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A THEOREM ON ALTERNATIVES FOR PAIRS OF
MATRICES

H. A. ANTOSIEWICZ

The theory of linear inequalities has come into prominence anew
in recent years because of its importance in the solution of linear
programming problems. In this note we present a simple algebraic
proof of an interesting theorem on alternatives for pairs of matrices.
This problem was suggested by A. W. Tucker.

Let A and B be matrices, » by m and n by p, respectively, and
let @, ¥, v be column vectors of dimensions m, p, n, respectively.

STATEMENT 1. Either A'u>0, B'u=0 for some u or Ax+ By=0 for
some x>0, y=>0.!

STATEMENT II. Efither A'u>>0, B'u>0 for some u or Ax+ By=0 for
some x>0, y=0. [7].

We shall prove the following theorem.

THEOREM. Statement 1 implies, and i3 implied by, Statement 11.

Note that for the special case when A= —a (column vector) State-
ment I (or II) reduces to a result of Farkas [2]. If B=0, then State-
ments I and II are two theorems of Stiemke [6]. More importantly,
if the matrix [B, C, —C] is substituted for B, where C is a n by ¢

Y
matrix, and y is replaced by the vector yl} , then Statement I gives
Y
the well-known transposition theorem of Motzkin [4, 5]. We refer to
[4] for several proofs and further references.

Before proving our theorem, let us make the following preliminary

observations. Define the matrix M=[A, B] and the column vector

2= B] and consider the system of equations Mz=0. Assume that

the veetors s, s,, -+, s; span the linear manifold & of solutions of
this system. Then every solution z can be written in the form z2=S8'¢
where S'=[s;, 8,, -+, 8] and ¢ is a k-dimensional (column) vector.
Observe that the rows of the matrix M span the orthogonal complement
S* of &7, that is, every solution of the system Sz*=0 can be rep-
resented as z¥*=M'd where d is a n-dimensional (column) vector.

It will be convenient to write S=[S;, S,] where S, and S, are the
k by m and k by p matrices, respectively, into which S can be parti-

Received February 3, 1954. This work was performed under a National Bureau of
Standards contract with The American University and was sponsored by the Office of
Scientific Research, ARDC, USAF.

1 Throughout, transposition is indicated by a dash; also, =0 means x=0 with x=0
excluded.
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642 H. A. ANTOSIEWICZ

tioned ; accordingly, we introduce two column vectors v, w with m and

p components, respectively, and write z*=[5j]

Clearly, the alternatives in each Statement are mutually exclusive
as can be seen by multiplying Az+ By=0 on the left by «’. To prove
the theorem suppose, at first, that A’«>>0, Bu=>0 for no u and
Azx+ By=0 has no solution £>0, y=0. Then there exists no ¢ such
that

Sie>0, S;c=>0 .

Hence, by Statement I, the system Sv+S,w=0 must be satisfied for
some v>0, w_>0. Since every solution of

Sz*=Sv+ S;w=0

is of the form z*=M’'d, there must exist a vector d such that A’d>0,
B'd>>0, which is a contradiction. Thus Statement 1 implies Statement
II. Conversely, if A’u >0, B'u>-0 for no u and Ax+ By=0 has no solution
x>0, y=>0, then there exists no ¢ such that Si¢c>0, S;c=>0. Hence, by
Statement II, the system S v+ S;w=0 must be satisfied for some v>0,
w>>0, that is, there must exist a vector d such that A’d>0, B'd>=0;
but this is a contradiction. Thus Statement II implies Statement I.

For applications to linear programming Statements I and II are
modified by adjoining in them the ‘inequality >0 to B’u—>0, that is,
by replacing the matrix B by [B, I]; in this form they can be used to
prove the duality theorem, [1, 3].
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ON SECOND-ORDER NON-LINEAR OSCILLATIONS

F. V. ATKINSON

1. In this paper we establish criteria regarding the behaviour,
oscillatory or otherwise, near x=o of the solutions of

(1.1) yfl+fy271r—1=0 ,

where f= f(x) is positive and continuous for #>>0 and = is an integer
greater than 1. A solution, not identically zero, will be said to be
oscillatory if it has infinitely many zeros for #>0.

The three possibilities to be distinguished are that the solutions of
(1.1) might be (i) all oscillatory, (ii) some oscillatory and some not, and
(iii) all nonoscillatory. We give here a necessary and sufficient condition
for (i) to hold, and a sufficient condition for (iii).

In the linear case, n=1, a number of criteria have been found for
cases (1) and (iii) ; in the linear case (ii) is impossible. A very sensitive
procedure is afforded by the chain of logarithmic tests studied by J.
C. P. Miller [3], P. Hartman [1], and W. Leighton [2]; some further
developments in this field have been given recently by Ruth L. Potter
[4], who has in particular a result [Theorem 5.1] bearing on the
limitations of this procedure. There does not, however, seem to have
been found any simple necessary and sufficient condition for (i) to hold
in the linear case, so it is noteworthy that such a criterion exists in
the nonlinear case.

2. The result in question is:

THEOREM 1. Let f=f(x) be positive and continuous for x>0, and
let n be an integer greater than unity. Then a necessary and sufficient
condition for all solutions of (1.1) to be oscillatory s

(2.1) S:xfdx———oo .

We remark that in the linear case the criterion is necessary but
not sufficient.

It should be mentioned that no solution of (1.1) becomes infinite for
any finite positive x-value; this is ensured by the positiveness of f(x).

We prove first that if (1.1) has a nonoscillatory solution, then
(2.1) cannot hold; this will prove the sufficiency of the criterion.

Received October 29, 1953.
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644 F. V. ATKINSON

Let then y denote a nonoscillatory solution of (1.1); y will then be
ultimately of one sign, which we may without loss of generality take
to be positive. It follows from (1.1) that "’ will be ultimately negative,
so that " will tend either to a positive limit, or to zero, or to a negative
limit, or to —o. The last two cases can be excluded since they would
imply that y is ultimately negative. Thus y must be ultimately mono-
tonic increasing, and y’ must tend to a finite nonnegative limit.

We next integrate (1.1) over (0, x), getting

2.2) v @)=y O+ =0,
Since y'(x) tends to a limit as x-—oo, this implies that the integral on

the left of (2.2) converges as x—o ; we may therefore integrate-(1.1)
over (x, o), getting now

v()-y'@)+| ryrar—o,
whence, since y'()>0,
(23 v @=| e
Still with the assumption that y is ultimately positive, let a be an

xz-value such that y(@)>0 for x>a. We integrate (2.3) over (a, z),
where x>a, and get

v —v@= @ | rema=| ¢-a s @-of e,
and hence, for 2 >a,
v@={ e~ rat,
which we re-write in the form
2.4) @-a | ¢-arvat] " >e=-a)r .

We now take any x,, 2, such that a<le,<wx,, and integrate (2.4)
over (x;, x,). This gives

(2—2n)—1|:<gz (t—a) fy2n~1dt)2'2" ]%;S% (@ —a) fda .

{43 T

If now we make x,—>c, the left side remains finite; this proves that

r (x—a)fdz<o,
X1



ON SECOND-ORDER NON-LINEAR OSCILLATIONS 645
which is equivalent to
(2.5) S:xfdw<oo ,
in contradiction of (2.1). Thus the sufficiency of the criterion is proved.

As to the necessity, we shall show that if (2.5) is the case then
for any prescribed value of y(), for example 1, there exists a solution
of (1.1) such that

(2.6) y(eo)=1, y'()=0,

which is obviously nonoscillatory.
It is easily verified that if the integral equation

@.7) y@=1-|"t-a) O et

has a solution y which is continuous and uniformly bounded as z—oo,
then it is also a solution of (1.1) with the supplementary conditions
(2.6). The existence of a bounded continuous solution of (2.7) may be
established by the Picard method of successive approximation. We
define a sequence of functions

al®) (m=0,1, -2), @30,
by
yo(x)=0,
Y@ =1= | C=2)FOO}d  (n=0,1, --).

The remainder of the argument need only be sketched. We can prove
by induction that if z is so large that

K@—@f®&<1,
assuming now (2.5), then 0<y,(x)<1. We have also
Bass@) = s @)= | =) F L) = G
whence, for sufficiently large z,

[ 5(0) (@) (2= 1) max fyalt) — Ui | (E=2)F (0N

t/m

From this we deduce the convergence of the sequence ¥, (x) (m=0,1,--.),
for « so large that



646 F. V. ATKINSON

(2n—1)r(t—x)f(t)dt<1 ;

the continuity of the limiting function is easily established. This proves
the existence of a nonoscillatory solution of (1.1) for sufficiently large
xz, which is enough for our purpose.

This completes the proof of Theorem 1.

3. We conclude with a simple sufficient criterion for nonoscillatory
solutions which happens also to be true in the linear case [4, Lemma
1.2].

THEOREM 2. Let f(x) be positive and continuously differentiable for
x>0, and let f'<0. Let also

(3.1) Swwm'lfdx<oo .
0
Then (1.1) has no oscillatory solutions.

We observe first of all that the result
d {1

., 1
Y+
dx y

1L,
2l 7 Y 0
2 on 7Y } on LY

implies that, for any solution, 3’ remains bounded as z— .

Supposing if possible that (1.1) had an oscillatory solution, let x,,
@, +++ be its successive zeros. Let x, be for convenience a zero for
which ¥'(%,)>0, and let «, be the unique zero of ¥’ in (@n, Twms)-
Integrating (1.1) over («,, «,), we have

o
y’(:vin)—y’(wm)JrS Sy idae=0,
Lon
or

' T/
(32) y,(xm)zs fyzn-ldm .

Lo

Now y’ is positive and deereasing in (x,, «,), and y(z,)=0; hence
for x,<lw<Cx, we have

0<y<y,(x'm)(x—_wm) .
Thus from (8.2) we derive

T

y;(x1n)<{y’(x771)}271_lg ‘f(w)(m—xm)zn—ldx ’

Lm

and so
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L<y @] fomds .
Lon

This however becomes impossible as x,, becomes large, since y'(x,) has
been proved to remain bounded as x,— oo, while by (8.1) we have

Sw fa'de—0 .

k27

Since we have obtained a contradiction it follows that (1.1) has under
these assumptions no oscillatory solutions. This proves the theorem.
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FOURIER ANALYSIS AND DIFFERENTIATION OVER
REAL SEPARABLE HILBERT SPACE

F. H. BROWNELL

1. Introduction. Let [, denote as usual the space of square sum-
mable real sequences, the prototype of real separable Hilbert space.
It is well known that [, possesses no non-trivial, translation invariant
Borel measures. However, [, does have infinitely many subspaces X,
locally compact in the /, norm relative topology, which we may call
translation spaces and for which such measures ¢ exist [2]. Here the
spaces X are not groups under [, vector addition, so the notion of
translation invariance must be appropriately modified. For any such X
we may of course use the corresponding ¢ to define over zel, a Fourier
transform F' of feL(X, <2, ¢) by

P~ F@edg@) .

However, in order to get the expected inverse formula, it seems neces-
sary to be able to make X into a group—roughly speaking to define a
vector in X corresponding to x+y when this [, vector sum ¢ X. This
is a severe restriction on our translation spaces X, and the only natural
ones still available seem to be essentially ‘modifications of Jessen’s in-
finite torus [9]. With orthogonal coordinates this is the space X, de-
fined below, a modified Hilbert cube.

Since X, is a locally compact abelian topological group, Fourier
analysis upon it becomes standard procedure. We are able to extend
some standard one-variable theorems (see [1]), relating Fourier trans-
forms and the operation of differentiation, to the situation here, which
seems new. In a summary at the end we discuss the significance of
these results as related to the work in functional analysis of Fréchet,
Gateaux, Lévy, Hille, Zorn, Cameron and Martin, and Friedrichs.

2. Fourier integrals on X;. Let
w={xel, | —h,<x,<h, for integer n>1}
where the fixed sequence of extended real Z,, 0<h,<+ o, has
S b 4
n=N+1

for some fixed integer N>>0. For simplicity we assume 7,=+ o for

Réceived January 13, 1954.

649



650 F. H. BROWNELL

1<n<N if N>>1. Define +' addition as /, vector addition modulo the
subgroup I,={x €, |z,=0 for n<N, x,/2h,=m,, an integer, for n>N+1}.
Define P(x) for zel, as the unique element of X, in the coset z+I;;
thus clearly 2+ 'y=Px+y)e X, for 2 and ye X,. After defining the
inverse —’w=P(—x) for xe X;, we see that X, becomes a group under
4+’ and —’. However, the operation +’ is not continuous under the
metric |z —y| defined by the I, norm

ol =| S

Thus, following Gelfand [5], we introduce the modified norm [fz|=
|P(x)| for xel,., That +’ and —' are continuous under the resulting
metrie [|[z—y]|| is clear from the easily verified statements

@ +'9) =@+ Y= P@E—z+§—y) | <| P@—-2)+ PG—v)|
<lz—zll+llg—yl and I(="y)—(="2)l=ly—=] .

