=λ .

Solutions of these equations which are regular near #=0 and y=0
can again be expressed by means of Whittaker functions. In view of
the differential equation satisfied by these functions it is readily verified
that, provided none of the numbers 2μ and 2v is a negative integer,
one may put

X(x)=χ-**-ιMΛtμ(a?) ,
( 8 5 )

Introducing the variables z and z* and passing to hypergeometric
series we have

( 3 6 )

5 See [2, p. 117]. Contrary to the situation described there, our operator maps func-
tions f(z) which are real for real z on solntious of (1) which are real for real x and y.

6 Other cases of differential equations with singular coefficients have been treated by
Bergman [3,4]. The " r e d u c e d " equation (13) has in the case 4μ + l = 0 been considered
by the present author in [10], where a different method has been used.
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The generating function of the J.-W. expansion of U(z, z*) is thus
given by

= y V
«-o (2/ i4- l ) m m!

Applying the expansion theorem, writing the J.-W. functions in the
form (9) and using the relations (following from (3))

we obtain the following J.-W. expansion for the product of two Whit-
taker functions with different pairs of indices and arguments, which
is valid for unrestricted values of p, τ, a, β, as long as none of the
numbers 2//, 2v and 2μ-\-2vJrl is a negative integer:

\ / ί n _L_ ^ rv \ "J ιι nsin . , _ L ^ M ^i

^ Γ n Vr/Γ iK1Λ + β> μ+v+ i n m\P)

This mother expansion has a great number of children and grand-
children, of which some are known since long. In the following we
list some of those of its special cases where the function 3F2 can be
expressed in a more closed form, and some other consequences.

5 1. Bateman's expansion. Putting in (38)

f) = kr* , r=cos2# ,

β=siϊi2
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and letting &->0, we obtain, using (12) and replacing 2μ and 2v by μ
and v respectively,

(r cos φ cos #)~μe7μ(r cos ψ cos d) (r sin ^ sin ^)"Vv(r sin ^ sin •«?)

(39) ^ (-)m2
>4- 1 + ra)

which is equivalent to Bateman's expansion for the product of two
Bessel functions [13, p. 370]. As pointed out by Watson, a great
number of theorems on Bessel functions can be considered as special
cases of this expansion.

5. 2. Product of Bessel functions, second case. If α = /3=0, we
have, using a theorem by Watson [1, p. 16],

1
f ) ( 1 I -1-

~"" ίU}l < V ~i —I

1 J

, if m=2n

0 , if m = 2 n + l ,

n=0, 1,2,

and thus by (11), after dividing by a numerical factor and replacing p
by 2p,

2 )

This Neumann series for the product of two Bessel functions cannot be
deduced from Bateman's expansion. The special case μ=v of it has
been given by us already earlier [9, p. 333].

5. 3. Product of two Bessel functions, third case. Replacing in (38)
p, a, β by kp, l/4fe, —1/4&, respectively and letting k-^-0, we obtain
in view of (14), writing again μ, v instead of 2μ, 2v,
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1 \n

Equivalent forms of this formula are well known in the theory of
Bessel functions.7

5- 4- J^W, expansion of a single Whittaker function. In the case
/?=v + i the 3F2 in (38) reduces to 1 (one of its numerator parameters
being zero) and the second of the two M-ίunctions on the left becomes
an exponential function. Thus we have

( 9 )

(42) V 2 /

- P

e

An expansion which is equivalent to this one is listed by Buchholz [6,
p. 130], who gives credit for it to Erdelyi. Buchholz also indicates
various special cases of the expansion.8

5. 5. Product of two Whittaker functions, Remanujan's case.
Another case in which the function 3F2 can be summed elementarily is
given by the conditions a=β, μ = v. Then we have, upon application
of a theorem by Dixon [1, p. 13]

Γ-2μ-m,μ + \

1—μ-Va-m-V ,

—a, -ra;

0 , iίm=2n + l,

furthermore [11, p. 80]

7 See, for example, [13, p. 148]; or for the special case μ = v =̂ 0 also [12, p. 2].
8 The case where the ikf-functions in the summation reduce to Bessel functions has

(with r = l) been rediscovered recently by Slater [16].
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where C2χ+i denotes the Gegenbauer polynomial. Thus (38) becomes9

» (2n)l(μ+la)(μ++a)

n = 0 n\(2μ + l)n(Aμ + l),n

 2

For r = 0 we obtain in view of

after multiplying by (p/2)2μ+1 and replacing ^ by 2p the series

( 4 4 ) . ( - n 2 n y ( μ l ) μ ^ ) ( μ )
O-2μ-l V V ^ /n\ * /n\ ώ/» 1/

(\)2(2l)(4 l)

which expresses the square of an M-function as a series of M-ίunctions
in which the first index and the argument are duplicated. Expressing
p and τ on both sides of (43) by z and z* and putting £* = (), we have
in view of Lemma 2, using (37) on the left.

Zz 1 Z2

J

(45) = v

2 '

This result was already found by Ramanujan [1, p. 97].

5, 6. Generalisation of Erdely's integral- Assuming m ^

- - - , multiplying (38) by

9 The special case μ = α = — of this formula has been given in a different notation by

Rainville [15]. (The M-f unctions on the left can then be expressed in terms of the error
function.) Some misprints in [15] are pointed out in [14].
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{pj2Y+v+ι(1 - r)2v(l 4- r ) s W ' «(r) ,

where n is a fixed nonnegative integer and integrating with respect
to τ from — 1 to -I-1 we obtain in view of the well-known orthogonality
properties of the Jacobi polynomials [11, p. 67]

( 4 6 ) __2^Γ(2v + w +

-2μ-n,

For w=0 this reduces to a formula equivalent to a well-known result
due to Erdelyi [8, p. 134]; see also [6, p. 128]. It is then most easily
proved by means of the Laplace transformation.

5 7. Neumann series for the product of two M-functions* We
mention finally that the special case obtained by putting β=—a, μ=v
has been given by us already earlier (See [9, p. 329], and [10, p. 270],
where also some special cases are discussed). In this case (and also in
the more general case μ^v) the ikf-functions on the right of (38)
reduce to Bessel functions, without this being the case for the M-
functions on the left.

6. APPLICATIONS OF THE EXPANSION THEOREM:

JACOBIAN ELLIPTIC COORDINATES

Other particular solutions of (1) can be found by introducing in
(4) or (16) new variables ξ and η defined by

(47) ξ = ω + p , V = ω-p ,

where

(48) <b = V(a^^(a^z**)

with some real constant a, the square roots being positive for z=z* = 0.10

10 These coordinates can be shown to be a special case of the general ellipsoidal coor-
dinates, as investigated by Jacobi. Their use is also suggested by the structure of the
generating function of the Jacobi polynomials.
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By elementary computations one finds that if U(z9z*)=W(ζ,ij)9 (16) is
transformed into

oξ

(49)

This equation can again be separated. One finds by the usual method
that if W{ξ, *])=Ξ(ξ)H.(rj) is a solution, Ξ and H have to satisfy
separately the two ordinary differential equations

where p is a separation parameter. In order to obtain solutions of
these equations in terms of known functions, it seems necessary to
simplify them by assigning special values to some of the parameters.
Two such simplifications will be indicated below, one of them leading
again to Whittaker functions, the other to ordinary hypergeometric
functions.

6. 1. Addition theorem for Whittaker functions. If in (50) we set

p=0, v= — --, λ=a , the first equation becomes divisible by ξ — a and
2 8

the second by τy + a. Cancelling these factors and setting (without
essential loss of generality) k=l, we obtain the two equations

dη 16

which again can be easily reduced to Whittaker's equation. Carrying
out the reduction one finds that solutions which as functions of z and
z* are regular near z=z* = 0, that is regular near ξ==η=saf are given
by

(52)
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and that, as long as 2μ is not a negative integer, the product of these
two functions belongs to EjcΛxJC<f Since for z* = 0

the generating function of the J.-W. expansion of W(ξf

 γJ)=Ξ

(53) / ^

If we write

(54)

the required J.-W. expansion, valid in ^ ^ x J ^ a n d provided 2μ is not
a negative integer, is

(aP -
~8' V 2

(55)

2μ + m) 8

where ω is given by (48). It does not seem possible to express the
coefficients i4m°° in any closed form. Using a result of the previous
section it is however not difficult to derive for them a series whose
general term is again a M-function and whose coefficients can be ex-
hibited explicitly. If in (43) we replace p, r, a by α,τ/l"-^"2/α", a/8
respectively we obtain on the left just (53) and have therefore

(56) f(z)

Now, by Gauss' quadratic transformation,

r- L 2^ + 1 J

Inserting this in (56) and rearranging the series by collecting equal
powers of z (which is permissible in view of Weierstrass' theorem) we
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obtain in view of (54) the desired series representation

1 0 C ) (μ + λ+vΛ (2μ +-0C) (μ + λ
8/Λ 22/n~ \ 2 8/Λ 2

Λ f t ί μ ) ( α H "•"(27+l)Λm! Σ? ι ( w ^ θ
(57)

x α - 2 μ - * ) ¥ + i + 2 n (α) .
4 ^

Since in virtue of this formula (56) expresses the product of the two
functions

M»

in terms of products of iW-functions with the arguments p and a
respectively, (55) may be looked at as an addition theorem for the
functions on the left in analogy to a similar situation in the case of
the well-known addition theorems of Graf and Gegenbauer in the
theory of Bessel functions [13, p. 358].

For r = — 1 we obtain from (55) the following addition theorem of
a more elementary character:

(58) (

6 2 Hypergeometric functions. Inserting in (51) the special
values p=qjk> a = l, and letting yfc->0 yields the two differential
equations

(59)

(Ψ -1) -—• ^

which are of hypergeometric type. Using this fact it is readily proved
by substitution that solutions of these equations regular near z=z* = 0
(that is regular near ξ=V=l) are given by

1-7
2 1

J
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where

is arbitrary, since q was arbitrary. Writing U{z, z¥)=Ξ(ξ)H{7]) anb

(61) U(z,O)=±anz*n ,
71 = 0

we have, according to the expansion theorem,

(62) U(z9 z*) = Σ anFn^ »(z, z*; 0, 0) .

Since here the parameters λ and & are both zero, the coefficients an

can be easily determined by putting z=z*. From (47) one has in this
case 6=1, V=^l — 2z2 and from (14), since now r = l , p=z\

, υ, ϋj—-- - ~ z .

( )

Thus (61) reduces to

FΓ
ft+v+ 2•-

which yields

(64) ( / ^ + 2

Thus (62) may now be stated more explicitly as follows:

l
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A result equivalent to this was derived by Brafman11 from Bailey's de-
composition formula for a special case of AppelΓs hypergeometric
function F± of two variables [1, p. 81.] Since it is also possible to
derive Bailey's formula from (65) simply by replacing the Jacobi
polynomial by its hypergeometric definition and inserting appropriate
values of p and r, our proof of (65) contains also a new proof of that
formula.

Restating (61) with the explicit value of an given by (64) we obtain

(66)

_ τp \ Z Z 2

L 2/^4-1,2^+1,2^ + 2^4-1 J

which is equivalent to a result proved by Bailey [1, p. 88, formula (3)]
by means of transformations of terminating generalized hypergeometric
series.
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THE SOLUTION OF CAUCHY'S PROBLEM
FOR A THIRD-ORDER LINEAR HYPERBOLIC

DIFFERENTIAL EQUATION BY MEANS OF
RIESZ INTEGRALS

JOHN G. HERRIOT

1. Introduction. M. Riesz [3] solved Cauchy's problem for the
wave equation by means of a generalization of the Riemann-Liouville
integral and a consideration of Lorentz space. L. Garding [1] solved
Cauchy's problem for two linear hyperbolic differential equations arising
from a consideration of spaces of symmetric and Hermitian matrices by
means of similar generalizations of the Riemann-Liouville integral.
Garding [2] also proved some general results for the solution of Cauchy's
problem for general linear hyperbolic partial differential equations with
constant coefficients again using Riesz-type integrals.

In the present paper the explicit solution of Cauchy's problem for
the third-order partial differential equation

(1.1) Δu=h(xlf x2, x3) ,

where Δ denotes the operator 33/(3#i dx2 dx3)f is given by means of a
similar generalization of the Riemann-Liouville integral. We restrict
our attention to the case in which u and its first and second derivatives
are given on the plane S whose equation is x1 + x2-hx3=0. We verify
in detail that the solution given actually satisfies the differential equ-
ation (1.1), and also that it and its derivatives assume the proper
values on S.

Before proceeding to a study of (1.1), we give a brief discussion
of the Riemann-Liouville integral and Riesz's generalization of it. (We
use mainly the notation of Garding [1].) Let p be a complex variable,
and consider the Riemann-Liouville integral

(1.2) Ivf{x)- j^X f{t){x-tγ-'dt (a<x<b<oo)

where ^ ( p ) > 0 / and f(x) is a continuous function when α

This integral diverges if &(v)<fi. If p and q are such that

we have

Received January 19, 1954. Presented to the American Mathematical Society, September
3, 1953. The results presented in this paper were obtained in the course of research
conducted under the sponsorship of the Office of Naval Research. The author wishes to
thank Professor C. Loewner for suggesting the problem discussed in this paper and for
his continuing interest in it.

1 Sl(p) denotes the real part of p.
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(1.3) I»I*f(x) = I»+*f(x)

and

( L 4 ) f P+ίf(x)=Pf(x) .
ax

Clearly lpf(x) is an analytic function of p, regular for
and depending on the parameter x. It can, however, be continued
analytically beyond this region provided that f(x) has a sufficient
number of continuous derivatives. Let us write

(1.5) /(*)= Σ f ω ^ - ^ J

 + φ ? , t, k),

so that r(x91, k)l(t-x)k is bounded when a<t<x. Then on substituting
in equation (1.2) we find that

(1.6) I*f(x)=^rXr(x, t,
Γ(p)Ja

Σ1

Here the integral converges for &(py> — k, and (1.6) provides an analytic
continuation of Ipf(x) for such values of p. In particular,

(1.7) I-Jf(x)=fU\x) C/=0, 1,2, •) .

By successive integrations by parts we can find another formula
which is also useful for the analytic continuation of Ipf(x). We have

(1.8) I*f(x)=Ip+mfim>(x)4-

If we let p->0 we find that

(i.9) f(χ)if\χ) + Σ
j-o j !

The right member of (1.9) gives the solution of the differential
equation

(1.10) / ( a )
dxm

w h o s e d e r i v a t i v e s of o r d e r less t h a n m a s s u m e t h e v a l u e s / ( α ) , •••,
Pn~ι\a) when x=a.

When generalizing (1.2), Riesz considers Lorentz space L with points
x=(xi9%2t , xn) The square of the distance of x==(xl9x29 , xn) from
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r(x -ξ) = (xτ - ft)3 - (s, - ξ,γ (xn - e J .

The interior of the light cone with its vertex at a fixed point x is
characterized by r(x — ?)>0 where £ is variable. It consists of two
parts, the direct and the retrograde cone, characterized by

r(x-ξ)>0 , ft-a?!>0 and r(s-6)>0 , ft-a?i<0 ,

respectively. It is the retrograde cone denoted by D(x) which is mainly
considered by Riesz. The domain of integration used is the bounded
domain Ds(x) limited by the nappe C(x) of the retrograde cone D(x) and
a certain sufficiently regular surface S having the property that every
straight line in L with a direction of nonnegative square length meets
S in at most one point. The volume element in L is dξ=dξ1dξz* - *dξn.
Let f(x) = f(x19%vίf ,xn) de a real function defined in the region
consisting of all points x whose retrograde cones D(x) intersect S. Then
Riesz's generalization of (1.2) is2

(1.11) I*f(x) = ] ̂  \

with

If f{x) is bounded, the integral is a regular analytic function of p for
,^(p)>(>z-2)/2. It can be shown that (1.3) is valid and, corresponding
to (1.4),

(1.12) 4*Ip+

where Δw is the wave operator

If fix) has derivatives of sufficiently high order it is possible to continue
Ipfix) beyond the region in which the integral converges. The
generalizations of (1.7) are found to be

(1-13) IΊ\x)^f(x) , I'Jfix)=4fix) ( i = l , 2,3,

By means of Green's formula it is found that

2 To get uniform notations in this paper, as in Garding [1], Riesz's variable α is
replaced by 2p here.
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(1.14) I»f(x)=I'«Δf{x)

where S(x) is the portion of S interior to the cone D{x), dldv is taken
in the direction of the Lorentzian normal to the surface Sf and dS is
the Lorentzian element of surface area.

If we let p->0 in (1.14), the right side gives the solution of the
differential equation

(1.15) Δwtι(x)=h{x) ,

u(x) and its (Lorentzian) normal derivative being given on S.

In the present paper we consider three-dimensional Euclidean space
with points x=(xlf x2,xd). In this case the retrograde light cone D(x)
with its vertex at a fixed point x is characterized by x1 — ?£>0, xt — ξ^>0,
X3 — <?3>0, where f=(£i, ft, £3) is variable. We denote by S the plane
?i + ?2 + £3=0. The domain of integration used is the bounded domain
Ds(x) limited by the boundary of D(x) and the plane S. Then our
generalization of (1.2) is

(1.16) if{x) = -Γ-~=

where r(x — f) = (xi — ξi)(x z~ξi)(xs- 63) and dξ=dξιdξ2dξ3. If f(x) is bounded,
the integral is a regular analytic function of p for ^ ( p ) > 0 . We show
that (1.3) is valid and, corresponding to (1.4),

(1.17) Δl*^f(x) = I*f(x) .

As before, Ivf{x) can be continued analytically if f(x) is sufficiently
differentiate. The generalizations of (1.7) which we prove are

(1.18) Pf(x) = f(x) , I-if{x) = Δf{x) .

In § 3 we apply Green's formula to discover a formula similar to
(1.14), namely,

(1.19) I*f(x)=Ip+ιΔf(x) + I^f(x) ,

where lTιf{x) is an integral over S(x), the portion of S interior to
D(x), involving / and its first and second derivatives. If we let p-»0
in (1.19), we obtain the solution of Cauchy's problem for the equation
(1.1). The verification of the solution is carried out in § 5 making use
of a series of lemmas developed in § 4.

The methods of this paper can be applied to the solution of the 92th
order partial differential equation



SOLUTION OF CAUCHY'S PROBLEM FOR A THIRD-ORDER EQUATION 749

— — h(x1, X>z, , Xn) .

3#i3#2 ΰxn

However, the formulas required are very cumbersome to write and for
this reason the present discussion has been limited to equations of third
order.

2 Generalization of the Riemann-Liouville integral. Since we wish
to consider the differential equation

(2.1) Δu == dhιl(dxLdxidxό)=h(x1, xif x3) ,

the appropriate formula for the cube of the distance between points

x=(xl9 x2, x i) and £=(&, &, &) is

(2.2) r(x-ξ)=(x1-ξ1)(x%-ξi)(xs-ξ3) .

The retrograde light cone D(x) with vertex at a fixed point x is
characterized by #1 —£χ>0, a?2 — fa>0, a?3 —£C>0, where ξ is variable.
We do not make any use of the geometry of the space based on this
distance formula but in finding volume elements and surface elements
we regard the space as ordinary three-dimensional Euclidean space. It
is only in determining the proper generalizations of the Riemann-
Liouville integral that (2.2) plays a role. We first consider an integral
extended over the whole of D(x). We suppose f(x) defined in a region
such that if this region contains a certain point x it contains also the
retrograde cone D(x). In order to assure the absolute convergence of
the integral considered we suppose among other things that f(x) tends
toward zero sufficiently rapidly when xlfx2fx3-+—oo. We then define,
for complex values of p such that

(2.3) I»f{x) = ~

We should like to have

(2.4) ΔI»+1f(x)=I»f(χ)

and

(2.5) IpIqf(x)=Ip+qf(x) .

In order to find the correct form of H3(p) to accomplish this we consider
the particular function

f1(x)= exp (a?!-f a?3 + a;3) .

Clearly Δf1(x) = f1(x)9 so we should have Ipfι{x) = fι(x). Introducing
this function into (2.3) we easily find that we should choose H3(p) = [Γ(p)J.
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With this choice of H3(p), it is easy to verify that (2.4) holds by
merely carrying out the necessary differentiations. We proceed to verify
that also (2.5) holds with this choice of H3(p). After interchanging the
order of integration we find that

(2.6)

[Γ(p) Γ(q)Y J J J D(x)

If we make use of the well-known formulas

(2.7) Γ(e-α)-1(6-f)' |-1df=(δ-o)-+' |-15(α, β)

J

and

(2.8) B(a, β) = Γ(a)Γ(β)IΓ(ct
we find that the right member of (2.6) reduces to F+qf(x). Thus (2.5)

is established.

In the applications to follow, the domain D(x) will be replaced by

a bounded domain Ds(x) which is limited by the boundary of the retro-

grade cone D(x) and by the plane S whose equation is £i4-f2-f £3=0.

We shall therefore in all that follows use the following definition of

Ipf(x):

(2.9) Ipf(x) = * \\\

Since this is the same as (2.3) if only we assume that /(?) = 0 when
£i + 62 + £3<Ό, it is clear that the relations (2.4) and (2.5) hold also when
Pf(x) is defined by (2.9).