Thus X, is a topological group under the metric topology of the modi-
fied norm. Note that P(x) is continuous from [, onto X, under the ap-
propriate [, and modified norm metrics, since

I1P@)— P) = Ple—y) | <lz—y] .

We can easily verify that the as yet unused condition

Sy B too

N=N+1
is necessary and sufficient for X; to be locally compact under either
the I, norm or modified norm metric topologies. Thus X,, under the
latter topology, possesses a regular Haar measure ¢ defined over <7,
the Borel subsets of X,; and ¢ is unique up to constant factors. Hence
¢ is non-trivial and invariant under +’, though, as we remarked above,
this ¢ could be constructed for + alone without making X, into a
group, (see [2]). To fix ¢, let

Vi={re X, | |x)<F for n<N};

thus Vi, being non-void and open with compact closure, must satisfy
0<e(V)<+ . We specify ¢ uniquely by requiring ¢(V;)=1.

In order to get Fourier analysis on X, following Godement [6] or
Weil [11], we need to determine the continuous characters on X, that
is all continuous complex valued functions ¢(z) on ze X, with |¢(z)|=1
and ¢(@+'y)=¢(@)¢(y). Here let

Zu={z€5l2 | 2,= "731" with p, an integer for n>N+ 1} .

n



FOURIER ANALYSIS AND DIFFERENTIATION 651

Note that since ”Z h:<+ o and zel, make 4,—0 and 2,0 as n—>,
n=N+1

each ze Z, must have p,=0 and thus z,=0 for sufficiently large n.
Let

(x’ y): 7L2=‘1 mnyn
denote the /, inner product.

LEMMA 1. The group of characters X, is wsemorphic with Z,, each
character having the form ¢(x)=e“>™ with ze Z,

Proof. Let exp [i@(@)]=¢(P(x)) for any ¢ € X,, with ¢(0)=0 and @(z)
defined uniquely by requiring continuity. Thus @(z) is a continuous linear
functional over /,, so @(x)=(x, 2)=(2, «) for some unique ze€l,. For
h,<+ o, taking x;=2h, if j=n and x;=0 if not, we see that P(x)=0.
Hence 2zp,=&(x)=(z, ) makes z,=np,lh,, so z€Z,.

Let Z,ClI, be topologized relatively from [,. Clearly this topology
is equivalent to the product of the euclidean E, topology with the
discrete topology on the part » >N, where z,=np,/h, and %,—0. Z, so
topologized forms a locally compact abelian topological group under [,
vector addition, 7 denoting its Haar measure. Clearly this topology on
Z, is equivalent to the Hausdorff space topology with neighborhoods as
finite intersections of sets of the form

N.x(2)={z€ Z | [(z—2, x)|<p for ze F},

p>0 and F' a norm bounded subset of X, Equivalently on Xo this
topology is given by

Nio(@)={¢ e X, | [¢(x) — fo(@)|< o for ze F} .

Now (X, <2, ¢) is a o-finite measure space, so L.(X,, <%, ¢) is the
conjugate space of Li(X,, <7, ¢). Thus the argument of Godement,
[6, p. 87], is valid and Z, is homeomorphic to X,<L.(X,, <7, ¢) under
the weak topology defined by Li(X,, <%, ¢).

We may normalize 7 uniquely by requiring the Fourier inversion
formula (2.2), which must hold as stated in Lemmas 2 and 3 following.
The formulae are:

@.1) F@)={ ¢ f@ip()
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2.2) f@=|, e eFEde .

Here we note that any f e L,(X,, <%, ¢) has its Fourier transform F(z)
defined and continuous on Z, by (2.1); and if such FeL(Z, %', 7),
<% being the Borel subsets of Z,, then the right side of (2.2) also
exists and is continuous. For Lemmas 2 and 3 let .Z be the class of
all convolutions

[wxol@) = ulz—"up)de)
0
of continuous functions u(x) and v(x) vanishing outside compact subsets
of X;,. (For proof of these following well-known lemmas see [6, p. 90-
94]. The density of .~ in Lemma 2 follows from the regularity of ¢.)

LEmMMA 2. .7 s dense in L(X,, &7, ¢) and L,.(X, <, ¢), and
each fe .7 has its Fourier transform Fel(Z, <%’,%) with (2.2)
holding at each x e X, for the inverse transformation.

LEmMMA 3. If feLJ(X,, 22, ¢), then there exists a unique Plancherel
transform Fe L(Z,, <% ', 1) such that every sequence {f.} C " with the
L, norm || f— fi].—0 also has |F—Fy[,—0. Moreover, every sequence
{f}C s with |F—Fy|,—0 also has |f—fil.—0. This Plancherel
tramsformation takes L.(X,, <&, ¢) onto Li(Z,, <%', ) as a Hilbert space
1wsomorphism,

23) [, r@s@dee |, Foc@HE . frgels.

In order to determine 7 explicitly, let S be the set of all integer
valued sequences ¢= {p,} over n >N such that p,=0 for large enough
n for each sequence; thus .S is countable. Let z=(w; ) be defined
for we Ey, e S by z,=w, for n<N and z,==p,/k, for n >N. Letting
14(?) be the characteristic function of any Ae <2/, with p, Lebesgue
measure on Ky,

. dpy(w)
{2 rtos 0} 90

27/ <es

@t 1=(,) 2] wtes0dn @)=

Ey

follows, by applying Lemma 8 to the Gaussian
1 X
f(fv)=exp<—-—~ > wf)
. 2 n=1
to determine the normalization.

3. Fourier transforms and X, differentiation. Here let X, denote
X, with the nth coordinate omitted, ¢, the corresponding measure over
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the s-algebra <7, of Borel subsets of X,, and ¢ the Borel s-algebra
of F, if »n<N, of (—hy k) if n>>N. Then [7, p. 222], we see that
“2 =2y % 71 as the uncompleted product; also, using the uniqueness
of Haar measure, ¢=¢, X, or =¢, % (i,/2h,) according as n<N or >N.
Now consider fe L(X,, <%, ¢), let & denote x with the nth coordinate
omitted, and define K, (¢, x,z) 1if —h,<t<z,, K(, x,)=0 if not. Clear-
ly Kt @) f (@, , @41y &) Tuyyy »++) IS measurable (7,x & x <,
=( x ) over (&, w,t)eX,xE xE, if n<N, or X,X(—hs &)
X (—=hy, hy] if n>>N. Thus if we define

[r@yan.~{" K.t z)r@ vat

then the Fubini theorem makes S f@yde,e Li(X,x 1, &7, ¢) for any

finite z, interval I.

For the following theorems we will say that f(x) is z, absolutely
continuous if for all £e X,—A, where A is some set e <, having
¢.(A4)=0, we have f(P(&, ,)) absolutely continuous as a function of 2,
over every finite interval of E.

THEOREM 4. If feL(X,, &, o), if [ is @, absolutely continuous,
and if fr, the resulling x, first partial, is € L(X,, <7, ¢) also, then
the (2.1) defined Fourier transforms F, and F of f’', and f have F(z)=
= —iz,F'(?) over ze Z,.

Proof. Consider first %,< + c, so we know almost everywhere (¢)
on X, that

.ﬁ@={fﬂwd%+f0%&‘-m»=&f4@¢m+f@,m%

Now

hy, ]

¢eldr—0 for 2,20,

—In

S0
hy
ro=| | eo{{ri@an} Erapm .
X9 1 2h

But

Ry, s

SWh ] S t)dt |ds

- ¢4

e gt T 1 by, .
~¢ fuawa—&f S £ 1(F, 8)ds
—~hy " h,

1%y,

12
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by integrating by parts, and

by,

Ful@, ydt=f(P@&, ha)—f(P@&, —h,))=0.
"h'n

Thus F(z)= - (1/i2,)F.(2) for z,2<0. If 2,=0, then

hy,
S Fu@, dt=0
—hy

makes F,(2)=0, so F,(2)=—iz,F(2) for all ze Z,
Secondly if A,= + oo, we know

f@=|ri@adz.+c@
almost everywhere (¢,) over e X,. Thus f(&, =,)>C(%) as x,—>—oo,
so f(&, x,)e L,(E,) in x, almost everywhere (¢,) requires C(%)=0,
f (x)=S fr@)dx,, and similarly Sm SFr(@, t)dt=0 almost everywhere
(lﬂn‘)- Thus

e r@ as=|" ™[ ri@ Hatlas

i e'izns s Lo b 1 (™ deus oo~
e T R W

ayh—>c0 'Lzﬂ

=__—lsm PR fu&, s)ds, so F(z)= —~,1—F,z(z) for z,2<0.
12, -2 iz,

If 2,=0, then Sw (&, )dt=0 makes F,(2)=0, so F,(2)= —iz,F(z) for
all ze Z,.

For the next lemma we need to remark that T(x; y)=(x; y—'x) is
a homeomorphism of X,x X, into itself, and hence leaves unchanged
the Borel class <2 x <7, [7, p. 2567]. Thus Ae & has T(X,xA)e &

x <%, so clearly any f(x) measurable (£7) has f(x+'y) measurable
(% x £2). Let ,eel, be defined by ,e,=4d,,, and we then easily see, using

{@; ¥)e Xox Xy |yy=0 for ka<n} e &7 x &7,

that such f also have f(x+'¢.e) measurable (22 x &%) over e X, and
t real.

LEMMA 5. If feL.(X,, &%, ¢)with real r=>1, of f is x, absolutely
continuous, and if the resulting fre L(X,, &, ¢), then defining
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1
wfil@) = Af @+ ' we)— f (@)}

over real h=<0 yields
13{-‘2 ”nfh_“féllzzo .
Proof. Since x+'h ,e=P(x+h .¢), we know that

Sil@)=Fi@) =3\ (it o) - Fieat

almost everywhere (¢,) over ze X,. With 1/»'=1—-1/r if »>1, 1/»
replaced by 0 if r=1. The Schwarz-Ho6lder inequality thus yields

W) = Fa@I <= [ e o) = @ e

Then by the Fubini theorem

W= rili<y [, et - r@rae @l
< sup lg —gl;

where g(x)=f.(x)e L, and g,(x)=g(x+'t.e). The functions u(x), con-
tinuous on X, under the modified norm topology and vanishing outside
compact subsets of X,, are L, norm dense in L.(X;, &7, ¢) by the
regularity of ¢; and such » have |u,—u|,—0 as t—0 by their uniform
continuity. Also |g,—u,|,=|g—u|. by ¢ invariance, so

lnfn—fal <2|g—ul,+ sup o, —u,

and hence |,.f,—f.].—0 as A—0 .
We also have the following converse for r=2.
LEMMA 6. If f and ge L(X,, &, ¢) and if lim|,f,—g|.=0, then
h—0

F@)=Ff(@) almost everywhere (¢) for some f(x) measurable (7)) which

is x, absolutely continuous and has its derivative f';(x)zg(x) almost
everywhere (¢).

Proof.

For

lnfi-gt=K] ]

X ~hy

o (a) = 9(a) P} (@)

by the Fubini theorem, so using a Riesz-Fischer subsequence h=t,—0
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we have

b
lim | sy ) — g(a) P, =0
tk——sﬂ h

—In

for almost (¢,) all Ze X,. This reduces our statement to the one real
variable analogue, where the result is well known (see for example
Bochner, [1, p. 181], if A,=+ ). Since we may take

T,

Fay={ " o@ nde+ 7@ 0

0
almost everywhere (¢,) with
~ . 1 a - 8 -
7@, 0=1{"{r@ 9-{o@ vat}as
aJo 0
for 0<<a<’h,, clearly fi (x) may be taken measurable (7).
The L, counterpart of Theorem 4 now follows.

THEOREM 7. If feL(Xy,, &, @), if f is x, absolutely continuous,
and if the resulting f,e L(X,, <2, ¢) too, then the Plancherel trans-
forms F and F, of f and f, satisfy F.(2)=—1iz,F(z) almost everywhere

(-

Proof. Using the Fubini theorem in (2.1) and the translation in-
variance of ¢, we have

nF,l(z):%(e—izfah— VF()

for the transform of .f, in case f e L,NL,, and hence for all fe L, by
the Plancherel Lemma 8 with L,NL, dense in L,. Since

lim L (e =% _1)= sz,
h—0

and since |, F,—F,|,—0 as 2—0 by Lemma 5 and (2.3), the Riesz-
Fischer theorem yields F(z)=—iz,F(z) as desired.

It is easy to get an extended converse of Theorem 7.

THEOREM 8. If f and ge L,(X,, <%, ¢) and have transforms F and
G satisfying G(2)=(—12,)"F(z) for integer k>0, then [f(x)= S (x) almost
everywhere (¢) for some f (x) measurable (<7°) such that b () possesses
everywhere up to (k—1)st order w, partials which are € L(X,, &, ¢),
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the (k—1)st 7 Gl (@) 1s @, absolutely continuous, and
e () =0(@)
almost everywhere (¢).

Proof. From (—iz,)*F(2) and F(2) € L,(Z,, 57, 5) clearly (—iz,)’F'(2)
€ L, also for p=0,1, .., k—1, and by taking inverse Plancherel trans-
forms we get ,g€ L.(X,, &, ¢) transforming into (—iz,)’F(z). As we
have seen before the difference quotient g, of ,¢ will have the trans-
form

]11» (e ~%h _1)(—iz,)"F(2) = {S:e ~izht gy }(- i) F () .

Since |{ }|<1 and { }—1, this transform -—(—4z,)*"'F(z) in L, norm
as h—0. Hence |,9,—,419[.—0 as 2—0 by the Plancherel lemma, and
so Lemma 6 with ,g=f and ,g=g¢g gives the result.

The following converse of Theorem 8 is considerably deeper than
Theorem 7. We remark that if f and ge L(X,, &, ¢), then fxgel,
also and has the Fourier transform F(z)G(z), where

ol =] Fla—"nawds)

exists almost everywhere (¢). More important for us, if f and
ge L(X,, &/, ¢), then [fxg is the inverse Fourier transform of
F(2)G(2) e Li{(Z,, <7, 7), defined pointwise by (2.2), and hence also the
inverse Plancherel transform if FGeL,. This follows by noting
that €@»F(2) is the transform of f(x—'y) as a function of y and by
using (2.8).

THEOREM 9. If feL,(X, &, ¢) and possesses everywhere up to
(k—1)st order x, partials, if fED(x) is x, absolutely continuous, and if
[ia@)e LyX,, &, ¢), then also f. . (x)e L(X,, &, ¢) for p=1, 2,
cee, k, and such f3., have the transforms (—1z,)"F(2).

Proof. First we construct rather arbitrarily a smoothing transform
18 . 1
G(Z)zeXp e Z Wi—— - Tnln )P(C)
2 j= 2

for z=(w; &) of we £, and ¢eS using the notation of (2.4), where
7.=0 if »<<N and 7r,=1 if »>>N. S being countable we may set
S={£} and define p({) on S by setting p(L)=e*. We see clearly from
(2.4) for each integer p=>0 that (—4z,)"G(2) € LNL,NL. for the measure
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space (Z,, <%, n), since
2l 7~ ¥

is bounded and O(e~[#2l) as |z,|>. Also G(2)>>0 everywhere on Z,
these two conditions being all we really need. Take g as the unique
element of LJ(X,, <%, ¢) transforming into G, and by Theorem 8 we
may take g(x) to possess all order derivatives in z, with ¢@. ,.e L,
transforming into (—12,)°G(z).
Now for 4,<+ o and 0<p<k, by integrating by parts we see that
Ry hy
| one-wr@a =\ sa—ur..od,
~hy ~hn

existent finite for almost (¢,) all §e X, for each ze X, using the
periodicity of ¢g(P(x—y)) and f(P(y)) at the endpoints y,=+h,. If
h,=+ oo we still get the same result by a slightly different argument.
Here we know f$. .(x)e L,(—, =) over x, for almost (¢,) all ze X,
so by the Schwarz inequality follows

(@) =O0(|2,])
as lx,|->o for such Z. Thus by further integration
P..@) =01, )

as |r,|>o for such %, 0<<p<<k—1. Now clearly

g@)—e g, (@),
S0
g52a(@) =O(e ™1
as |x,|->c. These two estimates are enough to make the endpoint

terms vanish in integration by parts, so

|"_dr w@—mr@an=|"_ste—vr2. ).

Thus with K=1 or 1/2h, we have

Iy

(920 1D =K[ [ oe—"0) 72 0)undya(®)
X ~h

existent finite in the order written for 0<<p<{k and all x¢ X|.
Now for p==k we are given f&..,e L, so the Schwarz inequality
shows g(@—"y) /¥ ..(y) to be € L;. Thus by the Fubini theorem
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Lo w f1(@) =Lg* F32.. n) ()

at all ze X,. By our remarks preceding this theorem, since (—12,)*G(2)
and G(z) € L., make (—i2,)*G(?)F(z) and G(2)F.(2) € L,, for the Plancherel
transforms we have [(—12,)*G()]F(2)=G(@)F(z) . Thus since G(z)>0
everywhere, Fy(2)=(—1z,)"F(z) with Fe L, the transform of f{.. € L,.
Thus Theorem 8 gives the result.

THEOREM 10. If f and ge L(X,, <%, ¢) and if their transforms F
and G satisfy

G(e)= — ( i zJ)F(z) ,

then there exists a sequence of functions ,f(x) measurable (%) such that
J(@)=f(x) almost everywhere (¢), .f(x) 18 @, absolutely continuous as
well as its everywhere existent first x, derivative ,f(x), .f» and

nfn € Ly(X., &, @), and i o v, converges in L, norm to g as M~—>oo.
n=l
Proof. Let g,eL X, <,¢) be defined uniquely by requiring
G.(?)=—22F(2), since |12F(2)|<|G(z)| makes 22F(2) € L,(Z,, #', 7). Now

i 2% is actually a finite sum for each ze Z, and also

n=1

M
15_‘. 2
n=1

\F(2)|<|G(z)|e L, ,

M
so by dominated convergence ) G,.(2)—G(z) in L, norm as M— o, and
n=1

M
hence also 3 g,—¢g in L, norm. Finally Theorem 8 for each n gives

n=1
the desired ,f(x)=f(x) almost everywhere (¢), ,f» and ,fm€ L., and
afon(®@)=g,(x) almost everywhere (¢) as desired.

THEOREM 11. Let f and ge L(X,, &, ¢) and let a sequence of
Sfunctions ,f(x) measurable (%) satisfy the conditions: ,f(x)=f(x)
almost everywhere (¢); .f everywhere possesses a first x, partial ,f,

N
which is x, absolutely continuous; ,fm €L (X, <%, ¢); and 21 wf =g

in Ly(X, Z, ¢) norm as M—c. Then the transforms F and G satisfy

G=—( S2)Fe
almost everywhere (7).

Proof. By Theorem 9 we also have ,f,eL, and ,f.. has the

M
transform G,(2)=—22F(z). From 3. .fn.—g in L, we thus know
n=1
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”ZIIG,L—»G in L, norm as M-, where
M M
56,60 =—(Za)Fe.
n=1 n=1

Since >)z% is actually a finite sum at each ze Z, Riesz-Fischer sub-

n=1

sequences yield

G =-( 54 )Fe)

n=1

as desired.

4, Significance of results. The main results of this paper are
Theorems 7 through 11 relating Fourier transforms over X, a modi-
fication of the Hilbert cube, to the operations of differentiation in an
L, sense. It is clear that Theorems 10 and 11 allow one to use Fourier
transforms to define a generalized Laplace differential operator for
scalar functions on X,. This definition is in a global L, sense, which
gives a pointwise definition only by using Riesz-Fischer subsequences.
The ideas of pointwise infinite dimensional derivatives seem to go back
to Fréchet and Gateaux. Hille [8, pp. 71-90], Zorn [12], and others
have developed a notion of analyticity from similar complex differenti-
ability on complex Banach spaces.

To be precise, for real [, consider a real valued function f(x) over
xzel, and define the gradient 7 f(x)=y at each x such that there exists
y€l, having over uel,

(4.1) Tim £ (@ +0) = £ (2) = (4, DI=0,

such y being clearly unique. This is a Fréchet type definition. If we
let {w,} be a complete orthonormal system in /,, we have where /' f(x)
exists that

A=0

This equation could also serve as a Gateaux type definition of 7 f(x),
possibly depending on {w,}, wherever the squares of the right hand
terms are summable. For the divergence, if T(x)el, for each zel,
we may formulae the Gateaux type definition

(4.3) ", '—"(~’v))=§]l (W, V(@) for ¢(@)=(T(x), w,) ,

which is independent of the choice of base {w,} if
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(4.4) 27 ¢n(@)| <+ e and

0= lim [ 55 (@ +1) = 4@ — (@, Pt [

Jlwl—0

Finally we can define the Laplacian r*f(z)=(, V f(x)), so that

¢ rran=5] Lr@rw)]

shows this definition to agree pointwise with the expression in Theorems
10 and 11, S £ ().
n=1

Lévy has also constructed a vector analysis for Hilbert space,
though he is led to define

1 (& L
P EE)
as the Laplacian, [5, p. 248]. He differs more seriously from our ap-
proach by using a development of mean values of functions instead of
integration with respect to a non-trivial, translation invariant measure.
Thus he has no need to reduce I, to X,, though naturally his theory
of mean values must pay for this by certain anomalous features.
Cameron and Martin have also done a great deal of functional analysis
in terms of Wiener measure on the continuous functions ([3] and
others), but since this is not translation invariant, it has little contact
with our work.

It seems that our results relating Fourier transforms and different-
iation over real Hilbert space may be useful in a mathematical formu-
lation of quantum radiation theory, just as finite dimensional differential
operators are very conveniently defined self-adjointly in terms of Fourier
transforms. Friedrichs has discussed such problems and is led to still
a different method of integration over Hilbert space, [4, p. 60]. How-
ever, the set functions induced by his method are not s-additive and
apparently not translation invariant either.
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REMARK ON THE AVERAGES OF REAL FUNCTIONS

R. E. CHAMBERLIN

1. Introduction. Let f(x) be a continuous function defined on the
closed interval [a, b]. It is known that if for each z in the open
interval (a, b) there is a positive number ¢ such that

[—t, z+¢]<(a, b) and f(@:ﬂ”ﬁifl}ffﬂt@

then f(x) is linear (see [2, p. 2563]). The same method of proof shows
that if there is such a ¢ for each x € (a, b) with

AL

then f(z) is linear. Suppose f(x) is such that for each z € (a, b) there
exists a ¢ with [¢—¢, z+¢]<(a, b) and

z-t

Se+t)+ fl@e—t) 1 [=+*
(1) ' —Z—tS F(s)ds.

Is f(x) necessarily linear? On page 231 of [1] it is shown that if (1)
holds for each x and all ¢ such that [x—¢, x+t]c(a, b) then f(x) is
linear. The question arises whether or not one can relax the require-
ment that (1) holds for all ¢ in the above intervals and still conclude
that f(x) is linear.

In this note a continuously differentiable non-linear funection f(z)
is given which satisfies (1) for every x € (¢, b) and an infinity of ¢’s.
The values of ¢ depend on x but they may be chosen arbitrarily
small for each ®. Conditions which together with (1) make f(x)
linear are given and the note is concluded with some remarks on the
approximation to a function by its averages

N 1 T+t
@ =2\ re) ds.

DEFINITION. A continuous function f(2) on [a, b] will be said to
have property (1) if for each xe(a, b) there are arbitrarily small
values of ¢ for which (1) is true.

2. An example. We give an example of a continuously differentia-
ble function having property (1) which is not linear. Let

Received January 14, 1954,
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2 _. 3 cos 10 7w

(2) fl@)=>, 107

1t is clear that f(x) is not linear and is continuously differentiable.
To show that f(x) has property (1) we begin with the following

LEMMA. For every z,

lim | cos 10* 7za | =102

N->00

Since the functions cos 10*zz (n=>1) all have 1 as a period it is
clear we need only consider xe[0, 1] in the proof of this lemma.
Since there is no loss in generality we assume hereafter that we are
dealing with the interval [0, 1] and « is in this interval.

Let the decimal expansion of « be .a,a,.--. Then

107w =a,@y++ By + .G yy Bypsor+ aNd | €08 10*" 72 [=|COS(Asy 41 Dapsne+)7 | -

Suppose |cos 10* za | < 107%. Set .44 Aupyors-=.5+7r, where |r,|<.b.
Then

10> ‘ COS('“MH (1/271.,.2"‘)71' |= ‘ sin ramw ‘=Sin ’ e I = 2 Y'ut 1 ’
T

that is ;2;(7)572“‘"" Hence there is an integer b with 0<<b<<56 such
that |, [=.000b.--. Therefore,

| c0s 10"+ D755 | —| cos(.0b--+) 1 |z(1 _ &,12”1),‘5)>.9 .

Thus for every « and every =, there are integers »n>>n, such that
[cos 10*7zx | >>10-°. This proves the lemma.
For the function (2) we have

(3) o = [f@r+re-0]- L™ s

=3 1 cos 107 (e + t) + cos 107 (z—1)]
n=1 2'10h71‘ni

sin 10*"x(x 4 t) —sin 10*7(—t)

1 oo
2t = 10203 10%

From elementary trigonometric identities we now obtain

< 1 27 n Sin 10*x¢t
g(z, t)= ;?:1‘1 10 ?,;,cos 10"z [cos 10% 7t — 10“7:57'] .
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We investigate in detail the last expression for g(x, t) in (3).
Given z, let lim|cos 10*zx|=d. From the lemma it is clear there

n—>co

are an infinity of integers &k with the following properties :

(a) |cos10%*zz| >.99d .
(b) lcos10™zx|<1.01 d for n>[k/3]
(¢) k=10.