In the application of (2.9) to the solution of Cauchy's problem we
shall be concerned with the limit of Ipf(x) as p->0. We therefore
prove:

THEOREM 2.1. If f(x) is continuous in the region x1-\-x2-hx3*>0 then
Ipf(x) defined by (2.9) is a regular analytic function of p for ^
and

(2.10)

in the region Xι

Proof. That Ipf(x) is analytic when ^ ( p ) > 0 follows at once from
its definition by equation (2.9).
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In order to prove (2.10) we make a change of variables by writing,
in (2.9),

Xι — ξι=dσ cos2ft , xt — ξ2=dσ s in 2 ^ cos2#2 , x3 — ξ3=dσ siriIθ1sin2θ2 ,

where d=xι-{-χ.z-\-xά^>0. If we also make use of (2.8) and the well-
known formula

(2.11) B(ay β)-=2[t'siήza-ιθcos^-'θdθ ,
Jo

we find that

(2.12) I>f(x) - f^ -. f(x) = ?~ [ Γ Γ W , θl9 ft) -F(0, Θl9 ft)]
Γ(3p-t-l) [/(p)]3JoJo Jo

where

, ^ 3 — cZίj s i n 2 ^ sin 20 2)

But since /(a?) is continuous, if ε^>0 is assigned we can find a S such
that 0 < X l and such that |F(<τ, ft, ft)-F(0, ft, ft)|<e when 0<^<^,
uniformly in ft and ft. We now break the integral in (2.12) into two
parts Jλ and J2 in Jlt a goes from 0 to d, and in Jz from δ to 1, while
ft and ft assume all values between 0 and 7r/2 in both Jλ and J2. We
see at once that

If Λί is the maximum of F(σ, θlf θ2) in the region of integration, an
easy calculation shows that

if 0<p<l/3. By choosing p sufficiently close to zero, we can make J2

arbitrarily small, and it follows that

f(x)-]=0.
l)

Equation (2.10) follows at once from this since cZ3ί)/Γ(3p4-l)->l as p-*0.

3. Green's formula for Ipf(x). We shall find it convenient to make
use of the function

n i) v-v(x a
(3.1) v-v(x,$

We wish to transform the volume integral
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(3-2)

into a surface integral. Here Δξ denotes the operator Δ with respect
to the variable ξ.

The function to be integrated must first be transformed into the
form of a divergence. We easily find that

fΛξv=(fvξiξί)ξ3 - (fξ3Vξ)ξ2 4- (fιάξ2v)ξl - vΔξf .

By permutation of ξlf £2, ξ-s we obtain altogether a total of 3! such
equations. The left member and the last term of the right member
are unaltered by such permutations. Adding these 3! equations and
dividing by 3! we obtain

(3.3) fΔξv + vΔ,f= \l {fvhh + vfhξ) - \-(fuvh4-v

3

We note that if ^(£>)>0, v vanishes on the boundary of the retrograde
cone D(x), vξί vanishes for ξj^Xj, 0"=M), and v^ vanishes for ξk=xk,

Applying the divergence theorem and noting that

we obtain

(3.4) Pf(x)=P+1Jf(x)

where £(#) is the portion of S included in the retrograde cone D(x),
and dS is the surface area element on S(x). If f(x) is continuous, then
by Theorem 2.1 the left member of (3.4) becomes f(x) when we let
p^O. If Δf(x) is given in Ds(x), and / together with its first and
second derivatives are given on S, then the right member of (3.4) can
be calculated. We are going to show that it yields the solution of
Cauchy's problem for the differential equation Δu=h{x).

It is clear that if 11 and its first and second derivatives are prescribed
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on S, then these derivatives cannot be prescribed arbitrarily but certain
relations exist between u and its derivatives. Only a complete inde-
pendent set can be prescribed arbitrarily on S. For example, one may
prescribe u and its first and second normal derivatives on S, or one
may prescribe u, uξ, and Uξiξj on S. It is easily shown that it is always
possible to determine a function g(ξu £2, f3) which agrees with u on S
and whose derivatives agree with the corresponding derivatives of u on
S. This being the case, it is reasonable to introduce the following
definition:

(3.5) H+V(x) = Jτ J \

where v is defined by (3.1). We can then write (3.4) in the form

(3.6) I»f{x)^I

If we are to solve the differential equation Λu=h(x) subject to the
conditions that u and its first and second derivatives agree with g and
its corresponding derivatives on S, then according to (3.6) and Theorem
2.1 we must have

(3.7) u(x)=Ph(x) + lim I^ιg{x)

as the solution. We write the limit as p~>0 in the second term on the
right because some of the integrals fail to exist if p=0.

4* Lemmas for the evaluation of the surface integrals. The surface
integral in (3.5) which is required for the solution of Cauchy's problem
converges for ^ ( p ) > 0 . In order to find the solution of Cauchy's
problem according to equation (3.7) we need to show that the limit of
Iξ+Ig(x) exists when p->0. To verify that u and its derivatives assume
the prescribed values on S it is necessary to differentiate (3.7). This
is trivial for the first term on the right but not so simple for the
second term. But if &(v) is sufficiently large the differentiation of
Iξ+Ig(x) is very easy. The resulting integrals fail to exist near p=09

and an analytic continuation is required. We wish to show how this
analytic continuation can be accomplished and that instead of differ-
entiating the second term on the right of (3.7) after letting p->0 we
can differentiate Iξ+1(g) first and then let p-+0. We, of course, make
suitable assumptions concerning the differentiability of g.

We note that all of the integrals occurring in (3.5) are of the
form



754 JOHN G. HERRIOT

(4.1) J**yfM

(γ) J Jsc*oVSΓ(a)Γ(β)Γ(T)

where we assume that f(ξu ξ2f £3) possesses continuous derivatives up
to the first, second, or third order. We note that the integral in (4.1)
converges when the real parts of a, β, and γ are greater than zero.
We proceed to a study of this integral, proving a number of lemmas
some of which are of interest in themselves.

The first lemma which we need is similar to one given by Riesz
[3, p. 60].

LEMMA 4.1. Let G(u,v) be a function defined for 0<jι<Ca<C°°f
0<v<jί><°o, and let it have continuous derivatives to the qth order. Then
it may be written in the form

(4.2) G(u, v) = π(u, v)+ Σ hr(v)—. +ko(u) + m(u, v) ,

where

(4.3) π(u, v)= Σ Σ ^—pyhftf

and

(4.4) hr(v) = O(vq-r) , k0(u)=O(uq) , m(u, v)=O{uq"1v) .

Here GQr>s\u, v)--=dr+sG{u, v)l(durdvs).

Proof. If G(u, v) could be expanded in a Maclaurin's series for
sufficiently small u and v, the result would be obvious. Since we do
not assume this we proceed as Riesz does. We write

(g-r-1)!

and

ko(u) = G(u,O)- ΣGC r 0)(0,0)-v
r -o rl

Then
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m(u, v) = G(u, v) - π(u, v) - Σ hr(v) U

t -ko(u)
r=0 r\

=G(u, v)- ΣG ("0 >(0, v) U--G(u, 0)4- Σ GCr'n(0, 0) u\
r=0 fl r=0 rl

(q-2)l Jo

The equalities are verified by integrations by parts, and the order
relations are now evident.

Clearly the roles of u and v may be interchanged in equations (4.2)
and (4.4). Moreover, other similar lemmas may be found giving dif-
ferent powers of u and v in the estimate of m(u,v).

The second lemma is an immediate consequence of equations (2.7)
and (2.8).

LEMMA 4.2. If d=x1 + #2-J-#3>0 , we have

(4.5)

// the real parts of a, β, or γ are less than or equal to zero, this formula
provides an analytic continuation of the left member.

The next three lemmas provide the principal tools for use in § 5.

LEMMA 4.3. Suppose that f(ξu £2> &) has continuous derivatives up
to the third order. Let d==^1-f-^24-^3>0. Then J*'Mf(x), defined by
(4.1), can be continued analytically throughout the region R in a, β, γ
space, where R is defined by the fact that one of the following three
conditions holds:

(a)

or

(b)

or

(c)

Moreover, J*'β'yf(x) assumes the following special values. (In all cases,
if oco, β0, γ0 is on the boundary of R, the formula is to be interpreted as
meaning the limit as <x->a0, β-*βo, f-̂ TΌ.)

(4.6)
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(4.7) J^\f(x)= P /(ft, -ft-α*, χ3)dξ1 ,
lχL~d

(4.8) j ^ / ^ j ^ Γ [/[/ (
χι-d

(4.9) J1Λ'-tf(x) \Xl

xτ-d9 x2, x^-ftfa-d, x2, X3)-

(4.10) Jι^f{x)=f{x1-dy x2, xj^fi-xt-x*, x*, xs) ,

(4.11) JUQ-1f(x)=fξ3(Xi-d, x%9 a?3)

(4.12) J 1 ' 0 ' - y ( x ) = f ξ 3 h ( x 1 - d , x%, X a £ &

(4.13) J1'-1'-1f(x) = fξ3ξ2(xι-d, xt, x*)-ftjh(xi-d, x2, x,)

(4.14) J°>Q>>f(x) = 0 ,

(4.15) J™>-lf(x) = 0 ,

(4.16) J°'-1'-1/(a?) = 0 .

Formulas analogous to these can be obtained by permuting the superscripts.

Proof. Since Ja'β'yf(x) is defined by (4.1) and is analytic for
. ^ ( α ) > 0 , ..^(/3)>0, ^ ( r ) > 0 , equation (4.6) is immediate. To obtain
equations (4.7), (4.8), and (4.9) we have

(4.17) J^f(x) - -±, Γ Fmxt-W-'dξ, ,

where

(4.18) F(ft)= Γ1 /(ft, -ft-ft,

Then (4.17) is an ordinary Riemann-Liouville integral which can be
continued analytically for & (r)> — 3 since F(ξ3) has a continuous third
derivative. Also, by (1.7), we have

(4.19) Jι^f{x)=F^\x^ , (r = 0, - 1 , -2) .

Equation (4.7) follows by setting f3=α3 in (4.18). Also from (4.18) we

have
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(4.20) ^L = [/ (flf - & - & , 63)-/€,(6i, -61-63, 63)]*!

+ / ( — 63 —#2, a?2> 63) ,
and

(4.21)

ΠΠ [/fefe(6i, -61-63, 63)-
J - £ 3 — X2

1, -61-63,63) + / f A ( 6 i , -61-63,

(-6s-a*, ^2, 63)-/ t a (-63-^, *2, ti-ftS-b-x** v*, 63) .

Equations (4.8) and (4.9) follow by setting ξ3-=x3 in (4.20) and (4.21).
Turning our attention to equations (4.10)-(4.13), we shall express

the integral (4.1) in terms of the variables f2 and ξ3 and use Lemma
4.1 with g=3 to expand f{ξu ξ2f ξ3) in the form

(4.22)

where

(4.23) L($if ft)=A(ft)4-(^-f3)^(f2) + isfe) + ̂ (ς 2, 63)

with

(4.24) Lλ{ξ2)-O(fe -62)
3) , /*(&)=O((^ - 62)

2) ,

Here the subscript 0 indicates that the values of the derivatives are
calculated at the point {xx — d, x2, a?3)

Considering the first six terms of (4.22), we deal with the term
involving (a?a —62)

λ(»3—63)^ ί μ 0 where λ + μ<£. The contribution to
j«»p»γ/(a ) of this term is found to be

by Lemma 4.2. We note that this function is analytic for all values
of a, β, γ. When α = l , β=γ=O, it reduces to 1 if λ=μ=0 and to zero
otherwise. When α = l , ̂ =0, r ^ —1, it reduces to —1 if Λ=0, ^ = 1, and
to zero otherwise. When α = l , /5=0, r = - 2 , it reduces to 1 if Λ=0,
//==2, and to zero otherwise. When α = l , ^ = r = — l, it reduces to 1 if
Λ=μ=i, and to zero otherwise. Thus these terms yield the values
stated in equations (4.10)-(4.13). We have only to show that the
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contribution of L(ξ2, ξ3) to J«tβ'yf(x) can be continued analytically through-
out R and reduces to zero when a, β, γ assume the values needed in
(4.10)-(4.13).

We first show that J*tB>yf(x) can be continued analytically throughout
the region R1 where ^ ( α ) > 2 , &(β)> - 1 , ^ ( r ) > - 2 . We consider
in turn the contributions arising from the four terms of L(ξs, ξ3) given
in (4.23).

We have, for !*(&),

on using (2.7) and (2.8). On taking account of (4.24) we see that the
integral is analytic in Rlm Moreover, the expression is zero if β=0 or
— 1 even when γ-+ — 2.

The contribution of (x-ό — ξ3)L2(f2) is similarly

' - Xι - X3

which is also analytic in Rlu It is also zero if β=0 or —1 even when

The contribution of L3(ξ3) is

1 Γ%ό rx>2

Γ(a)Γ(β)Γ(γ) i-Xl-Xl J-fo-*i

The integral is again analytic in i21# This contribution is zero if γ = 0,
— 1, or —2 even when /3=--l.

On taking account of (4.24) it is at once evident that the contribution
of L±(ξ2, ξ3) is analytic in Rλ and vanishes when β=0 or γ= — 1 even on
the boundary of Rx.

Thus we have shown that J*ίβ'yf(x) can be continued analytically
throughout Rλ. Since the roles of α, β, γ may be interchanged it can
also be continued analytically throughout five similar regions obtained
by permuting a, β, γ in the definition of Rτ.

We note that d=(x1 — ξ1) + (x2 — £>) + (#3 — ξ3) on S(x) and we multiply
equation (4.1) through by these expressions to obtain

(4.25) dJ«>β>yf(x)=aJΛ+1'β'yf(x) + βJ«>β+uyf(x
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We use (4.25) to show that J«'βyyf(x) can be continued analytically
throughout R.

We first suppose that ,j?{a)>l. If ^(/3)>0, ^?(r)>0, J*'β'yf{x)
is clearly analytic on using the integral definition in (4.1). If ^?(β)>l,
^ ( r » - l , then J«+Uβ'yf(x) is analytic since (a + l,β,r) belongs to Rlf

j*>β+i>vf(x) is analytic since (α,/3 + l,r) belongs to a region similar to
i?!, and J«>^+If{x) is analytic by (4.1). Thus J«>β>yf(x) is analytic if
^(/?)>1, ^ ( r ) > —1 We proceed in this way using (4.25) to show
the possibility of continuing analytically J"'β'yf(x) in turn into the
regions &(β)>l9 ^ ( r ) > - 2 ; ^(/?)>0, ^ ( r ) > - l ^(/?)>0,
^ ( r ) > - 2 ; ^ ( / 9 ) > - l , ^ ( r ) > - l ; ^ ( / S ) > - 1 , ^ ( r ) > - 2 . At any
stage we remember that the roles of β and p can be interchanged
where necessary. We conclude that JcύίβyΊf{x) can be continued ana-
lytically throughout the region ^ ( α ) > l , ^ ( / S ) > - 1 , ^ ? ( r ) > - 2 and
throughout five similar regions obtained by permuting α, β, γ.

We next suppose ^ ( α ) > 0 , We proceed as before using (4.25) to
show the possibility of continuing JΛtβtVf(x) analytically in turn through-
out the regions ^?(/9)>0, ^ ( r ) > 0 ; &?(β)>0, ^ ( r ) > - l ; &(β)>0,
^ ? ( r ) > - 2 ; .^(/S)>-1, ^ ( r ) > - l ; ^ ( / 9 ) > - l , ^ ( r ) > - 2 . We
conclude that J"*βtyf(x) can be continued analytically throughout the
region ^ ( α ) > 0 , ^(β)^> — 1, ^ ( r ) > — 2, and throughout five similar
regions obtained by permuting a, β, γ.

We next suppose ^?(α)> —1. We have already shown that J*^yf(x)
can be continued analytically throughout the region ^ ( β ) > 0 ,
^ ( r ) > - 2 . We then use (4.25) to show that J«>β>yf(x) can be continued
analytically in turn throughout the regions - ^ (/*)> — 1, ^ ( r X > — 1;
^ 3 ( β ) > - 1 > < ^ ( r ) > - 2 . We conclude that Ja^yf{x) can be continued
analytically throughout the region ^ ( α ) > — 1, ^(/2)> —1, ^ ( r ) > —2,
and throughout the two similar regions obtained by permuting a,β,γ.
Thus we have shown that J*'β'yf(x) can be continued analytically
throughout R.

We have yet to show that the contribution of L(ξ2, f3) to J*φ'yf(x)
reduces to zero when α, β, γ assume the values needed in (4.10)-(4.13).
If a were 2 instead of 1, and β and γ were as in (4.10)-(4.13), our
analyticity discussion would show that this contribution is zero. If we
apply (4.25) using L instead of / we find that the desired result
follows easily. This completes the proof of formulas (4.10)-(4.13).

The formulas (4.14)-(4.16) follow immediately from equation (4.25).
If f(x) has continuous derivatives up to only the second or first

order we can still get results similar to Lemma 4.3, but the region into
which J*>β'yf(x) can be continued will be smaller however, those of
formulas (4.6)-(4.16) which are still valid are unchanged. The method
of proof is the same as for Lemma 4.3 and the results can be expressed
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in the form of two lemmas :

LEMMA 4.3.1. If f(ξu ξ2, ξ3) has continuous derivatives up to the
second order, then Lemma 4.3 holds if the region R is replaced by the region
R* in which (a) . : ^ ( α ) > - l , ^ ( / 5 ) > - l , ^ ( r ) > - l , or (b) <*=-/9=l,
^ ( r ) > - 2 , or (c) α = r = l, ^(/5)>-2, or (d) /5=r = l, . ' ^ ( α ) > - 2 ,
and if formulas (4.12), (4.13), and (4.16) are deleted.

LEMMA 4.3.2. If f(ξι, ξ2, is) has continuous derivatives of first order,
then Lemma 4.3 holds if the region R is replaced by the region i2** in
which (a) ^ ( α ) > - l , .^(/5)>0, ^ ( r ) > 0 , or (b) ^?(α)>0, <£?(/3)>-l,
^ ( r ) > 0 , or (c) ^ ( α ) > 0 , ^(/?)>0, . £ ? ( r ) > - l , and if only formulas
(4.6), (4.7), (4.8), (4.10), and (4.14) are retained.

From equation (4.1) it follows immediately that

(4.26) ~d~-Ja+ι>
d

as long as ^ ( α ) > 0 , ,^?(/5)>0, /i^(r)>0. Similar formulas hold, of
course, for derivatives with respect to x2 and xd. By analytic continua-
tion the validity of (4.26) follows as long as (a, β, γ) lies in the interior
of a region into which J*>β'yf(x) can be continued analytically. But
even if (a, β, γ) should lie on the boundary of such a region, if it
assumes one of the sets of values occurring in equations (4.6)-(4.16)
then (4.26) remains valid, as is easily verified by carrying out the
appropriate differentiation of the right members of equations (4.6)-
(4.16).

The importance of this lies in the fact that it shows that in
finding the derivative of u(x) as given by (3.7) we may interchange
the order of the limiting procedure p->0 and the differentiation in the
term Pi+Ig(x). This simplifies materially the task of verifying that
(3.7) gives the solution of Cauchy's problem for the differential equation
(1.1).

5 The solution of Cauchy's problem for the equation Δu=h{x).
It has already been pointed out in § 3 that if the Cauchy problem for
the differential equation (1.1) is to have a solution, this solution must
be given by (3.7). We are now able to prove the following theorem
which gives the solution of Cauchy's problem.

THEOREM 5.1. Let h(x) be continuous and let g(x) have continuous
derivatives up to the third order in the region ;£i-f-#2-f #3I>0. Then, in
the notation of equations (2.9) and (3.5),
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(5.1) u(x)=Ph(x) + lim Pi+ιg{x)

is, when xλ-\-χ.λ-\-x^>Ά, a solution of the equation Δu=h(x) moreover,
when #i-ha:2-f #3=0, we have u(x)=g(x), and all the derivatives of u(x)
of first and second order equal the corresponding derivatives of g(x).

Proof. We first note that

err r#3 r r - r n
(5.2) Ph(x)=\\\ h(ξ)dξ=\ \ \ k{ξiίξ29ξ^)dξιdζ2dξZ9

jijDs(x) i-Xi-Xii-ξ i-XxJ -|2-^3

and

(5.3) Ii+Ig(x)= I [jp+i *-* g(χ) + J*>*+1'* g(χ

by (3.5), (3.1), and (4.1).
We now verify that (5.1) satisfies the differential equation Ju=h(x).

We have

(5.4) Δu=ΔΓh(x) + lim ΔI»"g(x)
p->0

on account of the remark at the end of § 4. If (5.2) is used, an
elementary calculation shows that ΔΓh{x)==h{x). It follows directly
from (3.5) and (3.1) that

(5.5)

if &(p)^>l, and a suitable analytic continuation as indicated in § 3
establishes the validity of (5.5) for ^ ( p ) > 0 . If we now let p->0 and
make use of (5.5), (5.3), and (4.14)-(4.16), we find that

(5.6) lim ΔPi+1g(x)= lim Iζg(x)= lim l1ί+1g(x) = 0 .

This completes the verification that (5.1) satisfies the differential
equation Δu=h(x).