For these values of &k we show that the sign of g(x, ¢) in (3) is deter-
mined by the sign of the k-th term in its series expansion if ¢ is
chosen properly. We assume hereafter that k is subject to conditions
(a), (b) and (c).

For the given = and subject to conditions (a), (b) and (c¢) pick %k
large enough so that for ¢=2.10-%*, [x—¢, «+t]<[0, 1]. Then

( 4 ) g(x, 10—Zk)= i Ccos 19”7&6 [COS 1020 -5 — sin 102(n k)n':]

el nZlOzn 102(n lc)_[
— k—lQQS 102-n7r.’1/‘ ( 100> 4 0 108~ k)) + ( 1) EOS 10%* 71'.76+ el COSTIO‘T'"H'.%'
=1  n*10* k*10% ne=k+1 n*10*

where {6,| < 2. Now

Z COoS 10‘”72’3/( 72'.2 104(71_@_*_0”105(”—@)
n=1 n210”° 6 !

(5)

10, 1 |cos 1077z |
< = 10 =%
3 10%* =i n?

Lk/3] -
g10 lo_zk( ki ! 1 _10%- Ic)) 103d+(10>10—zk< kzl _10%n- Ic))l 01d
3 n=1 N* ne[x/3] 1

where we have used the lemma and property (b) of £ to get the last
inequality.
For the first sum in the last inequality of (5) we have

N 2)(k/3)
(6) nz,l nl 10~ k>< nz='1 102(n K< 10- 430k~ nl- 1(1()10)i
<(1.01)10-436-1)
To get an estimate on the second part of the last inequality of (5),
recall that if Sn=ﬁ «,
then =

m
n?ranﬂn Z Sn(ﬂn ﬂn+1)_sr—-ll r+3mﬂm+1 .

n=r
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Letting «,=10""-% 3 =1/n* we get

ni[kE M nefa] 1-10% /\n? (n+1)
1—10-2 1-107%%-»\ 1 21
— 107 wo1-»( ] o ) UkisE + 10 )<
1-10-* IL/3] 1-10-* lc”<102 K

at least for £2>10. Using the estimates obtained in (6) and (7) we
get

10 | cos 1077z | [1 .01 10
8 —2.10-%* < L -1 () -¢/3%-D+4 ”7\7]
(8) 3 n% 210 10vL g Ty D

<2g.. 1  tor k=10,

10 &*10*
Furthermore
S @}Qm’m 2n-ry___ Sin 102" ® 7 :‘l
(9) nédlww[wmo nwjﬁﬂ;
<iotg 5 L 04 1 1 1

W ST110%0? (o 1)F 10°6+D 1 — 102 10752102'6‘

From (8) and (9) we see that the k-th term of the series for
9(x, 10-*) is greater in absolute value than the sum of the remaining
terms. Hence the signs of g(z, 10-%*) and —10-*k-*cos 10*zx are the
same. For t=2.10"* the k-th term of the series for g(x, 2.10-%) is
10-*k~* cos 10*rx and in the same manner as above one can show that
the signs of g(x, 2-10-*) and the k-th term are the same. Since
10-*k-* cos 10%nx and —10-%*k-% cos 10%*nx are of opposite signs, g(x, t)
vanishes for some te (10-%,2.10-%*). But for ¢(x, t) to vanish means
that f(x) satisfies (1). Since for each a there are an infinity of &’s
satisfying (a), (b) and (c), there are (for each &) arbitrarily small
values of ¢ for which the f(x) of (2) satisfies (1). Hence this f(x)
has the property (1).

3. Sufficient conditions for a function to be linear.

LEMMA 1. If fiz) s continuously differentiable and f''(%,)2<0, then
g(x,, t) is of one sign for some open interval (0, &) (t,>0).
Under the stated conditions we may represent f(x) by

10)  f@=rf@)+f @) @—z)+L @wawmm )]

Using (10) and the definition of g(z, t) gives
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1) gla, =" EHDLLO0 D
@) o) - L[ o
={rer+ T o)~ o I L + 1w e—a)

+ 7 ol(u— m)l}du— o F @) +o(E).

Thus if f'(2)=<0, it is clear g(x,, t) is one-signed for sufficiently small
values of ¢.

THEOREM 1. If f(x) has property (1) and f’'(x) is absolutely con-
tinuous then f(x) is linear.

For f''(x) exists almost everywhere and by Lemma 1 it is zero
everywhere it exists because f(x) has property (1). Hence f'(x) is a
constant and f(x) is linear.

THEOREM 2. If f'(x) s continuous, monotone increasing and not
constant in any sufficiently small symmetric interval about x, then g(x,, t)
28 one-signed in an interval (0, t,).

One has

Fet=f@—0+ (" rwdu

0
and for any xe€ (x,—t, ,+%) we get
(12) f@<f(@—t)+ f @) (@—z+1), f(@+)=f(@)+ [ (@) (@+t—2)
where at least one of the inequalities is strict by the hypothesis of

Theorem 2. From (12) one obtains

(13) (@ =20+ 8).f (o + 1) ;t @—=2+0)f@—t), r()

It is obvious from (13) that g(w, ¢) is positive. Clearly this result
with the inequality reversed holds if f’(x) is monotone decreasing.

We do not know if property (1) and bounded variation of f’'(x)
imply linearity for f(x). In view of the two preceding theorems it
seems quite likely.

4. Remarks on the approximation of a function by its averages.

Suppose f(x) is a continuous function defined on the interval
(@—38, b+0) (6>>0). We make some remarks on the approximation to
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f(x) by its averages

@ =11 reodu (O0<t<2) , el b

If f(») is linear then f(x, t)=f(z). If f(x) is not linear in any
subinterval then there is an everywhere dense subset of points x at
which the approximating functions are all either above or below f(x).
Otherwise the conditions of the theorem of [2, p. 2563] are met and
f(x) would be linear.

One might ask if there are necessarily points at which f(x, ¢) ap-
proaches f(r) monotonely. From the results of §2 above this can be
seen to be false. For t>0, f(x, ¢) is continuously differentiable funec-
tion of ¢ and

Sz, t)z,,li {f(xi-@%-f(fv-t) 1 Smi:f(u)dul,z

-g(x, ).
0 o1 ). g(x, t)

o |

From this it is clear the function of §2 gives an example of a con-
tinuously differentiable function which at no point is approximated
monotonely by its averages.
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ON A PROBLEM IN THE THEORY OF
MECHANICAL QUADRATURES

PHILIP DAVIS

1. Introduction. In the present note we study a scheme of
mechanical quadratures of the form

(1) | r@de~ 3 ansGu =),

as applied to certain distinguished classes of analytic functions on
[—1, +1}. The question of the convergence of @Q,.(f) to the integral
in (1) has been solved completely by Pélya [4] when f is selected from
the class of continuous functions. There seems to be less discussion
of the problem when f is selected from the class of analytic functions
on [—1, +1] or from certain of its subeclasses.

Let B designate a region in the complex z=x+{y plane which we
shall assume contains [—1, +1] in its interior. By L*B) we designate
the class of functions which are analytic and single valued in B and
are such that

(2) [\, 1rraedy<es
With
(3) (7, 0)=\{ rodady

as an inner product, and ||f|*=(f, f) as a norm, the space L*(B) be-
comes a well-known and very useful Hilbert space of functions, pos-
sessing a reproducing kernel Ky(z, w) which is generally referred to as
the Bergman kernel for B [1].

Let E be a bounded linear functional over L*(B); its norm (over
the conjugate space of all linear functionals) may be obtained in the
following way. Let ¢,(2) (n=0, 1, - - -) be a complete orthonormal sys-
tem for L*(B). Then it may be shown that

(4) IEP= 5B -

This may be expressed in the alternate but equivalent form,

(5) |E|f=E.E;Kuz, w) ,
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where the subscripts on the £ mean that the functional operation is
to be carried out on the variable indicated. We have, then, for all
felXB),

(6) \EOI<!IIEI LA

with the equality sign being attained for some f e L*(B). If now, the
abscissas 2, lie in the interior of B, and the segment [—1, +1] lies in
the interior of B, then the linear functional

(7) E(f)=|" f@dr— 300 f (i)
is bounded (ef. [2]) over L*B), so that we have, for all f e L*B),
(8) |EL NI AN

2. Uniform convergence. We shall say that the quadrature scheme
(1) converges uniformly in L*(B) if, having been given an >0, there
is an my=mng(e) such that, for all fe L*B) and n=>n,, we have

(9) [ rade— S ansu|<<irl.

THEOREM 1. A necessary and sufficient condition that the quad-
rature scheme (1) converges uniformly in L*(B) is that

(10) lim ||E,|=lim E,.E,5K ,(z, %)=0 .

Proof. Suppose that (10) holds. Then given an ¢>0 we can find
an ny(e) such that ||E,||<<e for all n2>n(e). Hence, by (6), the inequality
(9) must hold. Conversely, suppose that (9) holds. For each =, it is
possible to find a nontrivial function f,.(z)e L*(B) such that

1y \EL(f)l=[IEull [1£ull -

By (9), given an ¢>0 we may find an n=n(¢) such that for all =
>nye) and for all fe L(B) we have |E,(f)<el||f||. Hence, in parti-
cular, for the f, of (11),

(12) HEM L fall=1Ef N e fall -
Therefore (10) must follow.
We note that, in view of (4), the condition (10) can, in principle,

be converted into a necessary and sufficient condition on the weights
a.. and abscissas A, .
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The following special case is of considerable interest. Let &, p>
1, designate an ellipse with foci at (—1, 0) and (1, 0) and with semi-

major and semiminor axes a and b respectively, and where p is given
by

(13) p=(@+by, a=(p+1)20", b=(p—1)/20"".

Observe that as p—1, &, collapses to [—1, +1]. If U,(?) (»n=0,1,---)
designates the Tschebysheff polynomials of the second kind defined by

(14) U (2)=(1—2*)"sin ((n+1)arc cos z) ,

then it is well known that the system of polynomials

(15) ou2)=2)/ "L (g —p )T E) (0=0, 1,2, - )
T

will be complete and orthonormal over L*(%,). Thus we have:

THEOREM 2. A necessary and sufficient condition in order that the
quadrature scheme (1) converge uniformly in LX( &) is that

(16) limit £ $% (k+1) EUE o

noe T B0 k+l p—k 1

3. Interpolatory quadrature. An important class of quadrature
schemes is formed by those which are of interpolatory type. For such
quadratures we have

an Q=" raaz,

whenever f is a polynomial of degree not larger than n. If the
scheme is of interpolatory type then (16) becomes

(18) lim 4 S (k+ )BT

Rseo 7 ka1 lc+1 p—lc 1

In view of the inequalities
(19) P—l ’P—kS(Pk+1_P—k—l)—IS(‘0_P—l)—lp—k , (p>1) ,

condition (18) is equivalent to

n—ee k=n+l

(20) lim 3 (k+ 1) EaUnl ;Uk)' ~0.

If we now define
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0 (k odd),
(21) I
| (k even) ,
then (20) becomes
(22) lim S (ot 1) (00— 3 a0, Uily)) p75=0.
nro k=n+l j=0

The following sufficient condition for the uniform convergence in
L %) of an interpolatory quadrature scheme can now be obtained.
Set

(23) M,= § las) 5

and observe that for real absissas 4 in [—1, +1] we have
(24) \UD)I<k+1.
Then, using (21) and (23), for fixed p>1 we get

oo

@) 5 kD=5 U ) p = 5 (k4 Dot (k4 DILYp™
<4 S ((k+1)p9) +4M, S (k+1)p~*+ M, il(kJrl)"p“’c
k=n+1 k=n+1 k=n+
<o)+ CiM,np~"+ C,M;n’p~", (n—>),

where C, and C, are two positive constants which may depend upon p
but are independent of ». Thus, we have the following result.

THEOREM 8. Let
(26) lim M,n®*?p-"*=0( .

Nn—>o0

Then an interpolatory quadrature scheme converges uniformly in L (&, )

Pélya [4, p. 285] has remarked that if
(27 lim (M,)'"=1

n—>co

then an interpolatory quadrature scheme converges for all functions
which are analytic in the closed basic interval. Under hypothesis (27),
we have

Mn=(1+5n)n ’ sn—’oa

so that (26) holds with all p>>1. Thus, under P6lya’s hypothesis, we
see that the convergence is also uniform in every LX( &), p>>1.
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4. Newton-Cotes quadrature. We turn now to a specific quad-
rature scheme on [—1, +1], namely, the Newton-Cotes scheme. In
this scheme, we have

(28) Q)= f(=D)+auf(—1+2n)+apnf(—1+4/n)+ « -+ +auf(1)
(n=17 2, c e ')y

where the Cotes numbers a,;, have been determined so that
QN = raa

holds for an arbitrary polynomial of degree <m. We have now the
following estimate due to J. Ouspensky [3] (Ouspensky’s basic interval
is [0, 1]):

- 2 (=1, (=1~ "}
29 - = Lo
(29) e n(logn)( ) k n—1k (+7u)
where 7, ,—0 as n—oo uniformly for k=1,2,.-., n—1, while
(30) Qo= Q= 2 (16, 60 .

n log n
Thus,
(31) M= Sla, < S0+ S (2 (14a),
j=o n(log n) & n log

where we have written 7,,<0, (k=1,2, ..., n—1), §,—0. Hence,

(32) i< AL+8)2

n—= +e €n
n(log n)? n log n( )

Condition (26) now holds with p'*>>2. We have therefore arrived at
the following result:

THEOREM 4. The Newton-Cotes quadrature scheme converges uniform-
ly in L(%,) whenever p>>4.