Next we show that u(x) assumes the correct value g(x) on the
plane S whose equation is Xx + x^ + x^Q. We consider u(x) at the point
x=(x1,x2,x3), where x^ + Xi + x^d^ί), and let cZ->0. From (5.1), (5.3),
and (4.10), we find that

(5.7) u(x)=Ph(x)

-f -- [g(x1 -d,x2, x3) + g(xlf x2-d, x2) + g(xl9 x2, xd-
ό
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Since h{x) is continuous, equation (5.2) shows that Γh(x) = O(d3). On
account of Lemma 4.2, we see that if f(x) is continuous, and a, β, γ
are real and nonnegative, then

(5.8) J«^f{x)^O{d«^+Ί-1) .

Thus when x approaches S, that is, when d—>0, (5.7) shows that
u(x)-+g(x).

If it is desired, u(x) can be written explicitly in terms of h(x) and
g(x) and its derivatives by using (4.6) and (4.7).

Next we consider dujdxλ. On account of the remark at the end
of § 4 we have, from (5.1),

(5.9) du^dPfiix)^ H m dlFWxL ^
dX dX o dX2>->o

We calculate dlζ+ιg(x)fdx1 by differentiating (5.3) and using (4.26). We
then let p-+0 and make use of equations (4.14), (4.11), (4.7), (4.8), and
(4.10). On using equation (5.2) it is easily verified that dΓh{x)ldx1==O{dz),
and hence tends to zero with d. We also note that the integrals in
(4.7) and (4.8) tend to zero with d. We thus find that duldxι-^gXι(xuX2fx3)
when x approaches S. In the same way we can consider dujdx2 and
du/dx3.

In a similar manner we treat d2ujdxl (ΐ = l , 2 , 3). We have only to
use equations (4.15), (4.12), (4.8), (4.9), and (4.11) and observe that
d'Ψh(x)ldxl=O(d).

The treatment of 3^/3^3^ ( i , j = l , 2 , 3; i^?j) is also similar and
makes use of equations (4.15), (4.13), (4.10), (4.11), and (4.14).

This completes the verification of the solution.

In Theorem 2.1 we showed that, if f(x) is continuous, Ipf(x) is
analytic for . ^ ( p ) > 0 and Pf(x)->f(x) when p->0. The following
theorem shows that Pf(x) can be continued analytically when f(x) is
sufficiently differentiable.

THEOREM 5.2. If f(x) has continuous derivatives up to the third,
order in the region x^+x^-h #3>0 then Pf(x) can be continued analytically
throughout the region &(p)^> — l, and

(5.10)

if a?i 4- #2

Proof. We make use of equations (3.6) and (5.3) with g(x) replaced
by f{x). Then if .£?(p)>- l , Theorem 2.1 shows that P+ιΔf{x) is
analytic, and Lemmas 4.3, 4.3.1, and 4.3.2 show that P*+ιf{x) is
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analytic. If we let p-> — 1, equation (5.10) is a consequence of Theorem
2.1 and the last equality in equations (5.6) with f(x) in place of g(x).
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APPLICATIONS OF THE RAYLEIGH RITZ METHOD

TO VARIATIONAL PROBLEMS

J. INDRITZ

Introduction, Let R be a bounded either simply or multiply con-
nected plane region with boundary Γ, consisting of a finite number of
non-intersecting simply closed regular arcs of class ck. A plane curve
is a regular arc if the defining functions x(t), y(t), a<Lt<jb have con-
tinuous derivatives with x'(t)2-h y'(tf^?O on a<t<b. A regular arc is
of class ck if the defining functions x(s), y(s), s being arc length, have
continuous derivatives of order k. We shall say a function h(x, y)
defined on R=R±Γ is of class ck if the partial derivatives of h of
order r, 0<r<k exist in R and have limits on Γ so as to define func-
tions continuous on R. Let g(x, y) be a given function of class ck on
R. The main problem considered is that of finding the function ψQ

which yields minimum value to the functional

>l + cψz + 2fψ)dxdy

defined over the admissible class of functions ψ which are of class ck

on R and assume the values of g on Γ.
We shall assume a(x, 2/)>0, b(x, 2/)>0, c(x, y)>0 on R α, δ, c

bounded and integrable in R f(x, y) integrable in R. In the sequel,
unless otherwise specified, integrations will be taken over R and the
symbol R omitted.

Let G(x, y) be of class ck on R, vanishing on Γ, positive in R,
with normal derivative dGjdv on Γ different from 0. We show that,
if &>:3, every admissible function ψ has a uniformly convergent ex-
pansion on R

CO

where ft are obtained by a Gram-Schmidt process from the functions
{Gxιyj} i,j=0, 1, 2, and b{ are generalized Fourier coefficients con-
nected with the quadratic functional

Received February 6, 1954. Presented to the American Mathematical Society August
1953. The preparation of this paper was sponsored, in part, by the Office of Naval Re-
search, Contract N onr-386(00). It is a part of the author's thesis under the helpful direc-
tion of Professor S.E. Warschawski.
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In fact, bi==D[(p-gf /«] where

An estimate of the error obtained by using for ψ only the first n
terms of the expansion is given in terms of n and k. Sufficient condi-
tions are obtained for the convergence of

to ψφ and an estimate is given for the rate of convergence.
In particular, if φ0 is an admissible function minimizing I[φ], then

the expansion

yields an explicit solution for ψQ, since the coefficients at are given, in
this case, by

which are independent of ψ0.
The problem of minimizing the functional I[ψ'\, with #=0 , has

been studied by Kryloff and Bogoliubov [4] and by Kantorovitch [2],
both obtaining estimates for convergence to ψ0 of functions obtainable
by the Rayleigh Ritz method. The first paper deals with convex
regions R, the second with regions R bounded by x=Q, x=l, y=g(x),
y=h(x); hΓ>g on 0<#<Ll. Neither obtains an explicit solution for ψa

nor studies the convergence of the derivatives.
In the final section of this paper, we assume the existence of a

function ψύ yielding minimum value, for p>l , to

dxdyy ψ^g on Γ

and obtain an estimate for the rate of convergence to ψQ of functions
obtained by the Rayleigh Ritz method.

§ 1. Preliminary Considerations. A variation v shall mean a func-
tion of class ck on R vanishing on Γ. Form the Hubert space H by
completing the linear manifold V of variations v using the positive
definite quadratic form D[y] as the square of the norm of a variation.
If heH, we represent the norm of h by hK If ξ and η are varia-
tions, the inner product will be

-D[ξ, η\.
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Let fι be any complete orthonormal set of variations in ίZ. If ψ is
admissible, then φ — g is a variation and thus expressible in H as

with bt=D[ψ-g, ft] .
If φ0 is an admissible function yielding a minimum value to I[φλ,

if λ is real, and v is a variation, then φo-hλv is admissible, and

v] +J (2/1; (

This implies that the coefficient of λ must vanish so that

ΨQ, v]= — \\fvdxdy

and

for every variation v .
The first relation shows that the Fourier coefficients of ψo—g,

are independent of φ0.
The second relation implies that if ψ is admissible,

Thus if

then

0=lim =lim

so that φw is a minimizing sequence.
Moreover,

is a minimum when 0^=^ implying that φn are chosen to yield mini-
mum value to I[φn]—I[φo} and hence to l[φn\ in the class of functions

Thus φw may be obtained by the Rayleigh Ritz process applied to the
functional I[φ].



768 J. INDRITZ

We will prove, in Theorem 1, that the class of functions {G P}
where P is a polynomial in x and y, is dense in H. This class is the
linear manifold determined by the set {GxίyJ}f a set linearly indepen-
dent in H. For, if

then D[v]=0 implies aίj=0 .
It follows that we can obtain an orthonormal set ft complete in H

by orthonormalizing the set {Gxly3}. Let

v2=Gxιy°, ih=-

Then

(Vu Vλ)

:

(Vn, Vi)

Vl (Vu V\)
1-1/2 -1/2

The function fn is of the form G Pn, where the degree of the
polynomial Pn is that of vnjG. If vn=Gxrys with r-f-s=A:, then

w is less than i/2n — 2.so that Jc2<Ck(k-\-l)<2n — 2 and the degree & of
Similarly A: is greater than τ/2w —2 .

§ 2. The Minimizing sequence. We shall use certain approxima-
tion theorems which can be derived by methods used by Mickelson [5]1.
To simplify the notation, let

X = \Xι, Xs) ,

1 For detailed proofs of Lemmas 1, 2 see J. Indritz "Applications of the Rayleigh Ritz
method to the solutions of partial differential equations" Ph. D. Thesis, U. of Minnesota,
1953.
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fr(x)

~~~ <*Ί )

The modulus of continuity for a function / defined over a closed set
A: — l<Xi<l ( ϊ = l , . . . , 8 ) is

for all points # ( 1 ), #°° in A with lί xσ) — # ( 2 ) || <<5. The uniform modulus
of continuity of a finite number of functions / Ί , ••-,./> is the largest of
the moduli of each ft for each δ.

LEMMA 1. Let F(θ) be a continuous periodic function of period 2π in
each θί and of class ck. Let ω(δ) be the uniform modulus of continuity
of the partial derivatives of F of order 1 to k for δ<πV s . Let j<k.
Then, corresponding to every set mu * ,m s of positive integers, there is
a trigonometric sum Tm of order at most mt in θt such that

— ) for
m J

where KΊ is a constant independent of F, s, m , .
If the partial derivatives of order 1 to k satisfy

/ s \

then

\Fr(θ) - TT\ <L K2(^t—-)k~J+l °^ r i + — + ?^<.7

where Kz is also a constant independent of F, s, TΠi.
If F is even in each θt separately, T contains only cosine terms.

LEMMA 2. Let f(x) be of class ck in the set A: —1<^<1 ( ΐ = l , ,s).
Let M be the maximum of the absolute values of the derivatives of order
1 to k, and Ω(δ) the uniform modulus of continuity of the derivatives
of order k. Let B denote a closed set interior to A. Let j<k. Then,
for every set of positive integers mί9 ,m8 with m^>k there is a poly-
nomial Pm of order at most m% in x% such that
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-i nil J ic=ι v wii

for x in B and 0<>H \-rs<Lj. Here K?J is a constant independent of
f and m. t.

If also, the k-th partial derivatives of f(x) satisfy a Lipschitz con-
dition with parameter λ, then, for x in B,

for 0<rx + .--f rs<j,

and where K± is a constant independent of f and m-,.

To apply the lemmas to a function defined over the region R, we
shall extend the domain of definition of the function. The ques-
tion arises whether the differentiability properties of the function are
maintained under the extension. The answer depends upon the pro-
perties of the boundary Γ of R. For example, Hirschfeld [1] has
shown that even a cusp in the complementary region may prevent cι

extension of a function of class c°° on a closed set through a continu-
ous boundary arc. Whitney [6] has given a different definition for a
function to be of class ck in a closed set A. If / is of Whitney class
ck in Ay then there exists an extension F to the whole plane E% which
is of class ck in the ordinary sense on E% and is analytic in E2 — A.
The derivatives of F of order <k coincide with those of / at any
interior point of A. Moreover Whitney [7] has shown the following :
Let (a) / be of class ck on R-\-Γ, where R is a region, Γ its bound-
ary, in the sense we have defined in the introduction, and (b) R have
the property " P", that any two points Pl9 P> in Ry whose linear
distance apart may be represented by Pι~P, , can be joined by a
rectifiable curve in R of length L, with LjW1 — P^l bounded uniformly
with respect to Px and Pz then / is also of Whitney class ck and thus
can be extended to E2 to be of class ck on E%.

For our purposes we assume R to be a bounded region with bound-
ary Γ consisting of a finite number of non-intersecting simply closed
regular arcs Γ.t and we will show R has property " P".

Choose, for each Γit a <Γ>0 such that no two tangents to Γ,ι on
any portion of arc length <^d make with each other an angle greater
than 5°. We may choose d independent of i and smaller than one-
fourth the distance between any two Γ4. Now fix i, and let Pu P.z

be points on Γi on a subarc of length <05. There is a point Q on that
subarc between Px and Pz such that the tangent line at Q is parallel
to the chord P{ P2. Set up an (x, y) coordinate system at Q, using the
tangent line as #-axis, the normal as j/-axis, and note that the subarc
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considered has an equation y=y(x) of class c1 in view of the implicit
function theorems. Let Pτ =(xu 2/1), P2 = (#2, y2), \\Pι~P21|= distance

between P1 and P2, ||/^ JPa | |=length of the subarc joining P1 to P2.

Then || P , - P 2

 !=|a?i —â l and \y'(x)\<,l so that

( 1 ) Γ Vl+r

i - P 2

Moreover, since tan5°<l/10, the mean value theorem shows that
sup \y(x)\^lP1-Pi\\]10.

We shall also use the well known property that if Γ.t is a regular
arc, there is an ωα>0 such that for any subarc joining points P3, P 4

on Γίf we have || P3 P41|/|| P3 — P4 |i< ωΎ. ω1 can be chosen independent
of i.

Now suppose Su S z are any two points interior to the region R.
If the segment SΊ S2 is interior to Ry we of course have || Si £21
/HSi — £2!| = 1 by using the segment as the arc. Otherwise, let Qx be
the first intersection of the directed line Sτ S2 with the boundary, say
with Γ1% Let Q\ be a point on S1Qι in R. Let Q2 be the first point of
intersection of the directed line S^Si with Γλ and Q\ a point in R on
AS2Q2 such that the open interval Q%Q\ is also in R. Note that Qλ and
Q2 may coincide. If Q\St is not in R, let Q3 be the first point of in-
tersection of the directed line QIS Z with the boundary, say with Γ2

and Ql in R and on QIQ3. Let Q4 be the first point of intersection of
the directed line S-zQl with Γ2 and Ql a point in R, on Q4S2, with the
open interval Q4Q1 in i?. Continuing in this way, after at most n
steps, we form a finite sequence of points Ql=Su Q\, Q\, >Q\mt Qlm+ι
=AS2 such that Qik-i and Q2k are on the same regular arc, and the lines
joining Q& to Q\k+ι, Λ=0, ,m are in R. If we can show there is an
α/>0, independent of the points, and arcs λλ in R joining consecutive

points Q) to Q)+1 such that \Q)Q)+1 \\<ω || Q) — Q)+1 \\, then we can attain
the desired results by addition. It suffices to show that Ql and Ql and

an arc λ joining Ql to Q\ and in R may be chosen so that || Ql Q2

<ω IIQΪ — Q2I. Suppose first that Q1 and Q2 coincide. A sufficiently
small circle with Qλ as center will have one of the arcs cut off by SιS2

entirely in R and we may choose Ql and Q\ as the intersections of
SτS2 with this circle. In this case

Otherwise, let L be the length of an arc on Γλ joining Qx to Qt,
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Divide this arc into N equal segments of length β^LjN where N is
sufficiently large so that /?<[<5. Draw circles of radius r=/?/i/2 about
each of the division points and the end points. We first show that
consecutive circles intersect. If Rλ and R2 are two consecutive centers,
(1) implies

so that

and the circles must intersect.
Moreover, since r>\\Rι—R2 ||/l/2 , the semi-length τ of the common

chord is

. _ / , _ || i O k f > WΛ-

whereas the arc joining Rx to R, has distance <]\Rι —-#211/10 from the
chord. Hence the arc lies entirely within the circles.

Now let Q\ be an intersection of SΊS2 with the circle whose center
is Qλ and Q\ an intersection of SΊ £2 with the circle whose center is QZf

the points being chosen to lie in R and have the desired properties.
Starting from Q\ we may proceed to Q\ via the circumferences of the
circles. The total length of the curve thus formed will be less than

V 2 N V x

and

IIQ1Q2II <- 4/τ L ^ 47r
II ^ J I — ^?2 II * u [I V^JI — v^2 II 1/ ^ί

This concludes the proof that R has property " P " .
We will be particularly interested in extending a function of the

form v(x, y)jG(x, y) where G(x, 2/)>0 in R, 3G/3v>0 on Γ, G=v=0 on
Γ1 and we seek differentiability conditions on v and G which insure
that v/G is of class ck on R+Γ. Here again the nature of the bound-
ary is of importance. The next two lemmas deal with this problem.
The letter P will refer to a point in R and Q to a point on Γ, the
boundary of R. By a neighborhood N(Q) in iϋ-4-Γ we will mean a set
of points S in R+Γ such that for some sufficiently small circle with
center at Q, every point of the circle which lies in R-hΓ also lies in
S.
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LEMMA 3. a) Let R be a region bounded by Γ} a finite number of clos-
ed Jordan curves, no two having a point in common. Let γ be a regu-
lar subarc of ί\ and Qo an interior point of γ. Let N be the normal
to γ at Qo Then there is a neighborhood N(QQ) in R + Γ such that
through each point P in RN(QQ), the line parallel to N cuts 7Ό=7Άf(Qo)
in one and only one point Q, PQ lies in N(QQ), and Q ranges over γd.

b) Let φ{x, y) be of class & in RN(Q0) and suppose ψ, ψx9 ψy have
continuous limits on γ0. Define (dψjds)(P) to be the derivative at Pe
RN(Qo) in the direction of the tangent at the corresponding point Q on γ0.
The derivative (dφjds)(P) has continuous limits on γ0 ivhich we will
denote by (dφ/ds)(Q).

If ψ = 0 on γ0, then (dψlds)(Q) = O for Q on γ0.

Proof. Let γ be given by x(t), y(t) and Qo defined by the parameter
value £„. Let (£, η) be rectangular axes along the tangent and normal
at Qo In a suitable neighborhood of t09 £i<j£<&> defining an arc λQ

containing QQ9 γ admits a representation η=η(ξ). We may assume λQ

so small that no two tangents to it make with each other an angle
greater than 5°. There is a positive distance d between Γ — λQ and
the arc λ1 defined by the parameter range (ίx4-to)l2<jt<C(to ht2)l2. Take

and draw a square T of side δ with sides parallel to the (c, η) axes
and center at Qo. Let γΰ=γT, the projection of RT on γ by lines
parallel to N, and let γh be the arcs formed by displacing γ0 a distance
h parallel to itself into R along JV. For h<Jtι sufficiently small, γhczT.
The regular arc γ0 may be given a representation x=x(p)9 y=y{s),
0<s<L, in terms of arc length s, where L is the length of û Then
γh is given by

x=x(s)Jrhcos a, y=y(s)-\-hcQ& β,

where cosα, cos/5 are the direction cosines of the line N directed in-
ward into R. The neighborhood N(Q0) may be chosen as given by
these equations with 0<^s<CL. 0<Λ<Λi •

It is clear that

dφ dΦ dx , dψdy
...._ = —.•_— -{-. -_, —

3s dx ds dy ds

has continuous limits on γ0. Write
dΨ(P)=dΨ(x(8) + hco*a, y(s) + hcos β)=F(s, h).
ds ds
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If λ is any closed subarc of γ0, we have

l imi t s , Λ)=-^(Q)
/l->0

uniformly in s.
Along γh we have

rS F(s, h)ds

where P1 and Pλ are points on γh corresponding to points Qτ and Qz on
λ with parameter values sx and s2. As ^ approaches 0, the limits on
the integral remain fixed. Since ψ=0 on λ, we find, by letting h->0 ,

for arbitrary sx, s2. Thus (3^/3s)(Q) = 0 on Λ and hence on TO .

LEMMA 4. Le£ i2, r, Qo> N(Q0), N, n be defined as in Lemma 3. Let
v(x, y) and G(x, y) be of class c° on N(Q0) and of class c1 onN(Q0)[R-hQo].
Let v=G=0 on γQ, G > 0 in RN(Q0), (3G/3v)(Q0)=N=0. Then there
exists lim v(P)jG{P) for PeR.

i / 7* is of class ck+ι on N(Q0) and v, G are of class ck in N(Q0) and
of class ck+1 on N(Q0)[R±Q0], then v/G is of class ck on N{Q,){R + Q,\.

Proof. Denote differentiation along a line parallel to N by djdh. By
the mean value theorem one finds that (3G/3v)(Q0) i s the limiting value
of (dGldh)(P) as PeRN(Q0) approaches Qo along the normal at Qo, and
hence (3G/3v)(Q0) is the limiting value of (dGjdh)(P) as P approaches Qo

by any approach in RN(Q0). A similar statement is true for (dvjdv)(Q0).
Let Pn be any sequence of points in RN(Q0) converging to Qo and

let Qn be the points on γ0 associated, by projection along N, with Pn .
By the generalized mean value theorem,

= v(Pn)-v(Qn) _(
G(Pn) G{Pn) - G{Qn) (dGldh)(Pn)

where P'n is interior to the line segment PnQn .

Thus

lim VVJL=
^% G(Pn)
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It is clear from the construction of N(QQ) that the equations

x=X(s, h)=x(s) + hcosa , y=Y(&9 h)=y(s) + hcos β

yield a one to one transformation of N(QQ) into iV*(Q0): 0<Lh<ihi,
0<><X and γQ into γo*: Λ=0, 0<s<X and Qo into Qo*: k=0, s=s0. In
fact, in view of the restriction on the slope of the tangent to γQ, the
Jacobian of the transformation is

J=x'(s) cos β — y'(s) cos a^=0 .

If x(8), y(s) are of class ck+1 on 0<s<X then so are X(s, h), Y(s, h) in
N*(QQ)-γQ*. Any partial derivative of Z(s, A), F(s, h) of order r <
A:-fl converges, as h->0, uniformly on any closed subinterval of TO* and
thus this derivative has a continuous limit on TO*. By the implicit
function theorems, the inverse functions s=S{x, y), h=H(x, y) are of
class ck+1 in JΪN(QQ). Moreover, the partial derivatives of S, H of
order r<Lk+l have continuous limits on γQf for the relationships

ax;3«+axaA a- + β 0 B α

ds dx dh dx dx dx

O + ^ ^ + COB^
ds dx dh dx dx dx

can be solved for dsjdx, dhldx, dsjdy, dh\dy and the resulting equations
indicate that these derivatives and their derivatives of order <k have
continuous limits on γ0.

Under this transformation v{x, y) becomes v*(s, h) and G(x, y)
becomes G*(s, h). It is sufficient to show v*/G* is of class cfc at Qo*
since any partial derivative of order r<k of v(x, y)/G(x9 y) is a poly-
nomial in the derivatives of Ί>*/G* and in the derivatives of s and h
with respect to x and y of order < r .

By the hypothesis and comments above, v*(s, Λ) and G*(β, h) are
of class c* on N*{Q) and of class ck+ι on (iV*(Qo)-ro*)-l-Qo"c. In view
of the continuity of dG/dh at Qo. there is a neighborhood of Qo where
(3G/3Λ)(P)>δ>0, It is no loss of generality to assume (3G/3A)>ό>0
in iV(Qo) and we shall do so. By Lemma 3, dv/ds and 3G/3s vanish on
TV By repeated application of Lemma 3, drvjcsr and 3rG/3sr (0<r<k)
vanish on γ0.

The proof is greatly facilitated by an auxiliary transformation.
Let £=s, £=G*(s, h) carrying Qo* into (Qfo**> ro* into ro^*, N*(QQ) into
iV**(Q0). For eachs, z is a monotone increasing function of h and the
inverse function h=H*(t, z) is a monotone increasing function of z for
each t. As above, we see that t>*(s, h)=v**(t, z) is of class c* on
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N**(Q0) and of class ck+1 on (AP*(Qo)-ro**H(Qo**). Moreover, it suf-
fices to prove that v**(ί, z)lz is of class cfc at Qo** For notational
simplicity, let w(t, z)=v**{t, z). Note that N**(Q0) is the set 0<
z<G(t, hλ), 0 < ί < L .

By induction, we verify

2dzΛz/ zr+1 V dz 21 dzz rldzrldzrJ

for 0<r<& when
For £ fixed, ιo(t, z) has a Taylor expansion of the form

r!

for 0<r^A:, where O^C<Cf(^ %t ζ> r)<Cz so that, when C=0,

Hence

( )

which has a limit as the point (£, «) approaches Qo**.
We have thus shown that the partial derivatives of w/z, with

respect to z alone, of order <k have limits at Qo**
We next show that the partial derivatives of wjz with respect to

t alone have limits at Qo** First note that the derivatives of w with
respect to t alone vanish at 2=0. For, w(t, z)=v*(s, h) so that

dv_dv*__ dw dw^dZ _ dW dw dG
ds ds dt dz ds dt dz ds

and, as we have seen, dvjds and dGjds vanish at z=Q. Thus
at z=Q. Similarly, successive differentiation shows drwldtr=0 on
0 < r < k .

We apply Taylor's theorem to obtain

3r (w\ 1 Vw(t,_z) = 1 ί 3 Γ3r^(^_i)Ί) 3 S ^ T ^ J )

3ΓV2/ «' Dίr ^ I dzL ~dtr J) 32 3f
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and conclude that {drjdtr){wjz) has a limit at Qo** for 0<><fc ,
Finally, any mixed derivative may be written as

dn+m

oZ otn

and this may be written as - \ - w \
dz11 I zdtm )dzn I zdtm

where dmw/dtm vanishes on TO** and is of class ck~m on N**(Q0) and of
class ck~m+1 on (N**(Q0)-ro**) + Qo**- B y the first results for deriva-
tives with respect to z, the mixed derivatives have the desired
property.

THEOREM 1. Let R be abounded region tvhose boundary Γ consists of
a finite number of non-intersecting simply closed regular arcs of class
ck, (k>2). Let G(x, y) be a function of class ck on R+Γ, vanishing on
Γ', positive in R, with 3G/3i/><Γ>0 on Γ.

Let H be the Hilbert space formed by completing the linear vector
space V of variations—functions of class ck on R and vanishing on Γ—,
ttsing the functional

for ξeV as the square of the norm, where α, 6, c are bounded and in-
tegrable, ά^>0, δ>0, α>0 in R+Γ.

Then the set of functions GT, where τ is a polynomial in x and y,
is dense in H. The set {/J obtained by orthonormalizing the set {Gxιy5}
is complete in H.

If ΰ{%i y) is a function of class ck on R and Ψ is the set of func-
tions φ of class ck on R, assuming the values of g(x, y) on Γ', and if
for any φeΨ we define bi = D[φ — g, / J , then

where lim#(n) = 0, θ depending on Φ~-g.
n-*co

In particular, iff is integrable,

and there exists an admissible function φ{) which minimizes I[φ] for
φe ψj and we define
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a; = —

then

where lim #(72) = 0 .

Proof. If i; is a variation, we show there is a sequence Q, of poly-
nomials such that

^

In view of Lemma 4, v/G is of class cfc-1 on R and it is thus pos-
sible to extend the definition of vjG over the entire plane so that it
is of class ck~ι over the entire plane. Let ίl(d) be the uniform modu-
lus of continuity of the (k— l)st partial derivatives of vjG over a
rectangle with sides parallel to the axes containing R in its interior.

By Lemma 2, with 8=2, j=l, m1=m2=j there is a sequence Q, of
polynomials of degiee 2j in x and y such that, for (x, y) in Έ,

Hence

a n d

and (T - Thus lim Ό[vA similar result is true for {v —
-GQj] = 0 for /c>ί2.

It has thus been proved that the linear manifold formed by {Gxιyj}
is dense in V and thus in H. By the previous discussion the set {/*}
is complete in H.

Now let v in the above be the particular variation φ — g and let
[N] represent the largest integer <N. For fixed n, let i=[(τ/ n /2)-l]
and τn(x9 y) = Qj(x, y). Thus there is a sequence τn of degree at most

n - 2]
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such that

n

Now Σbifi^Gμn where μn is a polynomial of degree greater than

]/2n — 2, and it is known that

iΣ

is a minimum when Ci = (ψ — g, /*)=&*. Thus

-0-Σ&i/ι"l= θ( y2ή , limfl-0.
n

In particular, if ^Ό minimizes I[φ], then we have seen that

-Dig, /t] .

Thus, in this case, the Fourier coefficients depend only on known
quantities.

COROLLARY bH=θ(J ?Sn))

Proof. Vn

§ 3 Expansion Theorems. We use the notations in Theorem 1 and
seek conditions which insure that convergence in H yields uniform
convergence in R.

THEOREM 2. Let R be a bounded region with boundary Γ. Let ψ> Ψn be
continuous on R, absolutely continuous on each line in R and all taking
on the same values on Γ. Let Z?[0]<C°°> D[(pn]<Coo. If lim D[ψ — ψn]
= 0, then a necessary and sufficient condition that lim Φn=Ψ uniformly

n-*°o

on R is that φn be equicontinuous on R. If lim D[ψn — ψm]=0 then a

necessary and sufficient condition that lim ψn exists uniformly on R is

that ψn be equicontinuous on R.

Proof The necessity is clear since a sequence of continuous functions
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which converge uniformly are equicontinuous.
Let u(x, y) be a function with the continuity properties of ψ(x, y)

and vanishing on Γ. Let Po be a point interior to R. Place polar
coordinates at Po. If a ray from Po meets the circle Sp of radius p<Ld,
d being the diameter of R, with Po as center, before it meets Γ, label
Px the first intersection point with Sp and Q the first intersection
with Γ. Otherwise both Px and Q will refer to the first intersection
point of the ray and Γ.

= (TΓ l y r * Λ <PΊog dΓ r

<log d [ [ (ill + %;)dα d2/<« log d D[u\
p JJ p

where α = l/min(α, 6), since

3r

Apply this result to the functions un=ψ — ψn (or to unm=ψn — ψm)
which are equicontinuous on R+Γ and thus have a uniform modulus
of continuity ω(δ), which approaches 0 with 3.

Since Pλ is on or interior to the circle of radius p, we have
\ιιn{Pι)-Un{Pϋ)\<,ω{p), whence |M^)I^Mft) l-*>(?) and

Thus

Wft)l^/--Z)[%n] log d-r 2ττ p

which is true even if Po is on Γ.
Now, for ε>0, choose p=pi so small that ω(pλ)<^εl2 and then choose

JV so large that

2- p1 4

for n>ΛΓ. Hence

e > 0 O ^ N(ε) 3 n>N-> \ψ(PQ)-

LEMMA 5. Let R be a bounded region with boundary Γ and diameter d.
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Let ιι(x, y) he continuous on R-hΓ, absolutely continuous on each line in
R-\-l\ and vanish on Γ\ and let 0<7)[?.£]<^. Let nr = l/min(α, b). Let
PoeR-{-Γ. If there exists <Γ>0, iΓ>0 and

\u(P)-u(Po)\^K\\P-P4*

for all points P such that the ray PQP is in R + Γ, then

lΰhere Δ is any number >0, and

(logx if af>l

Proof. If Po is interior to R, and p<,d, then as in Theorem 2

Γ
Uo

where PL is a point which is the first intersection of a ray from P{)

with either Γ or the circle of radius p<Ld about Po as center.
Since Pλ is on or interior to the circle of radius p, we have

2π[u(P»)-Kp8]<V2πa log dip D\u],

z}Miog d

2π p

which holds even if Po is on Γ.
Let zί>0. If

choose

P==\ K

to obtain

Otherwise,
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and we may replace K to obtain

Choose f>=d to obtain \u(P0)\<J D[tι\.

COROLLARY 1. A sufficient condition that a sequence uni absolutely con-
tinuous on each line in R, vanishing on Γ, continuous on R, and having
lim jD[wn]=0, converge to 0 at Po is that 3<5>0 and a sequence Kn, with
n-*oo

lim D[un] log Kn = 0 such that

\un(p)-un(P0)\^KJP-PQf

for all P with ray P0P in R. If d, Kn are independent of Po, the con-
vergence is uniform. In any case,

K(Po)\<J a D M log-
γ 2nd2nd

for any 4w

LEMMA 6. Let R be a bounded domain with boundary Γ. Let
PoeR and suppose there is a circle of radius e lying in R and contain-
ing Po. Place polar coordinates (r, θ) at Po. Let u(x, y) be of class cι

in R and suppose that there exist X^>0, σ>0 such that

\ur(P)-ur(P0)\<σ\\P-P0\f

for all points P such that the ray P0P is in R.
Then

( ^xλ/cλ+i) (5λ+3)/(λ+i

") 2

Proof. \ur(P0)\<\ur(P)\±σrλ

Integrating over a circle Sp of radius p<ε which contains Po,
Se, we obtain

\ur(PQψrdrdθ<2\[ ur(P)*rdrdθ + 2[[ a'zrzλr dr dθ .

We may assume that the polar axis lies in the direction of pu(P0).
Hence ur(P0) = \^u(PQ)\cosθ and

(( \FU(P0)\*(COSZ θ)r dr dθ<2a D[u\ -4- 2at
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We will show that the minimum value of 11 {cos1 θ)rdr dθ is

o(r θ)