Investigation of the convergence of the Newton-Cotes quadrature
scheme has an interesting history which is worth retelling here. T.
Stieltjes in 1884 first proved the convergence of the Gauss mechanical
quadrature for the class of Riemann integrable functions, and in a let-
ter to Hermite raised the question of the convergence of the Newton-
Cotes scheme. In 1925 J. Ouspensky [3] arrived at the asymptotic
result (29), and from the growth of Cotes numbers concluded only
that the Newton-Cotes scheme is devoid of practical value. In 1933
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G. Pélya [4] showed that this scheme is not valid for all continuous
functions, and, indeed, is not valid for the class of analytic functions.
Pélya’s counterexample, referred to the interval [—1, +1] is

23 S g sin k! {(w+1)/2} 1/2< a < 1),

(33) Slw)= ,Zi cos = {(w+1)/2) (12<a<1)

for which the Newton-Cotes scheme diverges. The functions f(w) is
regular in the strip

(34) |7 ()<~ 21"“

and has a natural boundary along the sides of the strip. The widest
such strip must be less than

2lo_g2

[ ()< 0.4412.

The function (83) cannot, therefore, be continued analytically to &,=4,
for which the semiminor axis is 5=.7500. Theorem 4, therefore, re-
habilitates the Newton-Cotes quadrature scheme for functions which
are regular over a sufficiently large portion of the complex plane.
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ON CLOSED DIFFERENTIABLE CURVES OF ORDER
n IN #-SPACE

DoucLAs DERRY

1. Introduction. Let C, be a closed curve in real projective n-
space S, whose coordinates x, (1<{i<n+1) are given in the parametric
form

z=wxs), 1<i<n+1, ¢<s<lqg+1,

where z,(s) are real continuous periodic functions of period 1, and ¢
is any real number. The point with coordinates z;(s) (1<i<n+1) will
be designated by its defining number s.

The curve C, is to satisfy the following order condition.
No hyperplane of S, contains more than n peints of C,.

A simple consequence of the above condition is that any k+1
(0<<k<n) distinct curve points s;,, s, ,-++, 8., Span a linear k-subspace
[81, 82+**, Sew1]. (The square-bracket symbol [A4, B, ---] will be used
throughout to designate the linear subspace spanned by the sets A4,
B, -

The curve C, is to satisfy the following differentiability condition.

For each point s of C, and for each integer k (0<k<n-1) a linear
k-subspace (k, s), known as the osculating k-space at s, exists for which
(81, 8, *** , Sps1] converges to (k, 8) as 8, 8,, *=+, 8.1 all approach s in
any way whatsoever.

The curves C; were considered by A. Kneser [2] who studied pro-
perties which are invariant to certain continuous displacements. One
of his results is that the set of planes of the projective space each of
which contains exactly & (k=1 or 3) points of a C; builds a connected
set. In the present paper the methods used by Kneser are adapted
to study the properties of the curves C,. All the proofs make use of
those lines / each point of which is included in = distinet (n—1, s).
Thus the paper is, in a sense, a study of this line system. Among

Received August 25, 1952, and in revised form March 2, 1954.
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the results is a generalization of the foregoing Kneser result to n
dimensions. This in turn leads to the result that those hyperplanes
which contain less than z points of C, are exactly those hyperplanes
which contain at least one line /. This result is related to a result,
implicit in a paper of Scherk [4], which states that the above hyper-
planes are exactly those hyperplanes which contain certain limiting
positions of the lines /.

2. Multiplicities. As all the critical boundary cases involve multi-
ple intersection points, these points will have special importance. In
this section we record the definition for multiplicity and note some
known results which we shall use.

DEFINITION 1. A linear subspace Q is defined to intersect C, ex-
actly k-fold (0<k<n-—1) at s if (k—1, 9)=Q, (k, $)£EQ, and n-fold if
(n—1, s)=Q.

A point P is defined to be included in (n—1, s) exactly k-fold
O0<k<n-1) if Pe(n—k, s), P¢(n—k—1, s), and n-fold if P=(0, s).

The following multiplicity convention will be assumed throughout.
Let s, 8;,+-+, 8, be any point system, and let s, occur k;-times (1=<¢<j)
in this system. A linear .subspace @ is said to contain this system
provided (k,—1, s)S@ (1<3<{j). A point P is said to be included in-
the system (n—1, s), (n—1, s), -+, (n—1, s;) provided Pe (n—Fk; s)
(1=<i<j). Unless otherwise stated the points of any given set are not.
necessarily all distinet.

For reference we state the easily proved:

LemMA 1. For n=>2, the projection of C, from one of ils curve
points 8’ is a C,_,.. The space (k, 8), s==s', 0<k<n—2, projects into
the space (k, s) of the projected C,_, and the space (k, s'), 1<k<n-1,
into the space (k—1, s') of C,.

By use of Lemma 1, it can be proved by induction that C, satis-
fies the sharpened order condition, that no hyperplane cuts C, in more
than n curve points where multiple intersections are now counted with
their proper multiplicity. This leads to the fact that the system s,
Sy, o+ s 8pa1 (0<Ck<m—1) is included in a unique %k-space which we de-
signate by [s;, s **+, St.1]. We note without proof that C, satisfies
the sharpened differentiability condition that [s,,s,, -+, s.,,] converges
to (%, s) as s, 8, +=+, Sy all approach s.

Use will be made of the duality theorem of Scherk [3] which
states that all the (n—1, s) build the dual of a C,. This implies that
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no point P is contained within more than » (n—1, s) and also that the
intersection of (n—1, ), (n—1, 8), -+, (n—1, 8) (1<k<n) approaches

(n—k, s) as s, s,, -+, s, all approach s in any way whatsoever.

3. Notation. Throughout the paper the symbols [, I* will be
tacitly assumed to represent lines each of the points of which is with-
in n distinet (n—1, s) of a given C,; L, L* will be assumed to represent
the (n-—2)-spaces with the property that every hyperplane through
such a space cuts C, in n distinet points.

Where a proof involves both C, and C,_; the symbol (&, s),., will
be used to designate the osculating k-space of the curve C,_,.

4. A construction for the lines [.

THEOREM 1. If, for n=>2, A and B are any two distinct points of
a given line [, then curve points s;, i, of C, ewxist so that Ae (n—1, s),
Be{n—1,1%) (1<i<n) and 8,<4,<8y< +++<8,<t,< 81 +1 (=8n41)-

Conversely if A and B are points for which Ae (n—1, s), Be(n—
1, ), 8<6<{8<tp<l-<8,<t,<l8i+1 (=8,..), then AB is a line .

PROOF. Let P(s) be the intersection [((r—1, s). Note that I
(rn—1, s); for otherwise [ would contain a point of (n—2, s), which
point would be within (n—1, s) at least twice contrary to the defini-
tion of {. Therefore P(s) is defined uniquely for all s. As s moves
continuously on C, in a fixed direction, P(s) moves continuously on !
because (n—1, s) is continuous. Also, P(s) moves continuously in a
fixed direction; for if P(s) were to experience a reversal of direction
at P(s;) then, in every curve neighborhood of s, points s;, s, would
exist so that s,<s;<lsp, P(s))=P(sz). Then, as P(s) is continuous,

P(sy) e lim (n—1, spnn—1, sg)=("n—-2, s

87,—>80, SR—>8
and / would contain a point not in % distinet (n-1, s) contrary to the
hypothesis. Let (n—1, s;) (1<{¢<n; $,<8,<+-+<8,<81+1 (=8,,,)) be the
complete set of (n—1, s) which contain A. As s increases continuously
from s, to s,, P(s) makes one complete circuit of ! in a fixed direction.
Consequently it crosses the point B exactly once. Hence ¢, exists on
C, so that Be (n—1, t) (s,<t,<(s,). Likewise within each arc s,<s<C
8301 (2<<i<{m), a point ¢; exists on C, so that s<t,;<ls;.,, Be(n—1, t).
Thus the theorem is proved.

To prove the converse, let C be any interior point of one of the
segments AB of the line through A and B, and D any interior point
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of the other segment. As P(s) is continuous and
P(s;)=A, P(,)=B,

at least one solution P(s)=C, or P(s)=D must exist for which s<(s<
t,. Likewise each of the 2n arcs s,<7s<t;, t;<(s<(s;y, (1<4<<n) contains
at least one solution P(s)=C or P(s)=D. But as C is contained in at
most n (n—1, s) there must be exactly n solutions P(s)=C. As these
are all distinet and C is arbitrary, AB is a line /. The proof is now

complete.

This proof of the converse, due to Dr. P. Scherk, replaces a more
complicated one of my own. I should like to take the opportunity to
thank him for many helpful suggestions which have contributed to
the readability of the paper.

5. Hyperplanes with a given number of curve points.

LEMMA 2. If, for n=3, C,_, is the projection of C, from one of
its points s, then a line | of C, is projected into a line I of C,_,.

This is proved in [1].

LEMMA 3. For nZ>>3, the projection of a C, from a line l is @
Cres .

Proor. No hyperplane through [ ean cut C, in more than n—2
points. This is true for n=2 as it is equivalent to the fact that a
line [ of C, cannot contain any curve points. Assume the assertion
is true for C,., (r>>2). Let H be a hyperplane which contains [.
The result is clear if H contains no points of C,. Let s be a point of
C, within H. Project from s. Then C, is projected into a C,.; by
Lemma 1, and [ into a line ! of C,_,, by Lemma 2, which is within

the projection H of H. By the induction assumption H contains at
most #—38 points of C,_,. Therefore H, which contains the points C, into
which these are projected together with s contains at most n—2 points
of C,.

The space of all 2-spaces through [/ is an (n—2)-space S,., whose
hyperplanes are the hyperplanes of the original space which contain /.
The elements [/, s] of S,_, build a curve C, and C has order n—2 by
the result of the previous paragraph. This implies

[0, s'J<[l, s'']  if s'=s'’.
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Thus there is a one-to-one correspondence between the points of C,
and those of C. Where 0<k<n—2, let

[l’ Sl]v [l) 82]’ M) [lr slc+]]

be given curve points of C. Because of the order condition these
points span a (k+2)-space @ which contains I. If s, s;, «+-, Siy all
approach s, then @Q—[l, (k, s)] because of the differentiability condi-
tion. Thus the set of elements [/, s] of S,_, is a C,_, with osculat-
ing k-spaces [I, (k, s)]. As this set is equivalent to the projection of
C, from [, the lemma is established.

Most induction proofs for the curves C, make use of Lemma 1; in
the following proof Lemma 3 is used for this purpose.

THEOREM 2. Where 0<k<n, k=n (mod 2), let s;, 8;, -+, 8;; &1, t,,
oo, b, be any points of C.,; then:

(a) If, for n=1, H,, H, be hyperplanes which contain s, S,, +=+, Sy ;
by, by oo, ty Tespectively, and no additional points of C,, then hyperplanes
H(p) (0<p<1) ewist, continuously dependent on p, each of which contains
exactly k points of C, and for which H(0)=H, H(1)=H,;

(o) If s;=t, (1<<i<k), then H(p) can be chosen so that it contains

(e) if n=2, 0<k<n—2, for a given line l, a hyperplane H' exists
so that 1t contains exactly the points s, S, +--, Sy, together with the
line [.

Proor. We first prove (c). If n=2 then k=0 and the result is
equivalent to the fact that H'=I[ does not cut C,. Assume the result for
for all curves C,_, (n>>2). Project from [. Thus C, is projected into
a C,_,, by Lemma 8, and s, S, +--, s, into points of C,_, with the
same numerical coordinates. If k=n—2, a unique hyperplane

H/:[Slr Sz 5 000, sk]

exists in the projected (n—2)-space through these points. If k<n—2,
then by the induction assumption a hyperplane H’ exists in the pro-
jected space which contains exactly the points s, s, -+, 8 of C,.,.

Consequently, if H* is defined to be the hyperplane of the original
" space which is projected into H’, this hyperplane contains exactly the
points s;, 8, *++, 8, of C,. As IS H', (c) is proved for C,. The proof
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can now be completed by induection.