Suppose first that the pole O is interior to Sp. Let r(0) be the equa-
tion of the circle relative to the pole 0. Let Q be the point (r(0), 0)
and Qf the point (r(0 + 7r), 04-π). Q and
Q' are thus the intersections of a ray
through 0 with the circle. Let 0' be the
center of the circle and suppose the co-
ordinates of 0' relative to 0 are (c, φ).
Then the angle between OQ and 00' is
φ — θ. Drop a perpendicular from 0' to
QOQ' hitting the latter at T, the length
of OT being |ecos(φ-0)|. Thus one of
the lengths ||0Q||, || 0Qf \\ is ra-h|c cos(φ-0)| and the other is ra-
le cos (φ-0)1 where 2m is the length of QQ', and the product \0Q'\
|| OQ ||=m2 —c2cos2(φ —0). Also, if 00 ' meets the circle in points A,

A! it is easily seen that \0A'\ | |CL4|H|0Q|| || OQ' || so that (JO + C)(JO-C)

=m2—c2cos2(φ-0) and m*=pz — 6ι-V6ι cos2(φ — 0). Hence

- 2m2 + 2c2 cos2(φ - 0) = 2pz - 2c2 4- 4c2 cos2(φ - 0).

We note that

if (cos2 β)r dr dθ=X ΓV(0)cos2 0 dθ = - ί p (|| OQ ||2-ί-|i OQ' ||2)eos2 0 d0
JJtfp 2 Jo 2 Jo

= X [* \2pι - 2& -f 4c2 cos2(φ - 0)] cos2 0 dθ .
2 Jo

Moreover this formula holds even if O is a point on the circumference
for in this case

\ I (cos2 0) r dr dθ=1/21V+V(0)cos2 0 d0

where r is the angle between the polar axis and the tangent to the
circle at O in that direction which has the area to the left of the
tangent line. Here rλ=[2pcos{φ — θ)J and since the square of the
cosine has period π, the integral reduces to

1 f*
\ Ap1 cos2(φ - 0)cos2 0 dθ .

2 Jo
Thus, in any case,
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(( (cos2 β)r dr dθ = XT \2p2 - 2& + 4c2 cos2(φ - θ)] cos2 θ dθ
JJ-Sfp 2 JO

= —πp2 - •- 7Γ c2 4- ^ [1 + 2 cos2 φ] .
2 2 4

For fixed c, the minimum is obtained when φ= π , and is π^ — πc2

2 2 4
The absolute minimum is obtained when c=f> and is ;ηo2/4.

It follows from this result, that

^

πpλ

Consider the function y=A!p2+-BfSλ where A=8aD\u]lπ, S = 2 2 λ + V
The minimum value is

/ A ' \ Λ/fλ + 1

λ + 1 ^ ( )
)

( ) (λ

obtained when

/ A γ/(2λ+2^ / a D[u]
Λ "Vj8i7 ^Λ/^ 2 2 2 λ

If

/ aD\u\ Xκ'lλ+2:> <r^
\

choose

and have

However, if

we have
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and integrating over Ss, as in the beginning of this proof, we find
that

dr dβ <2\ \ ur(P)*r dr dθ-f 2 - ™ - ^ - (2e)a\τe2,

K ( ι + ^
πε2 λπε2 V λ J πε2

Thus, in any case,

\ϊ7iι(PQW<(σ*D[ιqψ^( a V/Cλ+1 Vλ+3>/cλ+i^(λ+1) + 8 a D[

\λπ/ πε1

LEMMA 7. Let R be a bounded region with boundary Γ and diameter
d and let R have the property that there exists an ε^>0 such that every
point of R+Γ is within some circle of radius ε lying in R + Γ.

Let u(x, y) = Gτ + H where τ is a polynomial of degree m, G and H
are of class cι on R+Γ and vanish on Γ9 G > 0 in R> |/7(?|><Γ>0 on Γ.
Let \G\<GU \H\<Hly I F G | < G 2 , \vH\<Rz for constants Glf Gif Hlf H2.

Suppose also that

\GX(P)-GX(PQ)\<GQ\\P~PQ\\, \Gv(P)-Gy(PQ)\<&Q\\P-PQ\\,

\Hx(P)~-Hx(Pϋ)\<HQ || P~Pύ ||, \Hy(P) -Hy(P0)\<H01| P-PQ || for constants
Go, Ho, whenever P, Po are points in R such that the line P0P is in R.
Let A be an upper bound for D{u\ and D\u\ log m.

Then there exists a constant B, depending only on a, A, Go, Glf G2, Ho,
Hlt Hi, d, ε, d, G but not on m or τ, such that for PoeR.

Dlu] log+ - ™—
Δ D[u\

for any Δ^>0. (m to be replaced by 1 if it is 0).
Proof, We may assume D[u£>0 for otherwise w = 0 in R.
Let L=max|rj. By a theorem of Kellogg [3], \yτ(P)\<Lm2le for

P e R.
If P and Po are on a straight line in R, then

I p-pa \, \G(P)-G(PO)\<G1 \\ P-P0 \\,

\u(P) -u(Pa)\<\G(P)r(P) - G(P)r(P0)\ + \G(P)τ(P0) - G{Pa)τ(P0) + \H(P) - H(P0)\
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+ # , ) I P - Pa | ί = K 1 P - Pu || .

By Lemma 5, with J=D[u]'φ,

(2) \u(P0)\<L/°LDlu] log* JZ + VD&\ •

Also, τx, τυ are polynomials of degree m and absolute value less
than or equal to Lm2/e, so that |f7rJ<;(Lm2/ε)(m2/e,) and

-<" II P—P lί
- ^ — ~ I! * * o II

Thus

Then

\Fu(P)-Fu(PB)\

<\G{P)Vτ{P)-G{Pv)Vτ{P0)\ + \T(P)FG(P)-T(P0)FG(P0)\ + \FH(P) - FH(Pβ)\

^\G(P)Fr(P)-G(P)Fτ(P0)\ +! G(P)Fτ(P0)-G(P0)/7r(P0)|

! τ{P)FG(Pΰ)-r{P0)FG{P«)\

-Hx(PB)\ + \Hy(P)-Hv(Pll)\

ΰ) | |P-P B \\=a | |P-P o | | .
/ε e

Whence Lemma 6 yields

( 3) I Fu(P0)\^J{a*D[uWi-«) S2 + 1

By use of inequalities (2) and (3) we now find a bound for L.
Either L < 1 or else there exist constants cu c2 such that

cλLm2, σ<Cc2Lm4: where the factor m is to be omitted if it is zero, and
cl9 c2 depend only on e, Gu G2f H2J Hc, GQ.

Assume L > 1 . Since |pG|=^0 on Γ, there exists a continuous
curve (or curves) γ dividing ~R into two closed sets Rλ and R%9 such
that R1R2=γ, Rι being a boundary set where | yG \ > ^/2>0, and R2 the
set separated from Γ by γ . There is a constant c3 such that G(P)
^ 3 > 0 for P e ^ .

Suppose first that |rj assumes its maximum L at a point PoeRz.
Then, by (2),

°ίD[u] log+
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or,

Since D[u] log m and D[u] are bounded by A, equation (4) implies
the existence of a constant c4 depending on c3, cu d, A, a, Hλ such
that L < c 4 .

On the other hand, if | τ | assumes its maximum L at a point P o e
Rl9 write

Gψτ 4- r τ —

τz\pG\<

L W

2π V D[u]

Therefore,

(5) L<\

This inequality, which is of the form

L<Kλ 4- Kzm
2 4- JSΓ3mVlog L

shows that

l/L < - ^
VL

~ ^ 4-

L

since L^>1, whence Z/<cδm
4 for some constant c5.

Thus, in any case, there is a constant c6 such that L<Cc67n\ where
the factor m is to be omitted if it is zero. From this one can con-
clude that K<CcLc6?n6. However, we may obtain a better estimate by
noticing that K merely serves as a number such that \u(P) — u(P0)\
<K\\P—Po|| whenever P and Po are on a straight line in R. Hence
K may be replaced by sup | ψu \.

The inequality and formula (3) yield

32+
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since D[u]<LA. Thus we may replace K by cΊD[u]ιlimί and substitute
in Lemma 5 to obtain

Let J=dc7JίD[&Ί l3/' and B=dcγ to obtain the conclusion.

LEMMA 8. Let R, G, have the properties in Lemma 7 and let u==
Gτ where τ is a polynomial of degree m.

Then D[u]>cu\u(PQ)\2jlog m where c1 2>0 is a constant depending only
on Go, Gu G2, dy ε, a, δ, G. The factor log m is to be omitted if m = 0
or 1.

Proof. Whether L<\ or not, the formulas for K, n show that
K<CciLm\ (KCβzLm^. Moreover, either formula (4) or (5) holds, with
#1===0, J ϊ a =0. If (4) holds, we have

1 Γ / a dciLm. -,

Let W=LIΛ/D\U\ The above inequality is then of the form w<L
iΓil/log wm? + Kz whence L/i/5[w]<c8 log m for some constant c8, depend-
ing on α, c3, d, d. Here the factor logm is to be omitted if m = 0 or
1. On the other hand, if (5) holds, we have

+ (i/ -- log* ddnf-v—r: +1
e \y 2π VD\u\

from which we conclude L\\/Ό\u\<c^Yϊύ logm (m and logm to be omit-
ted if m==0 or 1).

Thus, in any case, there is a constant c10 such that L\\/Diιϊ\<
c]0m

5 . Therefore

K ^ cjjm?
vD[u] vD[u]

Substituting in equation (2), we have

\u(P,)\<J^D{u\ log

m to be omitted if it is 0 or 1.
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THEOREM 3. Let R be a bounded region whose boundary Γ consists
of a finite number of simply closed regular arcs of class ck, fe>3. Let
G(x, y) be a function of class ck on R + Γ, vanishing on Γ, positive in
R, with 3G73J/><5>0 on Γ. Let f h be the set obtained by orthonormaliz-
ing the set {Gxιyj} using the functional

= [[ (aξ2

x + bξ\4-c?)dx dy

as the square of the norm, where a, b, c are bounded and integrablef

α > 0 , 6>0, α>0 on R+Γ. Let g{x, y) be any function of class ck on
R+Γ. Let ψ(x, y) be any function of class ck on R + Γ assuming the
values of g(x, y) on Γ. Define bι=D[ψ — g, / J .

Then

Ψ~g-Σbifι=ouvnn) l o g

n

where

with l im^(^)=0, θ depending on ψ — g, and where N is any fixed constant

Moreover, if k>10, then

Finally, if S is any closed domain in R, k>7, then for points P in S,

Proof. Let un = ψ—g— Σδ/Λ . Then un is of the form Gτn-\-H

where the degree mn of τn is less than V2n — 2 and greater than V2n

- 2 . By Theorem 1, D[Un\^θ(n)ln*-2, k>S, where lim^(72) = 0 so that

D[un~\ log mn<A for some constant A independent of n. By Lemma 7,

\un(P0)\</2a D[un] log+ ---^-

for any J w > 0 .

/ 2 - ΰ W log+ ]
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There is a constant E, depending on N, such that ϊln<CEI(logn)ΛTe ,
rQtZ. Then

Dίun]<θ^<k

n e
if

The function a; log (V2n\Δx) is monotone increasing for 0<x<V2nleΔ so
that we may replace D\un~\ by θ(n)jnk-2 to obtain

In the proof of Lemma 7, we saw that L<jβQm^ and J < C 2 L M 4 <

c2c6m
8. Hence by equation (3) of Lemma 7,

Since mn<j/2n, we obtain the statement of the theorem regarding

uniform convergence in R of \pun\ for k>.lθ.
Next, let S be any closed domain in R. We may suppose the

boundary Γ' of S is sufficiently smooth so that a circle of radius e
may be rolled around Γr while lying in S. Let Lw '=sup|rn | and P?°

s

be the point in S where Ln

r = \τn{P^n\ As in the proof of Lemma 7,

32+ 1 6 α D ^ for P.e
7Γ /

where

Using Gτn as the function u of Lemma 8 defined overhand remember-

ing that Gτn= - Σ δi/i > we obtain
ί l
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\G(PnL'n\<ij/D [ Σ δ«/i] log ninjcπ .

In S, |G(P) |>c 1 3 >0. Also

D Γ Σ δi/iV Σ δ?^ Σ«=W-flΊ

Therefore Ln<cXi\/\ogn , 5n<c l 5wVlog w , and

32 -f —-

THEOREM 4. Lβί i?, Γ, (?, / £ δe defined as in Theorem S. Then

there is a constant c17 such that whenever PoeR, then

The theorem is true if Po is a point where f19•••,/„ all vanish, in
particular on Γ. Let PQ be a point in i? where not all fκ, K=l, ,
w vanish. Consider the problem of minimizing D[u\, where u is of the

n

form ιι= ^cκfKj under the condition U(PQ)=-T^F0. NOW
J Γ - 1

so that we must minimize ^]c2

K under the condition ^cκfκ(P0)==T.

By Lagrange multipliers we find a necessary condition for a minimum
to be

K K

and the function u= Σcκfκ satisfies

n

This is actually a minimum value, for, if ιι= Y,cκfκ, then
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SO

rp j, n

Now u is of the form G τn where τn has the degree of /„ and this

degree is less than V2n — 2

By Lemma 8, we have D[U]^c12T
2llog i/2n — 2

Hence

4* An Associated Problem* As in the previous sections, let R be a
bounded region whose boundary Γ consists of a finite number of simply
closed regular arcs of class cfc, k>3 G(x, y) be a function of class ck

on R-\-Γ, vanishing on Γ, positive in R, with 3G/3v>£Γ>0 on Γ g(x, y)
be any function of class &'' on R + Γ a variation be a function of class
ck on R+Γ vanishing on Γ.

Let

(αf* -f bξl -b cξ*)pdx dy ,

where α>0, 6>0, c^>0 on RΛ-Γ; α, δ, and c are bounded and integr-

able on R; p is a real number greater than or equal to 1.
Assuming the existence of a function ψ0, yielding minimum value

to Dp[ψ] in the set of admissible functions of class cλ' on RΛ-Γ, which
take the value of g on /\ can we obtain ψ0 by the Rayleigh Ritz
method ? This question is answered in the affirmative and an estimate
is obtained for the rate of convergence.

Let \\ξ\\ = (Dp[ξ]y!*p, for fin the set of functions of class ck on R + Γ.
This functional has the properties | | £ | | > 0 , \\aξ\\=\a\ \\ξ|| for real α,

U+y\\<U\\+\\v\\.
The functional | |£| | is a true norm in the linear space V of varia-

tions. Let H be the Banach space formed by completing V with respect
to this norm. As in the proof of Theorem 1, we see that the set of
functions Gτ, where r is a polynomial in x and y, is dense in H.
Moreover, if ψ is admissible, there exists a sequence of polynomials
Qj of degree at most j such that
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where θ depends on ψ — g and lim#(j) = 0.

There exists inf Dp[^]>0 for admissible ψ. Let τά be a polynominal
of degree at most j which makes Dp[g + GτJ~\<LDp[g + GQJ~] for all poly-
nomials Qj of degree at most j .

That such a polynomial τ5 exists can be seen as follows. The class of
all functions GQj where Qj is a polynominal of degree at most j is also
the linear manifold determined by fi=GTu the orthonormal sequence
of Theorem 1, whose polynomial factor T.t is of degree at most j . As

stated in the introduction, \<i<ij('} )+ j4-l = <7 so that we may
σ

write GQj= Σcifi Now let Q] be any fixed Q3. We may restrict

ourselves to those Q5 such that Dplg + GQά<Dp[G + GQ'ά. For such
we have

Since D[ξ]<Dp[ξ]l!p\R\ιlq where (l/p) + (1/(7) = 1, | i2 |-area of R, we
find that

Thus the permissible C| lie in a bounded closed set S in ^-dimensional
space. Since

is a continuous function of c t in S, it attains its minimum in S.
Since Dp[gΛ-Gτ^\ is a decreasing function of j , we have

Km l| g + GΓJ |!< lim inf \\g + GQj \\ .

Let ψ be admissible and choose Q5 so that lim Dp[ψ-g—GQJ = 0. Then

l| ̂  + GQ, !|<l] ̂  14-1 ψ - g - GQj [| implies that lim inf || g 4- GQ̂  ||<|| ψ \ . It

follows that lim|^-f Gr̂  | |<| |^ | ! for every admissible ψ an<3 thus g + Gvj

is a minimizing sequence.
If e>0 in a set of positive measure in R, the functional ||£|| is a

true norm in the linear space (ck) of functions of class ck on R + Γ. If
c = 0, a.e. in R, this is still true provided we identify functions differ-
ing by a constant. In either case we will complete the space (ck) to
form a Banach space B.
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A set S in a normed linear space is uniformly convex if there
exists a continuous monotone increasing function g(ε), 0 < s < l , with
lim#(e)=0, such that whenever ξ, η are in S and ||fj|=j|iy||==l, ||(£4-7)/2||
S->oo

>l-ε , then \ξ-r}\\<g{e).
We shall show (ck) is uniformly convex. It is easily verified that

if a, β are > 0 , and p>l then

3αp -f βp<2\ a -f β\p 4- \a - β\p.

Apply the inequality to the integrand below, where we assume φ
and ψ are in (cfc)

r d x d y

\\\βψrψx + b.jφ.jψ,, + cφψ\pdx dy

i/i>

j. + bφ*+ c4?Va<fc+ bφf+ϊ P )"dx dy

Hence

and

for e < Ί , since the function y=[l — (l — xfp] — 2px vanishes at 0 and is
a decreasing function of x for 0 <

LEMMA 9. Let B be a Banach space, Y a set in B with the property
that if yu y% are in Y, then so is (2/i + 2/2)/2. Let the linear manifold
spanned by Y be a uniformly convex set in B. Let
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let yn be a sequence in Y with

Then there exists a unique x in B such that \x\\~p and we have

where g(ε) is the function in the definition of uniform convexity. If p==
infill| |=0, and lim||2/ro||=jθ, then there is a unique x in B such that
yer

\x\\=p, and we have \\x—yn\\=Pn—p

Proof. Let zn=ynjpn so that | |« n | |=l. Write

2 p \ 2 J 2 \ p n p ) 2 \ p m p ) '

y n ± y Λ __ lll/nll/1 _ 1 \\Vm\\( 1 1

2 II Ύ\p pj 2 \p p

Hence

2\p 2\p 2P

2p
for ^-ZLΞLt^Zf

2P

Thus there exists z=limzw in B. Let α?=io^=li

Then ||a?||=lim||2/Λ||=/o. Also \\zn-z\\<g((pn-p)l2p) implies
W-»oo

- p z n I I 4 - I I ^ - p n z n γ^j+pn-p -

To show a? is unique, suppose also 2/»eF, lim||^||=/o, x'eB, |a?'||=/o,
W->oβ

^'==lim^ . Then form the sequence {2/«}=2/i, ?/ί, y^ y'2, etc. of ele-

ments of T with lim^=jO. As above, 3 ^ " 6 J5 with x"=\imy'n =

Iiπi2/ή=lim2/n. The last part of the lemma is obvious, since only | |0 |=0.
To apply the lemma, let B be the completion of (cfc), Y the set of

admissible functions,

for admissible ψ. By the lemma, there is a unique x such that ||#||==
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p. Assuming that x=ψ0 is in Y, we can choose polynomials Qj of degree
at most j such that

Then

By the lemma,

a better result, 0{θ{j)lf-'ί)y is obtained in the case p ^

Since

where |J?| is the area of R and (l/p)-f (l/g)==l, we find

where lim0(.?)=O, when we take Uj=φ,Λ—g—Gτ5. A proof similar to

that of Theorem 3 can now be constructed for the following result.

THEOREM 5. Let R be a bounded region whose boundary Γ consists
of a finite number of simply closed regular arcs of class ck, k>3. Let
G(x, y) be a function of class ck onR-\-Γ, vanishing on Γ, positive inR, with

3G/3v>(5>0 on Γ. Let a, 6, c be bounded and integrable on R, and

α > 0 , 6>0, c > 0 on R. Let g{x, y) be any function of class ck on R + Γ.

Choose polynomials τ5 minimizing Dp[g 4- GQj] in the set of all polynomials

Qj of degree at most j . Then, if ψ0 yields minimum value to Dp[^] for

φ in the set of functions of class ck on R + Γ assuming the values of g on

Γ, we have

where N is any fixed positive constant, θ(j) depends on φo — g and

j
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// &>16p-h2, then
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THE FLEXURE OF A NON-UNIFORM BEAM

E. E. JONES

Summary. The flexure of a beam of non-uniform flexural rigidity
and non-uniform loading is deduced by the use of the method of the
Laplace transform, the results being in the form of a single equation
involving integrals which are in a suitable form for evaluation, either
numerically or otherwise. Two examples of practical importance are
introduced to illustrate the method, and the results are also applied to
determine the equation to the elastica of a beam supported by many
rigid supports.

1. Introduction* The method of solution of linear differential
equations by means of the Laplace transform was used by Jaegar [6]
to deduce the deflection of a beam with concentrated loads along its
length, the beam having uniform flexural rigidity and variable loading.
These results were extended considerably by Thomson [10], who
indicated that the Laplace transformation method led to the simplest
approach to the beam problem. These results were obtained in the
form of a single equation in terms of certain end conditions, and
eliminated the necessity of determining the equations between points
of discontinuity of load, and then connecting them at these points, [9],
[1]. Thomson's results apply to problems concerning beams of uniform
flexural rigidity, and in order to extend them to problems involving
beams of varying and discontinuous cross-sectional inertia it was
necessary to reduce these latter problems to the former by the intro-
duction of an artificial modified loading of the beam, [4], [11]. This
present paper indicates how the problem of the beam with non-uniform
loading and flexural rigidity can be solved directly by the use of
standard operational methods, an appeal being made only to well-known
results in the calculus, [3, p. 257], [7, pp. 71, 82], [12].

It is assumed in this paper, that if Jk^y(x) is the Laplace transform
of y(x), then

and in conjunction with this the following theorem is also required:

yι(u)y2(x-u)du,

o

Received March 26, 1954.
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if these integrals exist.
The results of the subsequent analysis can also be put into more

convenient forms by the introduction of the unit step-function, defined
by

= 0 , x<Ca ,

2* The beam under consideration is assumed to have s sections,
separated by the points xn, (n=l, 2, •••, s — 1), the origin of coordinates
being at one end of the beam, and the #-axis directed along the
undistorted position of the beam. The 2/-axis is then taken in the
direction vertically downwards, i.e. in the direction in which the
gravitational forces act. The weight per unit length of the beam in
the section xn^τ<j)c<jcn is wn(x), and in order to simplify the notation,
the flexural rigidity in this section is defined as B~ι(x). The beam is
subjected to m concentrated loads Pn, acting at the points Xn9 (w=l,
2, . . . ,m).

In order to avoid assumptions regarding the distribution of the
concentrated loads along an element of the beam at the positions where
they act, it is more convenient to deduce an expression for the shear
force acting on a right section of the beam in terms of the forces
acting on the beam. If z measures the bending moment at a point of
the beam distant x from the origin, then — dz/dx measures the shear
force at this point. Assuming that zγ is the value of dz\dx at the
origin, then the shear force at a distance x from this origin is given
by the differential equation

(2.1) ^ = s i

dx
where

φ(x)=[* w(u)du + Σ P(Xn)

Here φ(x) is equal to an integral plus a step-function, and
Any distributive loads can be included in w, which is a simply dis-
continuous function of x of the form

where wo=O.
Equation (2.1) can easily be deduced by resolving all the forces acting
on the length of beam between the origin and the point distant x
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from this origin normally to the beam in the direction of the ?/-axis.
The Laplace transform of equation (2.1) is

(2.3) p^fz-Zo^Zilp+X φ(x)e~pxdx ,
Jo

it being sufficient to assume that p>0, since φ is bounded, and possesses
a finite number of finite discontinuities in the range of integration.
On rearranging equation (2.3),

= z° + -ι -+ 1 \°φ(x)e-**dx.
P P2 p Jo

The inverse of this equation is determined by using the convolution
integral, giving

\
Jo

φ(u)du .
o

On integrating by parts, this leads to

udφ(u)=zQ-\- ZίX+X (x — u)dφ(u) .

o Jo

This equation expresses the bending moment z at a point of the beam
in terms of a Stieltjes integral, [13, chap I], and thus can be inter-
preted in a series form.
From equation (2.2), by substituting for Φ(x) into the integral involved
in equation (2.4),

(2.5) [ \ ) φ [ (
J Jo χn<x

since contributions to the integral from the step-function only occur
when u passes through a point of discontinuity. Hence finally equation
(2.4) takes the form

(2.6)

where the last term in equation (2.5) has been modified by the use of
the unit step-function.

The deflection y at the point x of the beam is given by the
differential equation

where
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B(x)='£(Bn¥l-Bn)H(x-xn) ,
71 = 0

with Bo=O. Here B(x) is a simply discontinuous function of x, and
z(x) is defined by equation (2.6)

If 2/o=(2/)aJ=o > and yι = (dyldx)ΛmsQ , then by repeating the above
process

p pz pz

whence

(2.7) 2/=2/o + 2/i#4-\ {% — u)z{u)B{u)du ,
Jo

using again the property of the convolution integral.
By combining equations (2.6) and (2.7), the deflection of the beam

can be written in the more convenient form

2/=2/o4~2/i#"J~ \ (x — u)(zo-\-ZiU)Bdu h 1 (a? -v)Bdv\ (v — u)wdιι
Jo Jo Jo

(2.8)

The integrals involved in this expression are all interpreted in the
same manner, the range of integration is subdivided into intervals
corresponding to the subdivisions of the functions B and w, thus

S X > - i rXn+i Γ X

(x — u)Bdu=Σ\ (x — u)Bn+ιdu-h\ (x~u)Br+ιdu ,
when # r O O r + 1 , (0<r<s — 1). This integral may also be interpreted
in the form

S ^ - x n ) \ X (x~-u)(Bn+ι~Bn)du.

Similar expressions occur for the remaining integrals although greater
care must be taken over the subdivision of the last two integrals of
equation (2.8).

It follows from equation (2.7) that

dv ΐx s P P' x 7

"-=y1 4-1 {zύ-{ ZιU)BduΛ-1 Bdv\ (v — u)wdu

(2.9) dX J° J° J°

" ' (u-XJBdu .
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In any practical problem the values of the constants y0, yu z0, and
zL can be deduced from the given end conditions, it being noticed that
the equations apply along the whole length of the beam.

3 The first example illustrates the effect on the flexure of a beam
of a variation in the flexural rigidity of the beam. The beam is assumed
to have uniform loading w, and is freely supported at the same level
at the ends x=0> L The beam is subdivided and stepped in cross-
section at the points xn, (n=l, 2, « ,2s), so that x2s+ι=l, and these
points are symmetrically placed with respect to the mid-point of the
beam, such that

(3.1) xis-n^xn~l

The flexural rigidity of the stepped beam is constant in each section,
and is also symmetrically distributed, such that, in the usual notation,
B2s-n+1=Bn+1, (n=0, 1, , s).

The deflection of the beam at a point distant x from one end,
given by equation (2.8), is

1- Bn)H(x-xn)[X u(x-u)du
Jx,t}

(3.2)

% t [ * v*(x-v)dv ,

since yo=zo=Q at x=0, where y=d2yldxI=0. Also y=d*yldxi=0 at
x=l, hence from equation (2.6), zι=—wli2J and from equation (3.2),
after some reduction,

The integrals of equation (3.2) are easily evaluated, and after substi-
tuting for yι and zu rearrangement leads to the final expression for the
deflection

lwxBAP + x2ltf)+ }QiϋxΣ
24 48 n=ι

- -~r Σ>H(x- xn)(Bn+1 - Bn)(δP 4- 4te - 4a2 - 21 ln 4- 4xln - 2l*){2x - 1 + IJ
384 w=i

o ^ τ Σ H ( x - Xu-n+1)(Bn+1 -Bn)(5P 4- 4te - 4αr« + 2Π, - 4a?Zn - 3Ẑ )(2a? - 1 - O a

384^=1

When x=l/2 this relation reduces to the result deduced by Hetenyi,

[5], using another method.
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4. The second example refers to a cantilever beam clamped
horizontally at the end x=0, free at x=l, and loaded linearly according
to the relation w=mx, where m is a constant. The beam is subdivided
and stepped in cross-section at xn, (n=l,2, •• ,s —1), in such a way
that Bn is constant in each section, but increases in magnitude as n
increases. A concentrated load acts at the mid-point X of the end
section x8-L<Lx<ixs.

The equation governing the deflection of the beam reduces to

s-L CX

- x n ) ( B n + 1 -Bn)\ (x-u)(zQ+zxu)dn

8-1 CX ΓV

4- m Σ H{x — xn)(Bn+1 — Bn) \ (x — v) dv I (v — u)udu

n - 0
(x-u)(u~X)du ,

since yύ=yi=0 at a;=0, where y=dy/dx=0.
When x=xs=l, then z=dzldx=0, hence from equations (2.6) and

(2.1),

Thus

Zo=PX + ml3IS , and zι=-(P+mPj2) .

The deflection at any point x of the beam then becomes

2/= * Σtf(^-<K5,, + 1 -βJ(z-ag 2 {2P(3X-ar-2zJ + mP(2l-x~2xn)}

+ - y - Σ ̂ (α - »n)(5»+1 ~ 5 f ί)(^ - δa ίBi + 44)
120 «-o

+ P

aH(x- X)t(5K+1 - BJ(x- Xf .

5. When a beam is constrained at various points along its length
by means of rigid supports, the reactions at these points will occur in
the equations for the flexture of the beam. It is thus necessary to
eliminate, or at least to determine these reactions. A particular
example will suffice to indicate the procedure. It is required to deter-
mine the form of the elastica of a beam of varying section clamped
at each end, and supported at several points along its length, one of
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these supports being a distance d out of alignment with t h e remainder.

There are m supports, one a t each of the points Xr, ( r = l , 2 , •••,
m), the beam being divided into s sections a t points xrf ( r = l , 2, •••,
s — 1). The beam is clamped horizontally a t x=0 and at x=xs=Xs,
and there y=dy!dx-=0.

The following notation is introduced :

ar = I (Xr-u)Bdu , &r = I (Xr-u)uBdu ,

(Xr — v)Bdv\ (v — u)wdu, dnr =

the integrals being interpreted as in § 2.
If Pn, (n^l, 2, , ra), are the reactions at the supports, then

from equations (2.8) and (2.9), at x=0, yo=yi=O, and at x=xs=-Xs,
then

2oα8 + zj)s + cs + Σ J P Λ , = 0 .
(5.1)

m

^o«s +• zj>s -f c.; -f Σ -P rarfϋ*=o ,

n = l

Xs

where as=^\ Bdu, etc., i.e. the partial derivatives of the integrals
JO

with respect to x at x=Xs .
Solving equation (5.1) for z0 and zι we obtain

where

It is assumed that the supports are in line along 2/=0, with the
exception of the support at the point (xt, d). If Srt==l when r=f,
and is zero when r^t, then yr=dδrt, and from equation (2.8),

This equation can be written in the matrix form

(5.2) Prnpn=qr ,

where
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yrn=arFns+brGns+dnrH{n-r) ,

qr=-(dδrt 4-arfs +brg8 +cr) .

The matrix equation can be solved for Pn by any of the standard
methods \2, pp. 96-155], i.e. by an iterative process, or by forming a
triangular matrix by premultiplying both sides of equation (5.2) by a
suitable matrix and solving the resulting equations either directly or
by considering the reciprocal matrix solution.

The elastica is determined by inserting the values of Pn in equation
(2.8), since 2/j=2/i=O, and 2, and z1 are already known. The procedure
is similar for other end conditions. When the reactions at the supports
are known, it is also possible to determine the slope, the bending
moment, and the shear stress at any point of the beam. All the
integrals can be evaluated numerically, [8], or directly if the variation
of B and w is in a simple form, and a tabular process can be readily
set up.
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NOTE ON NONCOOPERATIVE CONVEX GAMES

HϋKUKANE NlKAIDO AND K A Z U O ISODA

1. Introduction. Nash's equilibrium-point theorem for many-person
games can be approached by two methods: first, the Kakutani-type
fixed-point theorem1 is very useful for this game problem; second, in
case of finite-dimensional multilinear payoffs, J. Nash himself has given
an elegant procedure [7] which is directly based on Brouwer's fixed-
point theorem. In a previous paper [10] one of us proved a general
minimax theorem in making use of a procedure analogous to that of
Nash. The present note is a continuation of this paper, and its main
purpose is to offer further improvements of Nash's method so as to
treat noncooperative many-person games played over infinite-dimensional
convex sets, based on a generalization of von Neumann's symmetrization
method2 of game matrices. The results thus obtained contain further
weakening of (especially topological) assumptions of the equilibrium-
point theorem.

Next we shall discuss the equilibrium-point problem of some general
noncooperative games by reducing them to suitable convex games. This
will clarify the relevance of convex games to general games.

2. Definitions and notations* We mean by a convex game [3] a
noncooperative ^-person game with the following conditions:

a) The ith player's strategy space is a compact convex set Xt of
a topological linear space E.t.

b) The ith player's payoff Ki(xl9 •••,#*,•••,#„) is concave with
respect to his own strategy variable XιeXt.

c) The sum of payoffs ^^Kt(xu •• , # i , •••,#„) is continuous over
the cartesian product space Xx®Xt® *®Xn.

d) For each fixed x49 Ki(xl9 , Xι-lf xif xί+ι, ••-,#«) is a continuous

Received October 27, 1953. This work was partly sponsored by the Ministry of Edu-
cation of Japan. The writers wish to express their thanks to Professor S. Iyanaga, Tokyo
University, for his comments.

*See [6], [4], [5], or [9], A supplementary note to [9] will be published shortly.
2 See G. W. Brown and J. von Neumann, Solutions of games by differential equations

in [1], and D. Gale, H. W. Kuhn and A. W. Tucker, On symmetric games in [1].
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function of the (n — l)-tuple \_xu , x^u xi+ι, , xn]eXλ® ®Xf-.,®Xί+i®
•• ®Xn respectively.

REMARK In view of the usual classification of games in terms of
total gains, c) may be of interest. Indeed, in case of constant-sum
games, c) is automatically fulfilled. If all the payoffs are continuous
over Xχ® ®Xn, c) and d) are also fulfilled.

A point [xlyx2, , AjeXiOXj®- ®XW is said to be an equilibrium
point if the ^-function Kt(xLf x2, , Xi-U xif %ί+1, , &n) assumes its
maximum at #*=£&* ( i=l , 2, •••, n).

REMARK The notion of equilibrium points first appeared in the
celebrated work of Augustin Cournot (see [2]) and was investigated by
him by means of differential calculus. But the contemporary concern
about it is to see the existence of these points in the global sense by
topological methods. The equilibrium-point problem under conditions
a)-d) cannot, however, be treated by the Kakutani fixed-point theorem,
since the required upper semi-continuity is not always assured in these
cases. Thus, the proof in the following section may deserve some
general attention.

3« Generalization of von Neumann's symmetrization and proof of
the equilibrium-point theorem. To see the existence of equilibrium
points for a convex game, we introduce an auxiliary function. To begin
with, denote by

x=[x19 x2, , xn] , y=[yi9 V-i, , yn]

two mutually independent variables with the same domain

which is again compact and convex.
Next put

n

( 1 ) Φ(x, y)= Σ Ki(Vi> y » " > 2/«-i> Xt> Vi+i> > Vn) -
i = l

It is noted that Φ(x, y) is also concave with respect to xeX. The im-
portance of this function is clarified by:

LEMMA 3. 1. A point

y==[yuϋ2i •• ,i)w]eX

is an equilibrium point for the given game, if and only ifΦ(x, y) assumes
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its maximum at x==y.

Proof. The necessity is obvious. If, conversely,

for any xeXy setting

x^lyi, fa, >y t-u χi9 ijt+if , yn]

gives

Kidfit y%> " Ί y ι-u ϋif yι+u >y ny^K t(y l 9 , y^19 χίf yί+i, , yn)

for any x^X^

REMARK For a zero-sum two-person game, we have

Φ(x, y)=K(xl9 y*)-K{yl9 x2) , Φ(y, i/)=0 ,

where K(xlf x2) is the payoff from player 2 to player 1. This implies
the functional form of von Neumann's symmetrization procedure3. We
shall later present an interpretation of this function with regard to
player's behavior.

With this setup, we next prove :

THEOREM 3. 1. A convex game always has at least one equilibrium
point.

Proof. By Lemma 3. 1., we have only to see the existence of a
point yeX such that Φ(y, y)^Φ(%, y) for any xeX. Suppose the contrary
were valid. Then, to each yeX, there exists some xeX such that

( 2 ) Φ(y, y)<Φ(x, y) .

Put Gx={y; Φ(y, y)<iΦ(x9 y)} then Gr is open by conditions c) and
d), and

xc υ Ga.

by (2). Hence, in view of the compactness of X, we can find a finite
3 It is noted that Φ(x, y) does not provide a real generalization of von Neumann's

symmetrization, since xi's refer, in special cases, to mixed strategies. We can also con-
struct, however, the function Φ in terms of pure strategies, and this will give a real
generalization of von Neumann's method symmetrizing game matrices; instead of the
cartesian product of mixed strategy spaces we must, then, consider the mixed strategies
over the cartesian product of pure strategy spaces. But in either cases the formal pro-
cedures in constructing Φ are exactly the same.
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set A= {al7 a,, , as}dX such that

xa 0 G«, .
J

This implies Φ(y, ?/)<max ό,Φ(aJf y) for any i/eX Now, put

fj(y)= max [<P(α,, y)-Φ(y, y), 0] tf=l, 2, -, s) .

These s functions are all continuous by conditions c) and d), and
satisfy //?/)i>0, Σ 5 - I / J G / ) > 0

The continuous mapping

(3) v - t /

maps X into the convex hull C(A) of A and therefore in particular
C(A) into C(A). Since C(A) is homeomorphic to a compact convex set
in a Euclidean space, there exists a fixed point by Brouwer's fixed-
point theorem.

Denote by y one such point. We have then

But for such a j that fj(y)>0, we have, by definition, Φ(aJfy)>Φ(y,y).
Since Φ(x,y) is ^-concave, this implies Φ(y, y)>Φ(y,y), which is a
contradiction.

REMARK The foregoing proof is essentially a repetition of the
argument in [10] the application of this argument to many-person
cases is made possible by the use of Φ(x, y). It should be noticed,
however, that despite the generality of Theorem 3. 1, it does not contain
the result of [10]. The main reason for this fact is : the quasi-concavity
(see [10]) of the original payoff may be lost in constructing Φ(x, y).
So the theorem in [10] needs separate discussion.

4. An interpretation of Φ(x, y). Lemma 3. 1 can be rewritten as
follows : An n-person game has an equilibrium point if and only if

( 4 ) min max [Φ(x, y) - Φ(y, y)\ = 0 .
yex xex

Now (4) may be interpreted in the following way: Suppose there are
n persons Pu PZJ •••, Pn. We consider the cases where all the persons
P>>, * * J Pn except Pτ cooperate. Denote the coalition consisting of only
Pi by Qi and that consisting of Pz, P3, , Pn by Q2. Qτ and Q> play
n original games simultaneously, conforming to the following new rules :
We denote these n games by Gu G2, •••,' Gn, respectively. In Gt ( i = l ,



NOTE ON NONCOOPERATIVE CONVEX GAMES 811

2, , n), Q1 participates in the n simultaneous games as the ΐth player,
while Q-2 occupies all the other positions. Then

indicates the strategies of Qu and

indicates those of Q2 If Q\ chooses x and Q2 chooses y, Q2 pays to
the amount

, 2/i-i, #*, 2/ΐ+i, i 2/n)

as the outcome of G{. On the other hand, Q1 pays to Q2 the amount

as the rent for gambling, after the game is over. Thus Φ(x, y) — Φ(y, y)
indicates the total gain of Qly while Φ{yfy) — Φ{Xj y) indicates that of
Qz. With the notion of this new zero-sum two-person game, (4) gives
a criterion for the existence of equilibrium points for the original n-
person game. If the given n-person game is constant sum, (4) is reduced
to the more natural formula:

min max Φ(x, y) = π ,
yβX xX

where π denotes the corresponding constant sum.

5 Reduction to convex games. In this section we assume E,t is a
normed linear space. We further assume regarding the payoffs Ht(xlf

xif •••, xn) the following conditions:
( i ) The ^-function Hi(xL, , xt_lf xiy xi+1, , xn) is upper semi-

continuous for each fixed (n — l)-tuple [xu xt, , x^l9 xi+1, , xn].
(ii) The # Γ set

{Xi max fli(a?i, , xif , xn) = Hi{xu , xίf , xn)}
X

is convex for each fixed (n — l)-tuple [xl9 •• ,a?.ί_1, xi+1, •••,#„].
(iii) The family {Hi(xu , xu , xn) ^ e X J is a uniformly equi-

continuous family of functions on Xχ® ®JCi_1®JΓi+1® -®Xn .
These games are usually treated by means of Kakutani's fixed-point

theorem. We shall next, however, prove the following:

THEOREM 5. 1. To each game of foregoing type there exists a convex
game with the same strategy spaces whose equilibrium points are exactly
those of the original game.
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As a direct application of Theorems 3.1 and 5.1 we can see the
existence of equilibrium points for games of the foregoing type without
Kakutani's theorem.

We now proceed to prove some lemmas.

Let R and S be normed linear spaces. We denote by \\x\\ the norm
of a point xeR. A continuous function f(x) over R will be called
linear if

f(aLxL 4- a%x ̂ )=a,f{xι) -f a2f(x2)

for xlt x2eR, aλΛ-α2=l. We define the norm of / as usual:

| | / | | = sup
IMl

Now, let H(Xj y) be a function on X®Y, where Xand Fare compact
convex sets in R and S, respectively, and suppose that the family of
functions {H(x, y) xeX} is uniformly equi-continuous.

Let further Fy be the totality of linear functions / over R such
that (I) H/HSΛ and (II) f(x)^H(x,y) for any xeX.

Putting

K(x, y) = inf f(x) ,

we obtain an ̂ -concave function on X®Y. We call K(x, y) the α -concave
envelope of H(x, y). We shall show the continuity of this function by
proving the following lemmas.

LEMMA 5. 1. {K(x, y) xeX} is a uniformly equi-continuous family
of functions on Y.

Proof. Since {H{x, y) xeX} is uniformly equi-continuous, we can
find for ε>0 a d>0 such that \\yι~y->\\<d implies \H(x, yλ)-H{x, 2/2)|<Ie
for any xeX. We shall show that, for this same 3, \\yι — y2\\<d implies
|2?Γ(ar, i/i) — JKΓ(α:, 2/2)|^e for any xeX.

Indeed, if feFVι, then

for all xeX, and | | / + e|| = | | / | | namely, we have f + εeFy,t

In the same way, we have gJt-εeFVι for g^Fy>.
Hence, if \\yx—y zW^Lβ, we obtain

K(x,y1)±ε= inf /(α) + e= inf [/(a?) + e ] ^ inf
geFV2
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and similarly K(x9y2)-he^ίK(x9y1) for any xeX. This means that
\K(x, y^-Kix, yz)\<Lε for ylyy2eY, Wyi-yM^o, and all xeX.

I inf /(a?)- inf f(x)\<^e ,
fSFy fF

LEMMA 5. 2. K(x, y) is continuous on X for each fixed yeY.

Proof Let y be an arbitrary fixed point in Y. If \\x — &||<lε, then
feFtJ implies

It follows that

proving the desired continuity.

LEMMA 5. 3. K(x, y) is continuous on X®Y.

Proof We have this lemma immediately by taking Lemmas 5. 1
and 5. 2 together into consideration.

LEMMA 5. 4. Suppose H(x, y) is upper semi-continuous in x for
each fixed yeY, and the x-set

Γv= {x max H(x, y)=H(x, y)}

xeX

is a convex subset of X for each fixed ye Y. Put

Δy={x) max K(x, y)=K{x, y)} .
xeX

Then we have /'y = dy for each fixed yeY.

Proof. Let y be any fixed point eY, and put

ωy= max H(x, y) .

xeX

Then the linear function g(x)==ωy belongs to Fy. Hence we have

H(x, y)^K(x, y)= inf f(x)<ωy

fFfor all xeX, which implies Γv<ZΔy.

Conversely, by the above formula, it is obvious that if xeAy then
K(x,y)=ωy. Thus, to see that ΔycZΓyy it suffices to show that K(x,
y)<ωy for χ$Γv.
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Let x be any point not belonging to Γy. Then

Putting

M={x; dist(α, /'„)<«} ,

we obtain an open convex set M and a closed convex set M (the closure

of M) in iϋ. Moreover, it is clear that ώφilί.

Let e(#) be such a linear function that e(a?)̂ >0 on ikf and e(ίfc)=—1
its existence is a well-known fact (known as Mazur's theorem) in the
theory of convex sets. Denote by N the complement of M within X;
N is compact and, in view of the definition of M, we have

max H(x, 2/) = r > 0 min e(x)=η<Ί) .
xeN xeN

Put

\v\

where d>Q is so small that $<γ and ^lk||^|^|. Then | | / | | < 1 ,
on My and

^>^ + \ωyf^H(x, y)

for any xeN.
Hence / e Fv. Moreover,

which means K(x,y)<C.ωy, proving the lemma.

The proof of Theorem 5. 1. is now immediate. Indeed, let us

construct the a?Γconcave envelope Ki(xu •••,#.{, , xn) of

^(a?!, , xu ••-,»») ( i = l , 2, , n) .

Then !£*(#!, ^2? *» ^n) is clearly ^-concave, and is continuous by Lemma
5. 3. Thus, we obtain a convex game. Moreover, the set of equilibrium
points of this game coincides with t h a t of the-original game, by Lemma
5. 4.
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ON THE CONVERGENCE OF ASYMPTOTIC SOLUTIONS
OF LINEAR DIFFERENTIAL EQUATIONS

R. M. REDHEFFER and W. WASOW

1. Introduction. In the differential equation

(1 ) L[y, e]=i/c»>+ Σ Mx. ε)y(n-» = 0

let the coefficients Aό{x, ε) be analytic functions of x and e. For all
values of x and ε for which these coefficients are holomorphic in both
variables the differential equation admits a fundamental system of
solutions with the same property. But if some coefficients of (1) have
poles, as functions of ε, for a certain value of e, say for ε=0, then the
solutions of the differential equation will in general have singularities,
as functions of e, at ε=0. The purpose of this paper is to collect
some observations on the question of when solutions holomorphic at
ε=0 exist even in this case.

The theory of asymptotic integration of such differential equations
[6], [8], [3], [9], [10] teaches that in this case there exist fundamental
solutions which are asymptotically represented by generally divergent
expansions of the form

(2) e ^ Σ t f v f ^ ,

where r is a positive integer and P(x, e) is a polynomial in ε~1/r. Our
problem might naturally be generalized to include the question of the
convergence of any, or all, of these asymptotic series, whether P(x, ε)
be identically zero or not. But this will not be done here.

The analogous problem for differential equations without a para-
meter, at a point where the coefficients have a singularity has been
quite thoroughly investigated (cf. [1, 486-489]). By contrast, there
seem to exist no studies of corresponding questions for the dependence
on a parameter, nor does it seem possible to transfer the results
obtained for one problem to the other by an easy analogy. In view of
this situation the results of this paper may be of some interest.

2. Necessary conditions* Let us assume that Aj(x, ε) are of the
form

( 3 ) Aj(x, ε) = ε-7' Σ AJk(x)εk , ( i=l , - , n)
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where at least one AjQ(x) is not identically zero and h is a positive
integer. The series are supposed to converge when x is in a fixed
region X of the #-plane, and for ε in a circle E: |ε|<ε0, ε0 being
independent of x. The functions Ajk{x) are to be holomorphic in X.
In order to shorten the terminology the self-explanatory expressions
s -holomorphic and ε-holomorphic will sometimes be used. A function
that is holomorphic in both variables may be called (x9 ε)-holomorphic.

The differential equation (1) can be rewritten in the from

( 4 ) e*L[y9 ε] = ehN[y, ε] -f M[y, e] = 0 .

Here,

(4a)

(4b)
μ = 0

and the αv(#, e) and 6μ(#, ε) are (a?, ε)-holomorphic in the product space
of X and E. The δμ(α?, ε) are polynomials in ε of degree less than h.
The coefficient bo(x, 0) is not identically zero. Furthermore, 0<m<w.
By formal substitution of a power series Σ~=o2/j(#)ej into (4) it is seen
that nontr i vial/ormαZ power series solutions can be constructed if, and
only if,

( 5 ) m>0 .

If (5) is satisfied, then the function yQ(x) may be any solution of the
" reduced " differential equation

(6) %o-hΣ^o)f" μ ) =θ-
μ = 0