To prove (a) and (b), consider first the case k=0. With this re-
striction neither H, nor H, contains points of C,. As the curve is
connected, it lies entirely within one of the two open regions of the
projective space whose boundary is the set of points of H; and H,.
Hence an affine coordinate system exists so that the equations of H,,
H, are x,=0, x,—=1, respectively, and C, contains no points for which
0<z,<1. Now (a) and (b) follow for k=0 if H(p) is defined to be the
hyperplane with the equation z,=p, 0<p<1.

Now let k=n; (b) is trivial in this case. Let fi(p) (0<p<l1, 1<
1<n) be any real-valued continuous functions for which f,(0)=s,, f.(1)
=t;. Then (a) follows if H(p) is defined to be the hyperplane spanned
by the points with coordinates f;(p) (1<i<m).

In particular this establishes (a) and (b) for C; and C,. Assume
both results for all C,.; (n>2). We may assume 0<k<n—2. Let [
be arbitrary. By (c), hyperplanes Hi, H. exist which contain exactly
the points s, s,, =+, 84 &, &5 =~ , £y, respectively, together with the

line . Let H,, H!, C,_, be the projections of H,, H!, C,, respectively,

from s;. By the induction assumption (b), hyperplanes H(p) (0<p=<1)
exist in the projected space, continuously dependent on p, each of
which contains exactly the points s, ---, s, of C,_;, and for which

Let H(p) (0<p<(1/3)) be the hyperplane of the original space which is

projected into H(3p). Then H(p) depends continuously on p, contains
exactly the points s, 8, -+-, s, of C,, and H(0)=H,, H(1/3)=H!. Like-
wise H(p) ((2/3)<p<1) exists so that it depends continuously on p,
contains exactly the points ¢,, ¢, -+, ¢, of C,, and for which

H©/3)=H!, H(l)=H,.

After a projection from I/, a similar argument can be used to con-

on p, contains exactly & points of C,, and for which
H(1/3)=H!, H(2/3)=H}.

This proves (a) for C,. Also (b) is clear if H(p) is defined as above
with the additional conditions that

Hi=H:;=H(p) ((1/3)=p=(2/3)).

The proof can now be completed by induction.
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6. Hyperplanes which do not contain 7 points of C, .
DEFINITION 2. 3(C,) is the set of all points included in at least
one space L of the curve C, (cf. §3).

LEMMA 4. If, for n=3, Pe SYC,..), where P is the projection of
a point P from a point s’ of C,, P=<s', and C,., that of C,, then
Pe S(C).

Proof. ]f_lse SUC,_1), then points 8y, Sy ++oy Spoy; iy Loy ooe s tyy Of
the projection C,_, exist so that

Pelsy, Sy Sui]lltss toy oor ) to]=L
and .
81 <6 <8p< oo <Ly <lSi + 1,
by the dual of Theorem 1. Moreover,
[S1, Sar == s Sucily [E1) tas oor s tuosl

may be chosen to be any two distinct hyperplanes through L within
the projected (n—1)-space. Therefore these hyperplanes may be
chosen so that ¢,.,<s'<(s;+1. Let the numbers

S1y 82y ***y Sp-1s th tz; ttty tn—l’ s’

now represent points of C,. Then Pe[t, &, -, t.y, 8']. As &, £,

e, b1, 8" are represented by linearly independent vectors the inter-
section

i=n—1

11 [tly by ooe s by ti+]y °tty tn-—l’ S’]:Sl'

4=l
Hence, because P=<s’, at least one value ¢ exists with
Pélty, toy ooy bty Ligny w00y baery 871 (1<6<n—1).
For such a value ¢
[ty oy oo0 s Cimty Py Eigay ooy Eumyy 8']=[t1, by oe, Epe, ']
Let ¢, be a point of C, with ¢,>s’. Then
[ty tay ooy tics, Py iy o0y tusy bl

approaches [t,, &, «--, t,_1, '] as £, approaches s’. Because of the con-
tinuity of the curve points of C,, [t, &, -+, &1, P, i, =+, t.] will
contain a point ¢; of C, for which s,<¢t<(s,;,, provided ¢, is sufficiently
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close to s’. If t, is such a point, and s, is defined as s’, then

Pe [817 Sgy o0y sn]m[tly tz; crty ti—ly t;; ti+1! ety tn]
and
81 < <8<+ <8, <Hi <88l <81 + 1.

It follows from the dual of Theorem 1 and Definition 2 that Pe >(C,).
The lemma is thus established.

COROLLARY. If, for n=8, P is a point for which Pel(k, s), S
(8128, 0<k<n—3, P=<s)) Pé(k, s), then Pe > (C,).

Proor. If n=3 then Pe[s,, s,] (si=<8,, P=<s;, P=<s,). Let ¢, t, be
points of C; for which s,<7t,<s,<t,<(s;+1. Then P¢[t, t,]; for other-
wise &, &, s;, s, would be coplanar in contradiction to the order con-
dition. Hence [P, t,, t,] is a plane. This plane must contain a third
point ¢ of Ci, as C; is closed. Now P=><t because [s,, s,] cannot contain

a third curve point. If P is the projection of P from ¢ then

Fe [81, Sz]ﬂ[tl’ tZ]!

where s, s, £, t, now represent curve points of the projection C, of

C; from ¢. This implies, by the dual of Theorem 1, that Pe 3(C,),
and so by the Lemma that Pe 3(C;). Thus the corollary is true for
n=3. Assume it to be true for all C,_,, n>>8. The result for C, then
follows from the Lemma by a projection from s, if the least possible
ft=n—8 and otherwise by a projection from a point of C, different
from s, and s, .

LEMMA b. (a) For n=>2, 3(C,) ts open. (b) If a boundary point
P of SACy) is approached by a sequence P* of points interior to >.(Ch),
and L is the limit of a space sequence L* for which P*e L*, then (k, s)
(0<k<n—2) exists for which Pe (k, s)=L.

Proor. If Pe 3(C,) then a space L exists for which Pe L. By
the dual of Theorem 1, s, s,, s, 8, ; &y, &, *++, t, €xXist so that

Lg[su Sy y 00y sn]n[th t‘ls cey tn] and sl<tl<sz<"'<tn<sl+ 1'

If P’ is sufficiently close to P then it is contained within an (n—2)-
space L’ which is so close to L that it has the form

(81, 82 oo+ Sl o oo sti] (SI<<B<T8i<loe<Eelsi+ D).
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By the dual of Theorem 1, P'e 3(C,), and so (a) is proved.

To prove (b), let H¥, H be any two hyperplane sequences with
L*< HY, I#<HY which converge to two distinct limits H, and H,, re-
spectively. By the dual of Theorem 1, s¥, s, ..., s¥ ¢¥, t&, -, th exist
so that si<{tt<lsf<leee<th<sf+1 and

Hy=[st, sy, -+, st], Hy=[tr, ty, -, th].

As Hy, HY converge, the sequences s¥, t* (1<t<n) also converge. If
s;, t, are the respective limits of these sequences,

L=[sy, 83, +*+, 8,]O[t1s Loy =+, t.} and 8,<t,<{8,<...<t,<s, +1.

At least one equality sign must oceur in this system, for other-

wise Pe L and so Pe 3(C,); this is impossible as P is a boundary
point of the open set 33(C,). We may suppose, after a possible adjust-

ment in the notation, s,—=¢. Hence s,eL. If n=2 this proves the
Lemma, as

P=L=5=(0, s,).
Assume it holds for all curves C,_,, n>>2. If P=s, then it is already
true for C,. If P=<s, project from s,. Let C,_, be the projection of
C, and P’ that of P. Then P¢3Y(C,.,), for otherwise, by Lemma 4,
Pe 3(C,). Moreover,
Pe [82s 835 ¢+, Sul\[E2y &y *o+ t,,]::]T’
and this space is approached by the system

[S;, 8{’;’ A S#]ﬂ[té", t‘;; *tt t;]’

where all the numbers now represent points of C,.,. Thus P’ is a
boundary point of 3(C,.;). Therefore by the induction assumption
(k, 8),-; exists so that

P—l € (k’ S)n—lgj—/— (nggn—&.

Consequently, Pe[s;,, (k, s)J=L. Because P><s, it now follows from

the Corollary to Lemma 4 that Pe(k, s), or s=s, and Pe(k+1, s).
Either of these possibilities shows the lemma to be true and so the
proof is complete.

LEMMA 6. If, for n=3, I* is a sequence which converges to I, and

p an integer for which 1<(p, s), l&(p—1, s) (0<p<n—1) then [I* (g,
9]>@+2, 5) (p—1<g<n—3).
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Proor. The space [I*, (¢, s)] is a (¢+2)-space because g<mn—1
while [* and (¢, s) have no common points. Consider first the case
for which g=n-—38,p=n—2. If the lemma were false then a conver-
gent subsequence of [{*, (n—38, s)] would exist whose limit would be

a hyperplane @ for which Q<(n—1, s). As I*—{,
[lr, (9’1,—3, S)]=(7’L——2, S)S.;Q

Consequently @ would cut C, in s at least (n—1)-fold. As C, is closed,
Q@ would cut C, in one additional point s’, and s'=<s as Q=<(n—1, s).
Hence, if [ is sufficiently close to I, [I*, (n—3, s)] would cut C, in
a point s’ so close to s’ that s’’=<s. Therefore the hyperplane [I*,
(n—38, s)] would cut C, in more than n—2 points in contradiction to
Lemma 3. Thus [I*, (»n—38, s)] must approach (n—1, s), and the lemma
is proved in this ease. In particular, it is completely proved for
n=3. Assume it is established for all C,_,, »n>3.

Consider next the case for which ¢g<n—3. Project from any point
t of C, different from s. As t&(p, s), [ is projected into a line 7,
and [* is projected into a line I’* defined for the projection C,_, of
C, by Lemma 2, Clearly

Z’g(p9 S)n-—-l and Z/E(}%—l, S)n—l .

for otherwise

lg[(p"lv S)r t]n(py 3)=(p—1’ S).

Therefore, by the induction assumption, [I'*, (¢, 8).i]—(@+2, 8)p_1-
This implies [I*, (g, s), t]—[(¢+2, s), t], and, because t is arbitrary,
that [I*, (g, s)]—(¢+2, s). Thus the lemma is proved in this case.

Finally let ¢=n—38, p<n-2. 1f [I*, (n—3, s)}] does not converge
to (r—1, s) this set contains a convergent subsequence with limit @,
Q=><(n—1, s). Now 1<p<n—2, and so n>4. Hence by the result of
the previous paragraph [I*, (n—4, s)]—>(n—2, s). Consequently (n—2,
s)=@. This leads to the contradiction encountered in the first para-
graph. Thus [I*, (n—38, s)]>(n—1, s), and the lemma is proved for
C,. The proof can now be completed by induction.

DEFINITION 8. o(C,) is the set of all hyperplanes each of which
~contains at least one line ! of the curve C,.

a(C,) is the dual of the space >\(C,).

THEOREM 3. For n=>2, o(C,) consists of all the -hyperplanes which
do not contain n. points of C,.

Proor. By Lemma 3 each member of o(C,) contains less than =
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points of C,. It remains to show that every hyperplane which con-
tains less than % points of €, contains at least one line [. Let H be
a hyperplane and s, s,,---, s, be the points of C, contained in H,
where 0<i<n. As C, is closed, A=n (mod 2). By Theorem 2 (c),
for a given line /, a hyperplane H' exists which contains [/ and ex-
actly the points s,, s,, .-, s, of C,. By Theorem 2 (b), a system H(p)
(0<p<1) of hyperplanes exists, continuously dependent on p, each of
which contains exactly the points s,, s,, -+, s, of C, and for which

H(0)=H!, Hl)=H.

By Definition 8, H(0) € 6(C,). Assume Hé¢os(C,). By the dual of Lem-
ma 5 (a), o(C,) is open. Therefore a least value p of p exists for
which H(p)4s(C,). Let p* be a sequence for which p*—p, p*<p. As
H(p*) e 6(C,), I* exists for which *SH(p*). By replacing p* by an
appropriate subsequence if necessary we may assume [* converges. If
I be the limit of [* then, by the dual of Lemma 5 (b), (k, s) exists
so that

ISk, )SHP)  (A<k<n-1).

We may assume (k+1, s)¢ H(p); for otherwise (k, s) may be replaced
by an osculating space of a greater dimension so that this relation
holds. Consequently s occurs exactly (k+1)-fold in the set s, s, ++, Sy,
and k+1<h<n—2. This is impossible if 2<1 in which case He s(C,).
In particular this proves the theorem for 2<3. We assume therefore

n>3. As k<n—38 and I<(k, s), the number ¢ of Lemma 6 may be
specialized to k. It follows then from this Lemma that (¥, (k, s)]—
(k+2, s). Hence, as [I*, (k, s)I=H(p*), (k+2, s)SH(p). This con-
tradicts the fact that s, s, ---, s, are the only points of C, in H(p)
among which s occurs exactly (k+1)-fold. Therefore Heo(C,). Thus
the theorem is established.

7. A characterization of the lines L.

THEOREM 4. For n>2, a straight line is a line | iof, and only if,
every hyperplane through [ contains less than n points of C,.