and the functions y3(x), j>l can be successively calculated, in infinitely
many ways, as solutions of a sequence of nonhomogeneous differential
equations whose homogeneous part is M[yJ9 0],

Let us call a solution which is ε-holomorphic at ε=ϋ, a regular
solution. Unless it is important in the context, we shall not specify
the a -domain for which such a solution is regular. A set of regular
solutions will be simply called independent, if the solutions are linearly
independent at e=0, and hence in some neighborhood of e=0. From
the preceding discussion it follows that the differential equation (1)
cannot have more than m independent regular solutions.

It is easy to construct examples for which the number of indepen-
dent regular solutions is equal to m. Let, for instance, Yj(x9 e),
O'=l, •••, m) be m linearly independent functions that are (x, ε)-holo-
morphic in the product space of X and E, and denote by M[y, e] = 0
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the linear differential equation of order m with leading coefficient one
that is satisfied by these functions. If D designates the operation of
differentiation with respect to x, then

( 7 ) εn-mDn~mM[y, ε] + M[y, e] = 0 , n>m

is an nth order differential equation with m regular solutions. The
standard asymptotic theory (see e. g. [9]) shows that the functions
Yj(x, ε) are part of a fundamental system of (7) whose n — m remaining
solutions have asymptotic representations of the form (2) with P(xf ε)
equal to the n — m determinations of ( —l)1/CTO"m)e~1α?.

In spite of this, the occurrence of any regular solution must be
regarded as exceptional. In order to show this we prove the following
lemma, which generalizes a result of Horn [2].

LEMMA 1. Let the coefficients <xjiX(x, ε) of the system of differential
equations

( 8 ) ψL = £-* Σ <XJμ.(x, e)uμ , 0 = 1, , n)
ax μ=i

he (x> z)-holomorphic for x in X and for \ ε | <ε 0 . Let the solution
Uj=Uj(x, ε) of (8) be characterized by the initial values

(9) ί/.(α,εHp/ε) ( j = l , ...,n)

at a point a of X, where the functions p3{ε) are holomorphic for |e|<Le0,
except possibly for a pole at ε=0 . Then

j(x, ε)=Uj*(x, ε)+Uj**(x, 1

εZ7

where U*, U** are x-holomorphic in X, and ε-holomorphίc for |ε|<e0

and |ε|>0, respectively.
Proof. Define the functions Ujr{x> e) by the relations

Γ vM, r = 0
(10)

r>0

where Γax is a path connecting a and x in X. By the standard argu-
ment of Picard's iteration method it follows that for O^ε^lεj^εo, and
for x in any closed and bounded subdomain of X,

(Π) tf/^ e)= Σ tf,r(a;, e) ,
r = 0

where the series, as well as the series of its termwise derivatives
with respect to x, converge uniformly and absolutely in the indicated
domain. If k is the highest order of the poles of the functions Pj(e),
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the formulas (10) show that the iterants are of the form

(12) Ujr(x,e) = ε-^Vjr(x,ε)

where the VJr(x9 e) are (x, ε)-holomorphic for x in X and |ε |<ε 0 . From
(11) and (12) we conclude, by means of Weierstrass's theorem on
interchange of summations in double series that U5(x9 e) admits a con-
vergent representation of the form

which is uniformly valid for x in every closed subdomain of X, and
for 0<e 1 <|ε |<ε 0 , where ε2 is arbitrary, and the Fjv{x) are holomorphic
in X. This proves the lemma.

Suppose, now, that the differential equation (1) admits a regular
solution Y(x> ε) in some subdomain X* of X. If a is any point of X*,
then Y(x, ε) can be uniquely characterized by the values of Y°°(α, ε),
(s=0, •••, n — 1), which are ε-holomorphic for |ε |<ε 0 . Since the differ-
ential equation (1) is equivalent to a system of the form (8), it follows
from the lemma just proved that

Y(χ, ε) = φ1(x, e)-hφ2(ff, ε) , xeX,

where φl9 φz are ε-holomorphic in |ε|<ε0, and |ε |>0, respectively, and
^-holomorphic in X. But since Y(xy ε) is ε-holomorphic for |ε|<ε0 and
x in X*, the uniqueness theorem for Laurent's expansion leads to the
conclusion that φt{x, ε) = 0 for x in X* and all ε. Being α -holomorphic
in X by Lemma 1, φ,(x, ε) vanishes therefore identically in the whole
domain X. This implies, in particular, that Y(x, 0) is a -holomorphic in
X. On the other hand, Y(x, 0) is a solution of the reduced equation
M[y, 0] = 0, and we have proved the following theorem.

THEOREM 1. If the full differential equation (4) possesses a regular
solution Y(x, ε), then the corresponding solution Y(x, 0) of the reduced
equation M[y, 0] = 0 must be x-holomorphic in every domain X where the
coefficients of the full equation are x-holomorphic.

This is a rather strong restriction on the coefficients of M[y, 0] = 0,
in particular on bύ(x). For the equation M[y, 0] = 0 has, in general,
singularities at all zeros of bo(x), and there will rarely exist a solution
of M\y, 0] = 0 that is holomorphic at all the zeros of bQ(x) which lie in
X.

Theorem 1 sheds some light on Theorem 9.2 of Lll]. That paper
was concerned with the special case in which the expression N[y, e]
—N[y\ of (4) was of order four and independent of ε, and M[y, ε] was
of the form
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where bo(x) had a first-order zero at x=Q. In Theorem 9.2 it was
proved that the full equation

(13) εN\y] + M[y\ = 0

possesses in this case a solution y= V(x, ε) that approaches, uniformly
in a full neighborhood X* of x=0, the ^-holomorphic solution v(x) of
Λί[2/]=0, as ε->0 along a given ray of the ε-plane. It would seem
plausible to conjecture that V(x, ε) is ε-holomorphic at e=0. But
Theorem 1 shows that this is, in general, not the case, at least, if bo(x)
possesses other zeros besides x=0.

3. Some remarks on sufficient conditions for convergence. The
problem of finding sufficient conditions for the convergence of an
asymptotic series in ε seems to be much more difficult than the topic
discussed in the preceding section but some special classes of differen-
tial equations admitting regular solution can be constructed.

a) Constant coefficients. If the coefficients of the differential
equation (4) are independent of x it possesses a solution of the form
y=e

λ^* corresponding to every distinct root λ(ε) of the polynomial
equation

I n \ m

V=l ) μ = 0

Let Λ=Λ0 be a root of the equation

then by classical implicit function theorems H(λ, ε) possesses an
ε-holomorphic root for which λ(O) = λo, provided dHjdλ does not vanish
for e=0, λ=λ0, that is, provided λ0 is a simple root of H(λ, 0). If all
roots of H{λ, 0) are multiple, H{λ, e) = 0 may or may not define an
ε-holomorphic function, as can be seen from the example

which possesses an ε-holomorphic solution for k=2, but not for A=l.
b) Linear coefficients. In formulas (4a) and (4b) let

y(, ) o
(14)

bμ.(x, e) = δoμ

For many differential equations of this type regular solutions can be
found by means of complex Laplace transformation. If we introduce
the polynomials
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(15) "-1 i=o, l,

then the differential equation (4) with coefficients of the form (14)
admits [4, §§ 8, 18] solutions of the form

(16) y(x,ε)=\ v(t,ε)etxdt

where v{t, ε) is a solution of the differential equation

(17) (εhtn + εM0 + B0)v- d

Ί i{ehAλ + 5 > ] = 0

and C a suitable contour.
If a closed contour C on the Riemann surface of v(t, ε) as a

function of t can be found such that C is independent of e and the
integral (16) exists for all small e, then the integral will be either
zero or furnish a regular solution, since C can then be chosen so as to
avoid the points where v(t, ε) is not ε-holomorphic. It is possible, but
not very illuminating, to formulate more explicit sufficient conditions
on the coefficients under which the preceding condition can be satisfied.
Some special differential equations of this type were treated in [12]
and [13]. The equations

(18)

do possess regular solutions. The differential equation

turns out to have a regular solution when the constant Ijk is a
negative integer. For other values of k the solution of the reduced
equation has a singular point at #=0 and the sole regular solution is
?/ΞΞO, in consequence of Theorem 1.

4 The differential equation εy" -\-a(x)yf + b(x)y=0.
a) Polynomial initial conditions. The theorem of § 2 suggests the

conjecture that regular solutions exist if the coefficients of the
differential equation are entire functions without zeros. But the
example εy"' + y"— 2y'JΓy=0 mentioned in the preceding section shows
that this conjecture is certainly not true in full generality. In this
section some sufficient conditions are established for regularity, atten-
tion being confined to the equation ey" J

Γa(x)y' -h b(x)y=0. In agreement
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with the foregoing results, the conditions on a(x) and b(x) take account
of the behavior in the large. For example, a solution #-holomorphic
for | ε | O 0 , |#|<C#o must be in fact x-holomorphic for e=0, whenever
xe Xj the domain of regularity of a and b. A hypothesis ensuring
regularity must therefore ensure, at least implicitly, that the reduced
equation ay' + by=0 has a solution of the indicated type.

We consider the following statements :
STATEMENT (A). The equation εy" J

ra{x)yf+ b(x)y=Q has a solution

(19) y(x, ε)^Σiyn(x)εn^0

convergent for |ε|<ε0, \x\<jx, and satisfying yJ0)=P(n)9 y'n(0)=Q(n),
where P(n) and Q(n) are polynomials of degree <k.

STATEMENT (B). The equation admits a regular solution y(x, ε) such
that 24(0, e)iy{Q, ε) is a rational function of ε, whose numerator and
denominator have degree <&.

STATEMENT (C). The equation admits a solution of the form

where the h's are holomorphic near x=Q.

STATEMENT (D). We have Hk[f(x)]^0 for a linear function f(x)=^0,

where the operator H is defined by

ap dx-¥ \ \ {b — a')p dx dxx .

o Jo Jo

It will be shown, now, that these statements are closely related, a(x)
and b(x) being holomorphic near x=0 :

THEOREM 2. Statements (A) and (C) are equivalent (B) is equiva-
lent to them provided α(0)^0 and (D) implies all three.

To establish the theorem, suppose Statement (A) given, and equate
coefficients to find

(20) -yn-i=ay'n + bynf for n>l , 0=ayΌ-hbyQ ,

which becomes

S X \X rx

(ay'n + byn)dx=-ayn\ +\ yn{b-a')dx
0 0 Jo

(21)
X

Further integration yields

( ί l
(22) 2/.rt_1-P(w-l)-a?Q(7i--l)=( ί lyn{b-a/)dxdxι- Vayndx±a(0)P(n)x .

Jo Jo Jo
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Let Yn = Δ*+ιyn, the (β + l)th difference. We have, by (22),

(23) rB.1 =

Regularity of a and δ, convergence of Σ?/ttε
w, ensure that for |#| <#*<>„

we have

\Yn\<BA\

where A, B, and M are suitable positive constants (that may depend
on x*). Thus, we have by (23) in every circle |#|<I<5<1, with δ<Zx*.

max|Γw.1 |<3^M(max|FJ)<(2^M)w+1(max|Fw+m |), m - 0 , 1 ,

the latter relation following by iteration. Choose δ so small that
4δM<l/A. Then

Letting m->oo shows that |Y"w|=0, and hence

-\rgk(x)nk .

It follows that y(x, ε) has the form

(24) Σ

as we see by using factorial polynomials in place of powers of n.
Multiplying through by (1 —ε)fc+1 shows that (A) implies (C).1

To see that (C) implies (A), express the given polynomial as a new
polynomial in 1 — ε and divide by (1 —ε)*+1. We are led to a solution of
the form (24), and expansion of (1 —e)"^1 gives the initial conditions
described in (A). We have incidentally established the rather curious
fact that yn(x) and y'n(x) are polynomials in n for every small fixed x,
if for the single value #=0.

Suppose now that (C) is given. We may assume (24). With
s=l/(l —ε), equating powers of s in ey" Λ-ay'+ by=O gives

(25) L{y)=y"-{-ay'-\-by ,

0 =

and conversely, the system (25) for some f^O ensures a solution of
1 A simpler proof has been given by Robert Steinberg, starting with the observation

that has Y»(0)= ΪV(0) =
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the form (24), hence of the form described in Statement (C).

We have H(p)=L(p), and hence, when the constants of integra-
dx2

tion are taken as zero in (25), this system is equivalent to

r/o'=o

Λ = H(fo)

(26)

0=H(fk) .

Hence H%=0 is sufficient to ensure a solution of (25), and indeed with
_fί(0)=/<(0)=0 for i^l. Thus, (D) implies (C), and hence (D) implies
(A). The converse is false but if we define

H(p,q)f=Hf+px + q .

Statement (A) or (C) is equivalent to

(27) UH(pit qt)f=0 ,

for some constants pίf q.t. Here / is the first function f.t in (25) which

is not identically zero.
If (B) is given, suppose y(0, ε) has a zero of order /&>0 at e=0. Then

2/o(O) = ί/i(O)= - ^ ( O H O . The system (20) gives yo=c expΓ - Γ (b/a)dχ]

where c is constant. If α(0)=M), it follows that yo(x)=O for small x
and hence for all xsX. Similarly, ylf •••, 2/Λ_i=0 for small x. Hence
the function ε~hy(x, ε) is ε-holomorphic for ε=0 and small x.

If yx(0, e)/2/(0, e)=P(ε)/Q(e), where P and Q have degree <Jc, then
the function ε~hy(x, ε) satisfies the same condition. Combining this
observation with the preceding, we see that one may suppose 2/(0, 0)^=0
in Statement (B), provided α(0)=M).

Putting t==l — ε, dividing numerator and denominator by tk+\ and
relabeling coefficients, transforms the given condition into

2/(0, e) S(ej

where

and similarly for B(ε). The function
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Y(x,e)^ΛB(ε)

is regular near ε=0; it satisfies the given differential equation; and
also Γ(0, ε)-=5(ε), Yx(0, e)=A(e). Hence Y(x, ε) satisfies the require-
ments of Statement (A).

Finally, it is clear that (B) follows from (C) if 2/(0, ε)^0 in (C).
If 2/(0, e)=0, however, we have yJ0) = 0 in (20), which implies yn(x)=0
for α(0)=M) as above. Hence y(x, ε)=0 contrary to the assumption in
Statement (C).

The condition on the operator H admits a simple interpretation.
If / is the identity operator, then formally

Now, when Hi(cx-{-d) = 0 for £>&, as in Statement (D), then the above
expression is a polynomial in z for p=cxJrd. Suppose, more generally,
that

(l-Hz)-\cx + d) = φ(z, x) ,

a function holomorphic in z at z=l. Then cx-{-d=(I — Hz)φ or, by
differentiating,

0=(l-z)φ" -zaφ'-zbφ .

With e=I-I/2; this yields

εφ" + aφf + bφ=O

where φ is ε-holomorphic near ε=0.
The above treatment is purely formal. If

for p=cxΛ-d and |#|<j5, however, then the formal equalities become
true equalities. We define (I—Hz)-1 by the foregoing series, which
converges uniformly in x near z = l . The function Hkp being analytic
for each k, we may differentiate the series to find that φ(z, x) is in
fact a solution holomorphic in z for |z|<T./0. The corresponding domain
of ε is |1 —ε|>#. Hence a sufficient condition that the equation have
a solution (e, ^)-holomorphic for |1 —ε|># and \x\<Cβ is that lim|fl*p|1/fc

<LΘ for p=cx-\-d^=0. An extension can be given after the manner of
(27).

b) Examples and discussion. The preceding result enables us to
construct equations admitting regular solutions. If the polynomials in
Statement (A) are constant, so that &=0, P(n)=p, Q(n)=q, then
Statement (C) yields y(x, ε)=h(x). The differential equation shows that
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h(x) is linear, whence h(x) = pΛ-qx by the initial conditions. Such a
function is a solution if and only if aq-\-b(p±qx) = 0. The differential
equation then takes the form

(28) ey" + b(x)[(c-x)y' + y] = O

where c is constant. For every choice of b(x) there is obviously a
regular solution; namely, y=x — c.

The case k=0 just considered can be regarded in a different light.
Let a(x) and b(x) be integrable and satisfy \a\<M, |6|<iW for a domain
of the (possibly complex) variable x. The Picard iteration procedure
shows then that

εy"+ay'+by=0

has a unique solution y(x, ε) subject to y(0f e)=c, y'(0, ε)=d, where c
and d are indepenent of ε. Moreover, this solution is an entire function
in 1/e, of exponential type M at most. If we require a solution
Y(x, ε) ε-holomorphic near ε=0 and satisfying the same initial condition, it
is necessary that y=Y. This shows that both y and Yare ε-holomorphic
in the extended ε-plane, hence independent of ε. Thus we are led to
the situation found otherwise above. This discussion resembles that
used previously for the more general equation (4).

Turning now to the case &=1 in Statement (A), we find

(29)

by (25). Adding the three equations, or considering y(xf 0), we see
that s=/0-f/i satisfies the reduced equation as'-hbs=0. Hence, with co

constant,

(30) /o+/i==Cofl(a?) , R(x) = e-&bla>dx

where R must be regular since fQ and fλ are. If co=O one easily shows
that the problem reduces to the case A=0 just considered. Without
loss of generality, therefore, we may take c o =l. In terms of R, the
original differential equation is

(31) εy"+Ra(x)(ylRy = 0

and the system (29) is equivalent to the three conditions (30), fo=cx + d
with c, d constant, and

(32) R'' = [(ex + d)lR\'aR .

The differential equation, then, is
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(33) εy" +

and the solution is given by Statement (C) as

(34) y(x, ε) = R-

That (34) is in fact a solution is easily verified by actual substitution.
In summary, there is a regular solution, with yΛ(0) and y'n(0) linear
functions of n, if and only if the equation can be put in the form
(33) and the sole such solution is then a constant multiple of (34),
divided by (1 — ε)2.

The case k=2 is more complicated. It is found that a(x) must
satisfy a certain first-order nonlinear differential equation, R being
given, and the case corresponding to co=O in (30) reduces to the case
k=l. It would be desirable to find an explicit form of the equation
for k>2, but we have not been able to do this.

Although the foregoing considerations restrict the behavior of a
and 6 in the large (by virtue of analytic continuation) the analyticity
of a and 6 plays no very essential role. Indeed a corresponding real-
variable result might be given, with hypothesis on the local behavior
only. It seems difficult to give criteria in which the complex-variable
character of the problem is more fully used. This difficulty is
illustrated by the following two examples.

Let α=δ, in the discussion leading to (33) and (34), so that R=e~*.
If c=0, d = l the differential equation is

(35) ey"+y'e-χ + ye-χ=0

with solution y=e~x—ε. It is seen that R, a, b, and 1/α are entire
functions of exponential type, as is the solution y.

Consider, next, the equation

(36) ey"+y'ex + yex=0 .

Despite the resemblance to (35), there is no regular solution, as we
now show and thus the conditions just described, stringent though
they be, are yet insufficient.

Suppose there is a regular solution of (36). Since α(0) = l we may
assume 2/(0, 0)=M), as in the above discussion. The function y(x, ε)ly(0, ε)
therefore is regular and has 2/0(0) = l, 2/n(0) = 0, {n>l) in the series
representation. The system (20) gives

where the cn are constants. By induction we see that
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and, in view of the initial conditions, that <\>0. We have therefore

where the terms not written are of the same sign as the leading term,
for real x, since cn drops out. Thus it is that \yn(x)\^>nl e~x\e~nx —1|,
and the series diverges for #=M).

c) Related partial differential equations. Consider the following
problems, with regular a, b:

Problem (A). To find a solution y(x, ε)^0 of ey" + ay' + by=0 which
is holomorphic in ε for |ε |<r, in a given set S of x values.

Problem (B). To find a solution Y(x, ε)^0 of Yxx + aYx9 + bYs=0
which is an entire function of type 1/r in ε for a given set S of x
values, and satisfies

Ϋ(x, 0) = eΛ}h^dx

or Y(x, 0) = 0.
It will be shown, now, that these problems are completely equiva-

lent. If

is a solution of Problem (A) then

Y(x, s)= ±yn(x)ε"lnl

satisfies the differential equation Yxx + aYxe + bYs=0. This can be
verified by termwise differentiation, insertion into the partial differential
equation and use of equations (20). Since Y{x, 0)=yQ(x), the first
equation in (20) shows that the initial condition of Problem (B) is also
statisfied. Finally, it is easy to prove and doubtless well known that
Y is an entire function of ε of type 1/V, if and only if y(x, ε) is
ε-holomorphic for |ε|<V.

To show, conversely, that a solution Y(x, e) = ̂ zn(x)εn of Problem
(B), leads to a solution of (A) we observe that, by virtue of the state-
ment in the last sentence, the series

converges. The functions yn{x)=zn(x)n\ are then seen to satisfy the
recursion formulas (20) for ή>l. That they also hold for n=0 follows
from the initial condition imposed on y(x, ε). This completes the proof.

We remark in passing that y and Y are transforms of each other:
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[-»Y(x, e)de = y(x, p) .
Jo

The change of variable

s = ε— i a(x)dx , t=^ε
Jo

is suggested by the characteristics, and reduces the partial differential
equation to canonical form

a1

where u(s, t)= Y(x, ε) and the coefficients are evaluated at x. The
initial condition is

u(-[*a(x)dx, θ)==<rSOc&/α>to

 #

With z=e~x — 1 this becomes w(z, 0)=z4-l when a=b=e~x but u{z,ϋ)
= 1/(1 — 2) when a=b=ex. Thus the initial values have a pole at a?=0,
in the second case. We have seen already that tne solution is regular
in the first case but not in the second.

A related partial differential equation arises in another way if we

seek a solution y(x, e) which is an entire function of type k and such

that

\y(x, ίσ)\2dσ<Coo .

Such functions are equivalent with those representable in the form

euf(x, t)dt, Γ \f(x, £
J -k

One obtains, formally,

Integration by parts yields

Γ ε(Fίrrr-aFr-
J-fc

where

(»,ί)=Γ f(x,t)dt.
— Ίc
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Letting ε-»0 shows that the integrated part vanishes. Hence the
original problem leads to a two-point boundary-value problem

F(x, k)=c expί — \ (bja)dxj ,

F(x, -Λ)=0 .

Conversely, from such an F we can construct, at least formally, a solu-
tion to the question first proposed.

Many of the foregoing considerations apply with only slight change
to the equation

(37) εy" + a(x)y' + b(x)y=c(x) .

The condition /0" = 0 in (26) is replaced by /0"=c(#), and we are led to