Proor. Let m be a straight line which is not a line /. Then at
least one point P exists on m which is not within » distinet (n—1, s).
A sequence of points P* exists with P*—P for which each P*is within
less than n (n—1, s). (This can be conveniently proved by induction
in the dual formulation.) 1f A is a point of m for which A=<P then
[4, P*]>m. By the dual of Theorem 3, L* (cf. §3) exists for which
P+e L. Now [A, L*] contains [A4, P*] and also n points of C, by the
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definition of L*. The limit of a convergent subsequence of [4, L*] is
a hyperplane which contains m together with n points of C,. This
proves that if every hyperplane through a straight line contains less
than n points of C, then every point of the straight line is within =
distinet (n—1, s) and so must be a line /.

No hyperplane through a line [ can contain n points of C, by
Lemma 3. Thus the proof of the theorem is complete.
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BOOLEAN ALGEBRAS WITH PATHOLOGICAL
ORDER 1OPOLOGIES

E. E. FLoYD

If L is a partially ordered set, there are a variety of known ways
in which L may be given a topology compatible, in some sense, with
its partial ordering (see [1, 6]). Examples, by Northam [3] and Floyd
and Klee [2], have very recently appeared of complete lattices which
are not Hausdorff in their order topologies. It appears, then, that the
various topologies will not be central in the study of all complete lat-
tices. The question remains as to whether or not there is some wide
and natural class of lattices in which some compatible topology has
nice properties. We give a very simple example of a complete Boolean
algebra which is not Hausdorff in any topology compatible with the
order. We also give an example of a conditionally complete vector
lattice in which addition is not continuous in any compatible topology.
This is a counterexample to a result of Birkhoff [1, p. 242}, who over-
looked the possibility that convergence in the order topology differs
from order convergence.

DEFINITION. Suppose that (P, =) is a partially ordered set, and
suppose that 7' is a topology for the set P (that is, 7' is a collection of
subsets of P closed under arbitrary unions and finite intersections, and
with ¢ € T, PeT). We say that T is o-compatible with > if and only
if whenever (x;) is a sequence in P with

=X, - - - and /\xi=x

or

0 <a,<--- and \/ x=2,
then the sequence (x;) T-converges to z.

THEOREM 1. Let L denote the complete Boolean algebra of all regular
open subsets of the unit interval I, partially ordered by inclusion .
Suppose that T is a topology for L which is o-compatible with >>. Then
the topology T is not Hausdorff.

Proof. Recall that a subset & of I is a regular open set if and
only if b is the interior of its closure. L is known to be a complete

Réceivéd January 11, 1954. This research was supported by National Science Foun-
dation Grant, NSF-G358.
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Boolean algebra [1]. Let % be a T-neighbourhood of the empty set
pe L. We show that Te 7. Suppose that U,, U,, ---, is a basis for
the open sets of 1, with each U, nonempty. There exists for each ¢ a
sequence (A4i|j=1,2,...) in L with

;C Ui, Ajﬁq(.b’
so that Ai->A>> ... and
/\(A}lj‘———l, 2’ e )=¢'

Since (Al) converges to ¢, there exists Ale 7. Define Bi=A4;. Since
the sequence (B;\/A4!) converges to B,, there exists j with B,\/Aje % .
Define B,=B,\/A% Similarly there exists B;=B,\/Aje %/,---. Now
(B) is a sequence in 7 with B,<B,< ---. Moreover, since the only
regular open set containing \UB,; is I, we have \/;B,=1. Hence I¢ 74
and the theorem follows.

The following remark answers Problem 77 of Birkhoff [1, p. 167].

THEOREM 2. If L is the complete Boolean algebra of Theorem 1,
then there ewist, for i=1,2 - .., sequences (X,;li=1,2,:-+) with (X5
order-converging to ¢ for each i but such that for no function j(i) is it
true that (X, i) order-converges to ¢.

Proof. Let (X, ;) denote the sequence (Aj) of the proof of Theorem 1.
Consider any function j(¢), then

\/Ag(;)zl .
izk
Hence
AN Ajp=1I .
kE >k
Hence the sequence (X, ;) does not order-converge to ¢.

THEOREM 3. Let L be the complete Boolean algebra of Theorem 1,
and let M be a Stone representation space for L. Let N denote the lat-
tice of all continuous real-valued functions on M. Then N is a condition-
ally complete vector lattice in which the function x—y is not T-continuous
simultaneously in x and y for any T\-topology T for N which s o-com-
patible with .

Proof. It is known [4, 7] that N is conditionally complete. We
may consider L as identical with the algebra of all open and closed
subsets of M. There is a function ¢; L-—N which assigns to w e L the
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characteristic function t(u) of the open and closed set u. We show
that ¢ is an embedding of L in N. It is seen that ¢ is an isotone one-
to-one map of L onto ¢(L), and ¢! is an isotone map of #(L) on L. We
prove that if K<L then

ViK)=t(VK) ,
where \/#(K) denotes the least upper bound in N. Clearly
t\VEK)=\/UK) .

Now \/¢(K) is a nonnegative continuous function whose value is >1
on the set \JK, and hence >>1 also on its closure. But the closure of
UK is \/K [7]. Hence

t(VK)<<\VUK)

and equality holds. The dual also follows. So ¢ embeds L in N. It
follows that #(L) is not Hausdorff in the topology T restricted to ¢(L).
Hence N is not Hausdorff in the topology 7. But if #—y is T-continu-
ous in « and ¥, it is known that N is then regular [5, p. 54] and hence
Hausdorft.

COROLLARY. Suppose, in addition to the hypotheses of Theorem 3,
that the function y— —y on N is T-continuous. Then x-+y is not T-
continuous in x and y simultaneously.

This answers, in the negative, a part of Problem 4 of Rennie

[6, p. b1].
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ASYMPTOTIC LOWER BOUNDS FOR THE
FUNDAMENTAL FREQUENCY OF
CONVEX MEMBRANES

GEORGE E. FORSYTHE

1. Introduction. Let the bounded, simply connected, open region
R of the (@, y)-plane have the boundary curve C. If a uniform ideal
elastic membrane of unit density is uniformly stretched upon C with
unit tension across each unit length, then 4, the square of the funda-
mental frequency, satisfies the conditions (subscripts denote differentia-
tion)

(1a) du=uypy+u,=—u In R,

J=minimum ,
with the boundary condition
(1b) u(z, y)=0 on C.

Variational methods of the Rayleigh-Ritz type are frequently used
to approximate 1. They always yield upper bounds for 2, and the up-
per bounds can be made arbitrarily close.

Another common practical method of approximating 1 is to calculate
the least eigenvalue 1, of a suitably chosen finite-difference operator
4, over a network with small mesh width 2. For one choice of 4, it
was shown by Courant, Friedrichs, and Lewy [3, p. 57] without details
that 4,—41 as 2—0. For convex regions R of a special polygonal form
the author has shown [4] that a special case of (11) below is valid for
a common choice of 4,, and hence that 2, is asymptotically a lower
bound for 2 as 2—0. For an unusual finite-difference approximation to
problem (1) when R is the union of squares of the network, Polya [12]
has found that 2,>>1 for all %, and also for the higher eigenvalues.
The author knows of no other study of the sign or order of decrease
of 1—4, to 0.

In the present paper the investigation of [4] is extended to a much
wider class of regions: those with piecewise analytic boundary curves
and convex corners. The new theorems are stated and proved in §§ 3
and 4. Theorem 2 contains the theorem of [4] as a special case.
Lemmas used in the proof of Theorem 1 are given in § 5. Identity
(31) of Lemma 7 is interesting in itself.

Received December 2, 1953. Presented to the American Mathematical Society Sep-
tember 4, 1953. The preparation of this paper was sponsored in part by the Office of
Naval Research, U.S.N.
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When C is no longer made up of line segments of the network, it
is necessary when using finite-difference methods either to move C or
to alter 4, near the boundary. The latter procedure is potentially
more accurate, and has been adopted in deriving the rather delicate
results proved below. The definition of 4, given in § 2 is a self-adjoint
modification of Mikeladze’s approximation [10; 11], and is believed to
be new. The cruder approximations to 4 near C proposed by Collatz
in 1933 and expounded in [2, p. 857], while easier to compute in prac-
tice, appear to introduce an unmanageable term O(4*) into (19). It is
therefore doubted that Theorem 2 would remain valid for these cruder
operators.

The technique of the present paper could be applied to study the
asymptotic behavior of 2, also for other difference approximations to 4
in the interior of R—for example, for those associated with a triangular
net [2, p. 367].

It is not clear that one could revise the argument of the paper to
prove an inequality of the type

j <1+bh+o(h?) .

h

2. Definitions. Assume the bounded, simply connected, open region
R to have a closed boundary curve C: x(s)+y(s) (0<s<s,) which is
piecewise analytic. That is, x(s) and y(s) are real analytic functions of
the arc length s of C in each of a finite number m of closed intervals

OZSOS—SSSU Slgsgszv * Sm—IS;SgSm N

Moreover, we demand that the corners of C be convex; that is, at any
point x(s;)+4y(s;) (04 <m) where distinct analytic curves meet, the
interior angle of C must be less than =z.

For 2>0, let a net consist of the lines a=ph, y=1A (1, v=0, +1,
+2, - ..). The points (¢, vh) in R are the interior nodes R, of the
net. The boundary nodes C, of the net consist of (i) all points (ph, vh)
on C, and (ii) all 4solated points of intersection of the net with C.
Thus each node (p#, vh) of R, has two neighboring nodes in R,\JC,
on the line #=ph, and two in R,\JC, on the line y=vi. Moreover,
each node in C, has at least one neighbor in R,\/C,.

We now move toward a definition of the difference operator 4,.
Let.us denote the neighboring nodes of the node

(2) (SC, y) Of Rh, by (x"‘hl! y)r ($+h2, 2/), (Cl), y'—h's)’ and (xy y+k4)’

where 0<2,<h for i=1, 2, 3, 4. For nodes remote from C,, all h,=h.
Let v be any net function defined on the nodes of R,\/C, vanishing
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on C,. Define D{”v as the (constant) second derivative of the quadratic
polynomial function of x assuming the three values v(x—£h,, v), v(x, v),
and v(z+ A, y). That is,

(3)  D®u(x, y)— 2 [?’(“hm Y=o, y) _ vz, y)—v@—1, y)]_
) N /R

Also, D{v(x, y) is defined analogously. We next define

AMp(z, y)=DPv(x, y)+ DPv(z, y)

2 2
= — + )
(4) o) 9
2
+ '——}L, Y)+ +h2y
I i) V(@ —hy, Y) b 1) v(x Y)
v 2 w@y—h) 2 o, yrh) .
Ps(s + ) hy(h;+h,)

The operator 4% is the approximation to 4 recommended in [10].
It linearly transforms the net function v defined over R, into the net
funetion 4™y, also defined over R,. But 4™ is not a self-adjoint linear
operator ; that is, the matrix A® of the linear transformation of » in-
to 4™y is not symmetric.

We define the matrix A4, as the symmetric part of the matrix A™:

( 5 ) A/LZ%[A(”) s A(IL)T] ,

where T means transpose. Finally, we define 4, to be the self-adjoint
linear operator corresponding to A,.

The explicit expressions for 4, assume 16 different forms, depending
on the location of (x, y) with respect to C,. Although we shall not
need these expressions for the present paper, we describe them briefly.
If, in any of the four directions from (z, %), the neighboring node—say
(x—hy, y), for definiteness—is in R,, then 4,=#, and there is another
node (x—h—rn, y) in R\JC,. Then the term 2v(x—4h,, y)/h(h-+h,) of
(4) is to be replaced by

hy' +2h+h,

(' + W1y "E T V)

(6)

For any (z, y), the expression for 4, is obtained from (4) by making
replacements like (6) corresponding to all neighbors of (x, ¥) in R,.

When (x, y) is more than two nodes away from C,, so that all
h=h;=h, the values of both 4 and 4, reduce to the familiar form
used in [4]:
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(7))  dwl(z, y)y=4"v(z, y)
= @b, )+ 0@+, ) +0(@, y—h)+0(a, y+h) = oz, )]
Let 2, satisfy the following difference equation for a net function
v defined in R,\JC,:

(Sa) Ah/l)= —_ Z}b'v in R/L I
J,=minimum ,

where v is extended to satisfy the boundary condition
(8b) »=0 on C,.

It is readily shown that J, is the minimum over all net funections
v satisfying (8b) of the quotient

(This is simply the minimum principle for a definite quadratic form.)
By (5), we can write p,(v) in the following equivalent form, simpler to
use :

—h? S vd®y

( 9 ) ph(v)z"'”hz’”j;)fz"* .

The reason for not using the least eigenvalue p, of 4 in this
investigation is that p, does not have the foregoing minimum property
and, in fact, might turn out to be complex. On the other hand, it is
known [9, p. 27] that 2,<. (#,), so that when g, is real it could con-
ceivably be a better approximation to 2 than 1, is. The relative
magnitude of |1,—4| to |z, —4| is not known.