consider Hkp with p=f0. Similarly, the condition Q^ayΌ + byo in (20)
becomes

with corresponding change in the boundary condition for the associated
partial differential equation. (The equation itself does not change.)

That there is always a solution regular in ε, for some c(x)9 is
evident when we take y=l, c=b(x). Actually, one can find a c(x)
such that the regular solution depends on ε. For example, let /
satisfy

αf + 6/=0, / ^ 0 ,

and let c(x)=-f"{x). Then 2/=/(a?)/(l-e) is a solution of (37).

5* A hydrodynamic application* Differential equations of the type

(4) with

(38) M[y, ε]^xM*[y, ε]

where the leading coefficient bo*(x, 0) of M*\y, 0] does not vanish at
x=0 occur in the theory of hydrodynamic stability. This application
will be explained below. We shall be concerned here with necessary
conditions on a differential equation (4), for which (38) is satisfied, in
order that it possess a full contingent of m solutions that converge to
solutions of M*[y, 0]=0, as ε->0, uniformly in a full neighborhood of
x=0.

Before stating our theorem concerning this case we recall ([4], p.
126) that for linear differential expressions there exists division algo-
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rithm involving only rational operations and differentiations, by means
of which N[y, ε] can be represented in a unique fashion in the form

(39) N[y, e]=Q[Λf*ϋ/, e], e] + R[y, ε] .

Here Q[u, e] and R[y, ε] are linear differential expressions with (x, ε)-
holomorphic coefficients. The order of R[y, ε] is at most m — 1 . Let
us call R[y, ε] the remainder of N[y, ε] with respect to M*[y, ε].

THEOREM 3. Assume that the differential equation

(40) εN[y, ε] + xM*[y, ε] = 0

possesses m solutions of the form

(41) Yj(χ, e) = yjo(x) + evj(x, ε) , ft' = l, , m)

where the yj0{x) form a fundamental system of the reduced equation

(42) M*fe,0]-0

and the Vj(x, ε) are bounded, together with their first n derivatives with
respect to x, at x=0, and for ε in some point set E* having ε=0 as an
accumulation point. Then the remainder R[y, ε] of N[y, ε] with respect
to M*[y, ε] vanishes for x=ε=0, identically for all y(x).

The conditions on Y3(x, ε) in this theorem are much weaker than
regularity. The meaning of Theorem 3 is essentially that even these
weaker conditions will only exceptionally be satisfied, since for arbitrary
N[y, ε] and M*[y, ε] the remainder will, in general, not vanish identically
in y, for # = ε = 0 .

Proof of Theorem 3. Without loss of generality we may assume
that

(43) 2/S5-υ(O) = ̂ , {j,k=l, . . ,τw)

If (39) is inserted in (40) and y is replaced by Y3{x, ε), then use of (41)
leads to a relation of the form

(44) ε*φj(x, ε) + εxφό{x, ε) + εR[yj0, 0] = 0 , ( i = l , , m)

where φ/0, ε) and ^(0, ε) remain bounded as ε->0 in E*. Setting
x=Q and letting ε->0 in £7*, this yields

R[yJ0,0] = Q, for ^;=0 (j=l, --,m).

Because of (43) we conclude that every coefficient of R[y, 0] vanishes
at # = 0 . This proves the theorem.

Application. By a simple change of variables the Orr-Sommerfeld
equation in the theory of hydrodynamic stability, [5],
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can be written in the form

(45) e(y^ - 2αV' + a*y) -f ZφOO/'' - αfy) - 6;'(a?)2/=0

with 60(0)=0- (The dependence of bo(x) on the complex parameter c is
not set in evidence in our notation. The letter a denotes a positive
constant.) The special case that b'0'(x) also vanishes at x=0 is of some
interest in hydrodynamics. If c is real, for instance, and &ό'(0)=0, one
has the case of a periodic disturbance of the flow such that the critical
layer where the disturbance and the main flow travel with equal
velocities, coincides with an inflection point of the main flow profile
ιv(z), [7]. In the present case

and the remainder R[y, ε] in Theorem 3 is independent of ε. A straight-
forward calculation, not reproduced here, shows that this remainder
vanishes for x=0, if and only if

(46) ft=0 , ffi-bβ^O .

Since the coefficients βj depend on c these conditions can be satisfied
for very exceptional profiles and very special disturbances only. Now,
it is known, [14], that corresponding to every solution of the reduced
equation there exist solutions of the full equation (45) having the
form (41), with Vj(xf ε) and its derivatives bounded in some region
S of the #-plane. As we have just seen, S will not include the origin,
at least not for all such solutions, unless very exceptional conditions
are satisfied. From this it can easily be deduced that S cannot be
a doubly connected domain surrounding the origin completely, i.e.,
some solutions which converge in certain regions to a solution of the
reduced equation, must diverge in certain other regions. It follows
from this fact (cf. [14], [5]) that the damped disturbances of the
corresponding hydrodynamic flow possess a so-called " inner friction
layer/' i.e., a layer in which the effects of viscosity cannot be neglected
no matter how small the viscosity coefficient.

Thus Theorem 3 leads to the result that even if w(z) — c and wn{z)
vanish at the same point for a certain damped disturbance, an inner
friction layer will be present unless the disturbance and the velocity
profile are of an extremely exceptional type.

It can be shown that the vanishing of R[y, ε] at # = ε = 0 is only
one of infinitely many conditions necessary for the existence of m
regular solutions. It is therefore very likely, but not yet proved,
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that bQ(x)=x (Couette flow) is the only flow for which inner friction
layers are ever absent. In the Couette case the remainder R[y, ε] is,
of course, identically zero for all x and ε, and every solution of the
reduced equation is trivially a regular solution of the full equation.
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ON A THEOREM OF L. LICHTENSTEIN

S. E. WARSCHAWSKI

1. Introduction* The object of this note is the proof of the
following :

THEOREM. Let C be a dosed Jordan curve in the z-plane which
possesses a corner of opening πct, 0<j*5^2 at 2=0. Suppose that this
corner is formed by two regular analytic arcs γa and γh:

γa : z=A(t)=

If ζ—fiz) maps the interior Δ of C conformally onto the half-plane
80 that /(0) = 0, then, for every integer n,

(1) lim {f-V'AVi*) U 1 f 1 -1). . . ( * - n + 1

for unrestricted approach, where c=li

This theorem was stated by L. Lichtenstein [2] and [3], but proved
only for the case that a is irrational. He remarks, however, that it
is most likely true for all α, 0 < α ^ 2 , but that his proof does not
yield this result. In the following a simple proof based on a different
approach is given for the complete theorem1.

2. Lemmas. In the proof of theorem we shall make use of the
following two lemmas.

LEMMA 1. Suppose Γ is a closed Jordan curve with a corner at
2=0 of opening πa, 0<α^Γ2, and that each of the two arcs forming the
corner has bounded curvature in the neighborhood of z=0. If ιυ=g{z)
maps the interior D of Γ conformally onto the angle 0<Carg w<Cπ<x, so
that #(0) = 0, then for non-tangential approach,

( 2 ) lim -9-vy- =μ exists and μ=M) .
*-o z

This is just a weaker statement of a well known result [4, 5] (2)
holds under more general assumptions on the arcs which form the corner

Received July 29, 1954. Prepared under contract Nonr 396 (00) (NR 044 004) between
the Office of Naval Research and the University of Minnesota.

1 This note is the result of an inquiry from Dr. George Forsythe of the Institute of
Numerical Analysis regarding the validity of Lichtenstein's theorem for all α. Dr. Forsythe
applies this result in his preceding paper on " Asymptotic lower bounds for the funda-
mental frequency of convex membranes ".
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and for unrestricted approach [5, p. 427]. However, for the sake of
completeness we give an elementary proof of this lemma in § 4.

LEMMA 2. Suppose that F(w) is analytic in an angle A: α <
argw<j3, β — a^,2π, and that in every sub-angle B of A ivith the vertex

at w=0, Mm ^w'=μ. Then for any integer n^l, as w-»0 in any sub-

angle B of A

vhm A* when n==l
0 when

Proof. Let 5 be the angle α + 3<arg w < β - 3 , 0<2<5<j2-α. About
^ s δ we describe a circle c of radius r which is contained in and

tangent to a side of the angle α-h < arg^ r < arg/5— . Clearly,

r >,sin -δ-. We set G(w)=F(w)-μw. Then
|w|— 2

2ni ic(t-w)n+1 2πi )« t (t-2)

Since \t\<\t — w\ + \w\ and \t — w\ = r for t on c, we have

max
G(t)

and the last expression approaches 0 as w-*0 in B. This proves (3).

3. Proof of the theorem* (i) We may and shall assume in the
following that C consists of two regular analytic arcs OA and OB and
a circular arc γ about O through A and B. (The size of the radius r
of this arc will be restricted below). For, if D is a subregion of Δ
bounded by the just described curves, and if fΎ{z) maps D onto the
upper half plane such that/i(0) = 0, then f(z)=h[f1(z)'] for zeD, where
h(ζ) is an analytic function in a neighborhood of C=0 and h''(0)=M).
The result (1) on /(7°(z) follows then from that on fin\z).

The theorem will be proved by the following statement: if w=g(z)
maps Δ onto the angle 0<^arg w<Cπoi such that z=0 corresponds to w=0,
then, for unrestricted approach,

(4) \im g'(z)=λ, 0 < μ | O , and
0

]-0, for

The result (1) of the theorem is then obtained from (4) by use of the
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fact that f(z)=[g(z)Jl(*.
For the proof of (4) we may presuppose that 0<7κ<Cl for if

l l=^<2 we apply first the auxiliary transformation zr = zυ*. For \t\<o,

where <Γ>0 is sufficiently small, OA and OB are transformed into regular

analytic arcs in τ=tm. We assume r so small that OA and OB are
obtained for values of the parameter t^δ.

We now impose a further restriction on δ and thus on r. There
exists a /Ό>0 such that z=A(t) and z=B(t) have analytic and univalent
inverse functions t=a(z) and t=b(z) in |2|^£p. We take 5 so small that

OA and Ofi are contained in \z\<j>. Thus, r<p.
/-\

(ii) Consider the maps of Δ by means of t=a(z): OA is transformed

into a segment O ^ of the real £-axis and OB into an arc O1Bι which
makes an angle of opening πcc with OλAλ. The circular arc f : AB is
mapped onto an arc AJiλ. If r is sufficiently small, the arcs OxBλ and
AλBλ will lie in the upper half of the £-plane2. We assume that r has
been so chosen (third and final restriction on r). Let Δλ denote the
image of Δ in the ί-plane.

Suppose that w=φ(t) maps Δ1 onto the angle 0<argw<7rα: such
that £ = 0 corresponds to ιv=Q and At to w=co. The segment OλAλ is
then transformed into the positive real axis of the ί#~plane. We reflect
the arc OxBxAi with respect to the positive real axis and denote the
image of B{ by B[. By Schwarz's reflection principle the function
w=-φ(t) maps the region bounded by the Jordan curve Γ: OιBιAιB[Oι

conformally onto the angle — πcc<C arg w<Cπa.
We apply now Lemma 1 to the curve Γ, which has a corner of

opening 2ctπ, 0<2α<2, at ί=0, formed by the regular analytic arcs

OVBV and OγB[. Hence, for non-tangential approach,

t->o t μ

exists and 0 < | ^ | < O D . Next, observing that the mapping w=φ(t)
preserves angles at t = 0 and applying Lemma 2 to the inverse F(w)
of φ(t) we find that in any angle — 7rα-f-ε<arg w<7rα —e (0<ε<7rα):

lim F'(w)=μ , lim[w;w-1F<:n"i:)(w)]==0 , for

Hence, in any sector \avgt\<πβ, \t\<V, where 0</9<α and 7 is
sufficiently small,

(5) limφ/(ί) = -- , lim[ίw-yre)(ί)] = 0, for
ί->0 ^ ί-»0

2 We assume here that (),Ά,B follow in counter-clockwise order along C.



838 S. E. WARSCHAWSKI

Since φ[a(zy]=g(z), it follows from (5) that, for Λ=α'(0)==- 1

μ
(6) \img'(z)=λ and, l imL^-y^WHO , for

z-±0 z->0

in any curvilinear angle in C-hΔ formed by OA and any Jordan arc j in

Δ which has a tangent at O making the angle πβ with the tangent to OA
at O.

(iii) By applying the same argument in which the arc OB takes

the role of OA we find that (6) holds in any curvilinear angle formed

by OB and any Jordan arc j ' in Δ which has a tangent at O making
an angle πβ with the tangent to OB at 0. Since β may be taken so
that the two curvilinear angles overlap, we obtain (4), and this
completes the proof.

4 Proof of Lemma 1. We can construct a Jordan curve I\
contained in D + Γ and one Γe exterior to D, each consisting of two
circular arcs intersecting at the angle πa at 2=0 (and at another
point). The interion I{Γt) of Γ.ι is in D, and we may assume that the
exterior E(Γe) contains D. If hι(z) and he(z) are the bilinear transfor-
mations which map /(A) and E(ΓP), respectively, onto the angle
0<Cargw<Cπa, such that hi(O)=he(O) = O, then clearly

l i m ^ = ^ and UmhM=^
*->o z *-»o Z

exist for unrestricted approach, 0<|Λt|, MeK°° The function ζ=hιja(z)
maps E(Γe) onto ,J-Γ[CΓ>0> ^ a n d A onto closed curves Γ* and A*,
respectively, which lie in .>'[Cjfi>0 and are tangent to the real axis at
C=0. Let φ(ζ) and φ^C) map the interiors of Γ;!ί and /"VS respectively,
onto the upper half plane, so that φ(O)=φί(O) = O and, for a point Cn
interior to I\*, Φ(Co)=Φί(Co) A n application of the Wolff-Caratheodory-
Landau-Valiron lemma [1, 5] shows that

exists for non-tangential approach. Since

Φi(ζ)=W*Uι;\ζ*)Ί ,

where h;1 denotes the inverse of he, it follows that

for unrestricted approach. Hence, /^{
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Finally, we note that

and hence

for non-tangential approach. This proves the lemma3.
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THE STRICT DETERMINATENESS OF CERTAIN

INFINITE GAMES

PHILIP WOLFE

1. Introduction* Gale and Stewart [1] hav6 discussed an infinite
two-person game in extensive form which is the generalization of a game
as defined by Kuhn [3] obtained by deleting the requirement of finite-
ness of the game tree and regarding as plays all unicursal paths of
maximal length originating in the distinguished vertex x0. In a win-
lose game the set S of all plays is divided into two sets Sτ and• SΣI such
that player / wins the play s if seSr and player // wins it if seSir.
Gale and Stewart have shown that a two-person infinite win-lose game
of perfect information with no chance moves (called a GS game here)
is strictly determined if SΣ belongs to the smallest Boolean algebra
containing the open sets of a certain topology for S. Here we answer
affirmatively the question posed by them: Is a GS game strictly deter-
mined if Sj is a G8 (or, equivalently, an Fσ) ? The notation and results
of [1] are used throughout, as well as the partial ordering of X given
by: a?>2/ if fn(x)=y for some ri^l.

2. Alternative description of Sτ. Let Γ be the game (x0, XI9 Xn
X,f,S,SnSn), where

W - l

, and En is open. Following [3], let the rank rk(x), for
xeX, be the unique Jc such that fk(x)=x0. As in [1], Vi(x) is the set
of all plays passing through x (the topology for S is that in which U(x)
is a neighborhood of each play in it). Then for each nf

and since for any yeX we have

VL(y)=\J{M(z): f(z)=y} ,

with

rk{z)=l \-rk(y) ,

Received October 3, 1953. The work in this paper was done during the author's tenure
of an Atomic Energy Commission Predoctoral Fellowship.
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there exists for each n a subset Yn of X such that rk(y)yn for all
yeYn and

En = \J{l\(y):yeYn} .

Furthermore, since of any two neighborhoods having a non-void inter-
section, one is contained in the other, each Yn may be chosen so that
U(y), l\(y') are disjoint for different y, y' in Yn.

Since seS7 if and only if seEn for an infinite number of values of
n, we have : seST if and only if for infinitely many n there exists i
(dependent on n) such that s(i)eYn. Thus, since on the one hand
i=rk(s(i))^>nf and on the other for any n there is at most one i such
that s(i)eYn, letting

Y= 0 Y»
n-l

we have: seSΣ if and only if s(i)eY for infinitely many i.

3» Lemmas.
LEMMA 1. If Γ is a GS game with

and

then

I r = (#ϋ> -Xi > Xnt X y f i Tj O/ , bn)

is a subgame of Γ,

implies

and Σf/((/V),)=/i

for all xeXτ.
Proof. Since T is a closed nonempty subset of S, Γτ is a subgame

of Γ by Theorem 5 of [1]. The second statement follows from assertion
B [1, p. 260]. Finally suppose that

for some xeXτ. Letting, in assertion A [1, p. 260],

F=U(x)f\T ,
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and noting that F is closed and nonempty and that

(/V),=(/g,,

we have

ΣΓ,(/'»>^/l,

which is impossible in view of the construction of T.

We assume hereafter that Γ is a GS game with Sr described in
terms of Y^X as in §2, and that

whence

by Lemma 1. The strict determinateness of Γ will follow from Lemma
1 and the fact that

proved in §4.
LEMMA 2. For xeXτ, we have

if and only if

seSTx and s(i)eY

for infinitely many i.
LEMMA 3. For xeXτ there exists

such that for any

we have

<σxfτ)(i)eY

for some i
Proof. Let Yx be the set of all

such that 2/># and no members of Y fall between x and y. Let Γ'
be the game
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ίrγ. ΎTx vrx -yrx fTx oτx a'

where

S'i = Sτ'f\\J{l\(y):yeYx}

and

(that is, the game in which / wins if the play passes through any
member of Y following x). Noting that

we have

and hence

But S/ is open in STx and so / " is strictly determined by Corollary 10
of [1], whence there exists

which satisfies the conclusion of the lemma.

4 Winning Γτ. Let

For each xeYf let σx be as given by Lemma 3, and let σ'x be the re-
striction of σx to the set of all z in Xτ such that x<lz and that there
exists no y in Yr with xCy<ζz. We show that the domains of the σ'x
cover Xτ and are disjoint: First, if xoeX'ϊ, then x0 belongs to the
domain of σXQ. For

Zζ.Ji-2 {^ϋj y

let

z' :z'eYf & zr<z] .

Then xe Y1 and z belongs to the domain of oΛ thus the domains of the
πx cover X}1. Now suppose that xl9x2eYf

f x^x-z, and that there exists
#3 common to the domains of σXl and o%% then tfL<^3 and x^xi9 so that
either Xι<^%2<^x i or x^<Cxι<^x όy which is impossible in view of the re-
striction imposed upon σ, in obtaining σx.

Since the domains of the a'x cover XJ and are disjoint, they have
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a common extension ^*, which necessarily maps the elements of Xτ

f on
their immediate successors, and thus belongs to Σi(^V)

We show that σ* wins Γτ. Let

For this r and any x in Y', let i(x) be the least i such that <^, τ>(i
whose existence is given by Lemma 3. Define {xn} inductively by

^ + i = V : , τ}(i(xn)) n=0, 1,

(x{) is the distinguished vertex). Since

rk(xn+1)=i(#M) > r &(α?w) ,

and xn, xn+1 are on a common path, we have xn+^>xΛ for all n, and so
if xneY/ then

where

is the restriction of r to XJ?". Thus by induction xneYf for all n, and
hence

for infinitely many values of i, so that

<

Since r is arbitrary,

so that by Lemma 1, we have

Σ
As this is the consequence of the sole fact that

Γ is strictly determined.
Reversing the roles of the players in the above gives the result that

a GS game is strictly determined if S£ is an Fσ.
The strict determinateness of a two-person zero-sum game with G

payoff having chance moves can be shown. The proof is more compli-
cated, but uses the same ideas [4].

5. An application* Let

Γ = (xΰ9X19Xτl9X9f9SfΦ)
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be a zero-sum two-person infinite game of perfect information with no
chance moves having payoff Φ such that there exists a real function h
on X {\h{x)\<K<oo) with

0(s)=lim &vφh{s(i)) for all seS .

Γ is the result of an attempt to reduce the following situation to
a game: The tree K of a GS game and a function h as above are
given the two players make choices in K in the belief that every play
will terminate in some unknown, but distant, vertex x, at which time
player / will receive the amount h{x) from player 27. A payoff function
Φ is sought such that Φ{s) (-Φ(s)) expresses the utility to player / (II)
of a play s in K.

The payoff Φ defined above arises from ascription to players I and
II respectively of " optimistic " and " pessimistic " behaviors in this way :
Player / assumes that the play s will terminate in some " distant" vertex
s(i) at which h assumes nearly its supremum on all " distant" vertices
of s; he thus makes his choices so as to maximize the expression

lim sup h(s(i))=Φ(s)

and player // supposes that s will terminate in some " distant" vertex at
which his gain —h(s(i)) assumes nearly its infimum for all such vertices,
and thus seeks to maximize

lim inf — A(s(i))= -Φ(s) ,
i-

that is, to minimize Φ. The derived game is thus zero-sum. Ascription,
however, of such " optimistic " or " pessimistic " payoffs to both players
yields, in general, a non-zero sum game.

We show now that the game Γ of this section is strictly deter-
mined, using the method of Theorem 15 of [1] which asserts the strict
determinateness of Γ for the more special case of continuous Φ.
(Gillette [2] has shown the strict determinateness of an infinite game
of perfect information with chance moves which consists in repeated
play from a finite set of finite games and has payoff

1 n

lim sup — Σ gn(β) ,

where gn(s) is the gain from the nth game played.)
First, as a converse to the equivalence of §2, let FCIX, and denote

by Yn the set of all members of Y having rank greater than n. Then

{s : s(i)eY for infinitely many i} = f\{s: s(i)e Yn for some ί]
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which is a Gδ.

Now in Γ, for t real, lei

Sl= {s : h(s(i))^>t for infinitely many i} ,

and SU^S-Sϊ. Then Si is a G8, and thus the GS game
I ί = (#0> - î> Λj/, X, f t O, O/, Oy'i)

is strictly determined. Let

v= sup {ί: ΣZ(Γt)±*Λ} .

Since Sf=Λ, Sτκ~Sf and Sj is a decreasing function of ί, we have

-κ<v<κ, ΣΓ(Λ)^/ί if

and

ΣE(Λ)=NΛ if ί > ^ .

Given e>0, choose

^ Σ Γ ( ^ - s ) and r o €Σί(Λ

Then for any

we have

h((σ0, τ)(i))y>v — ε for infinitely many i

and do not have

h((σ, ro>(i))>?;-fε for infinitely many %

so that

0(<<7o, r>)>^-ε and

Hence

^ —ε< sup inf ^(<<J, r>)<inf
σ T T σ

thus /τ is strictly determined, and has value v.
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