3. The results. The following new result will be proved in § 4:

THEOREM 1. Let R be a bounded, open, simply connected region
bounded by a piecewise analytic curve C whose corners are convex in the
sense of § 2. Let ¢ be the amgle between the tangent to C and the x
axis. Let u solve problem (1) for R, and let u, be the normal deriva-
tive of uw on C. Define A, as in § 2. Let

(U + i, )dawdy + Su,; sin® 2 de
(10) a=a(R)=-= Lo
12“(%2 +u,2)dady

R
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Then —oo<la<owo and, as h—0, one has

(11) ~§@$1—ah2+o(h2) (h—0) .

In Theorem 1 the quantity a can probably be negative for certain
nonconvex R, because dr in (10) will be negative at some points of C.
But if R is convex we get a stronger result, as an immediate con-
sequence of Theorem 1.

THEOREM 2. Under the hypotheses of Theorem 1, if R is also convex,
then 0<a<co, and there exists hy>0 such that 4,4 for all h<lh,.

For the operator 4, of § 2 the methods of [3] can undoubtedly be
followed to show that 1,—1 as 2—0; the author has not attempted to
carry through the details. When 1,—21 as 2—0, the lower bounds #,
can be made arbitrarily close by choice of %, sufficiently small. Thus
for these R the Rayleigh-Ritz methods and the finite-difference methods
(8) are theoretically complementary, and together could confine 1 to an
arbitrarily short interval if one knew an upper bound for 4.

The author has not developed an upper bound for %, in Theorem 2,
although it would be desirable to do so by estimating the term o(%?).
One could always make an intelligent guess based on the behavior of
2, for certain A.

The constant a of (10) is the best possible for certain rectangular
regions; see [4]. That the corners of C be convex seems essential to
the validity of Theorem 1. Indeed, for one nonconvex polygon some heuris-
tics and an experiment mentioned in [4] make it appear that 2,=i+
AR+ o(h*?), where A>0. It would be interesting to know the sign
of a for the general case of Theorem 1, or in particular when C is a
nonconvex analytic curve.

Corners of angle n are frequent in engineering practice, and it
would be desirable to know how 1, behaves when R has such corners.
For such corners Lemma 2 is no longer valid. Lewy [7] provides new
tools for an attack on corners of angle .

4, Proof of Theorem 1. Let u henceforth be the solution of
problem (1) for the fundamental eigenvalue 2. It is known that

(12) ASSR wdedy= SSR (ul+u)dedy .

The proof of Theorem 1, following [4], consists in setting the
values of the function » at the nodes of R,\JC, into the Rayleigh
quotient (9) of problem (8). It will be shown that
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(13) R’ig@=1—ak2+o(k2) (h—0) .

Since 2,<{p,(u), the theorem follows from (13).
The denominator %* > u* of p,(x) differs from a Riemann sum for

SS wdxdy at most by the terms corresponding to squares or part-squares
. .

at the boundary C. The total contribution of these terms does not
exceed the order of magnitude LA max,u?, where L is the length of
C. Hence a fortiori

(14) Py ”ZZSS wdady+o(l)  (h—0).
R R

Let the nodes of R, be divided into three classes:

R} : those within a distance 2 of some corner of C;
(15) R2: those not in R, but within a distance 4 of C;
R}: the other nodes of R, .

Split the numerator of p,(u) accordingly :

— 5 S ud Py = é (—]f > uA(")u>-—_— }3; Si(u) .

Rh =1 Ighi

There are a fixed number of corners, not exceeding m, and at
most two nodes of R,' per corner. Moreover |pu(x, y)I'—0 as (x, y)—a
corner of C, by Lemma 1 in § 5. At any node (x, y) of R, with
neighbors denoted as in (2), we find from (3) that

R (w—0) i lu—u; |
\

h2lud™ u| <=5
min h,; i=1 ¢ ;

< 4k* max jpul? ,

where the u, are the values of u at the four neighbors of (z, y), and
where the maximum of |pu|* is taken over all points within a distance
2h of some vertex. Hence

(16) 1S3 ()| <8mh* max |pul*=o0(h?) (h—0) .
Using the notation and assertion of Lemma 3, we have
2 2 253 , .
(17) Sh (u)= —h Z udu—== Z u(ﬁmuwm+ 01/”1/1/@) .
R},,‘z 3 Rlbz
Since u satisfies (1a),

(18) B S udu= S\
2 RBy*

By (17), (18), and Lemma 4,
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ISy () = 4?35 w|<3h° 3 u([Ual + [Ul) =0(R?)  (R—0) .
RBy? Ry?
Thus

(19) S (w) = 1;‘ w+o(h?) (A—0) .

Similarly, using the notation and assertion of Lemma 5, and by
(1a), we have

(20) Sw) = S, uP— o S U+ Uy -
Rh.3 12 R/13
Now
(21) RS w=h Sk S ut =0 S ut+o(h?) ,
ha U Rh,:‘ Rh. R 11,1 Rlz,

since u(z, y)—0 as (z, y)—C, and since there are at most 2m vertices
in B}. Adding (19) and (20), and using (21), we find that

Si(u) + S, u) =2k 3 i — 1’; S U+ Uiy) + 0()
Rh 3

h

= S U — EH U(U gz + Uy ) B2y + ()
r 12J)J=

h

by Lemma 6. Adding S,'(u) to the above, and dividing by (14), we
find that

(22) B

o V|, Wt t) iy
=i o)

SS wdady
R

Finally, dividing (22) by 4, and applying Lemma 7 and (12), one proves
(13) and hence Theorem 1.

5. Some lemmas. The following lemmas are basic to the proof of
Theorem 1. In all of them R satisfies the conditions stated at the
start of § 2, while u=u(x, y) solves problem (1).

LeMMA 1. The function u is an analytic function of x and y in
R\JC, except possibly at the corners of C. Let r be the distance of (x, y)
from a corner P with interior angle nja, 1<<a< oo. Then for m=0, 1,
2, « - ., any partial derivative of w of order m has the local representation
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o"u w-m .
(23) oy ful@, y)  (p+r=m),
where f, 18 continuous at P.

Proof. By [1, p. 179], » is analytic in R. The representation
(27') below shows that the interior normal derivative u, is integrable
on C. Then the analyticity of # on C (corners excluded) was shown
by Hadamard [5, p. 25].

Let t=¢+4y and z=x+iy. For each teR let w=2(, ) map R
conformally onto the circle |w|<1, with @(¢ t)=0. We may assume
without loss of generality that P is at z=0, and that @(0, t)=1.
Lichtenstein [8, pp. 255-256 and footnote 273] showed* that for m=0,
1, 2,.-.., and ze R,

(24) 0@ 1) _ ey, (i, 1)
azm

where ¢, is continuous at z=0. It follows from (24) that

(25) o 1,0% i(z’ t) =2""d,(2, t) ,
Z

where ¢,, is continuous at z=0. Let G(z, t)=G(&, 7; z, y) be Green’s
function for 4w in R. Since

Gz, t)=—2n)" log | f (2, t)I ,
it follows from (25) that for m=0,1,2, ... and ze R,

(26) ?ﬁq_(z_;/_tﬁ),—_—q-“'mwm(z, t) (/l+ y=m) ,

where ¥,, is continuous at z=0.
Now the function » has the integral representation [1, pp. 182-183]

u(x, y)=XSSRG(x, y; & pu(é, p)dedy .
Hence

u(x+dx, y)—u(x, y)
&) s

1 The author wishes to thank Professor Lewy for this reference.

2 Lichtenstein actually asserts that (24) is without question true for all «, but that his
proof is valid only for irrational «. Warschawski [13] has found a simple proof of (24),
valid for all « in the range }<a<oo.

Added in April 1954: For asymptotic expansions of ¢ at a corner, see R. Sherman
Lehmann, “ Development of the mapping function at an analytic corner,” Technical Report
No. 21, Applied Mathematics and Statistics Laboratory, Stanford University, California,
March 31, 1954, 17 pp.
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2 S S Gt 4z, y; é}l:(i@_y_;ﬁj), u(€, 7)dédy
R T

215 S 85% (w404, y; & Pul, )dedy

where 0<0=0(x, y, 4x)< 1. Since G(z, t)=G(¢, z), it is clear that 0G/ox
=2G[o¢ and, as a function of ¢, 0G/ox behaves like [t—¢,]*' at any
corner ¢, of R, uniformly in z for z bounded away from C. Hence
(3G [ox)u(&, ») in (27) is dominated by an integrable funection of &, 7,
uniformly with respect to 4z. By Lebesgue’s convergence theorem,
letting 4x—0 in (27) proves that

@7 ou =x” G (@, ; & poue, pdsdy.
ox R O

Setting the expression (26) for m=g=1 into the last equation proves
the case m=pu=1 of (23).

In a similar way one can prove all the cases m=0, 1, 2, 3, 4 of
(23), and the lemma is established.

LEMMA 2. The functions k., Uleem Ulammms Uy Wyllyy, AONA U,,,, AT

Lebesgue integrable in R. The Lebesgue integrals S Ul Y and
¢

S UMy de  exist.

e}

Proof. By Lemma 1 the functions 2, - - -, uu,,, are continuous
in R\JC except possibly at the corners, where they are O(r**"*). Since
0<«, the first sentence follows. The second sentence is proved analo-
gously.

REMARK. The proof of Lemma 2 breaks down for corners of angle
7 (@¢—1), as r~* is not integrable.

LEMMA 3. At any node (z, y) of R, whose neighbors are denoted as
in (2), one has
APy = Ay + 2h[0 )+ O,
where —1<6,<1, —1<60,<1, and where

ua’mmzuxzx(x’y y) y x_k1<x’<x+kz s

(28) . j )
Uy =y (@, YY), Y—Dy'y+h .

Proof. By Lemma 1, u,,, is continuous in the open line segment
from (x—h,, y) to (®+h,, y), but may become infinite if the endpoint is
a corner of C. Since u is continuous in R\JC, it nevertheless follows
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from Taylor’s formula as stated in [6, p. 357] that, if we fix y and
set o(@)=u(x, ),

Ffi(“’;"_@):qs(x)zw(x) + hng”(x) + h”¢>”’(x+ 0.h,) ,
h, 2 6
where 0<6,<1.
Writing a similar formula for A, and subtracting, we find in the
notation of (3) that

D;”>¢<w)=¢>"<w)+[’§¢/“(w+m>~ ;%'”(w—m](h1+hz>—1.

If one writes k=max (h, 2,)<h, the last term can be bounded in ab-
solute value by

:23’;‘ max [|¢" (@ +0.h,)], 16" (x— 0]

and hence can be written in the form (24/3)0.,... Addition of a
similar expression for D{"u(x, y) proves the lemma.

LEMMA 4. For each node (x, y) of R, defined in (15) use the nota-
tion of (28). Then, as h—0, one has

(29) k%}u(lu;wg + gy, )=0(1) (2—0) .

Proof. The lemma is proved much like Lemma 6 of [4]. The func-
tions u|#...] and ulu,,| are continuous in R\JC, except at a corner of
interior angle wa, where Lemma 1 states that they behave like 73
with 2a~8>—1. The sum (29) can be majorized by the Lebesgue
integral of a step function over a polygonal arc in B which converges
in length to C as 2—0. The integrability of #**-% in (0, 1) permits the
application of Lebesgue’s convergence theorem as 2—0. Since u=0 on
C, (29) follows. Details are omitted.

LEMMA 5. At each node in R}, defined in (15), one has
(h S 1 2 ’ rr
4 )u~Au+1—2~h (Urnwwst Upyy)

where

u;wxwzuwxzx(x_*"a’k’ ’!/) ’ _1<0,<1 ’
Wy = Uyyyy (T y+0"'h)y, —1<0"<1.

Proof. In [4]; the points of R, all have four neighbors in R,

(30)



ASYMPTOTIC LOWER BOUNDS FOR THE FUNDAMENTAL FREQUENCY 701

each at a distance 4.

LEMMA 6. At each node of R}, defined in (15), use the notation of
(80). Then, as h—0, one has

kz 2 u(u;mm:c + u;/yyu) = SSR u(u:v:c:n:c + uyyyy)dxd?/ + 0(1) (k’—)O) .
Rlbs

Proof. In [4].
LEMMA 7. Define u, and v as in Theorem 1. One then has
SSRM(%mer Uyyp)dady =SSR (w2, +ut)dady + SC u? sin? 2¢dr ,
where the latter is a Riemann-Stieltjes integral.

Proof. The proof repeats that of Lemma 7 in [4] down to (29) of

that paper. It then remains only to prove for smooth convex curves
C that

(31) SC uw(uydw+u_,dy)=g w,? sin® 2cd .
c

Let s denote arclength on C, and let primes denote d/ds. Differ-
entiating the relations u,= —u,sinr, u,=u,cosz, we find that, on C,

32) u,’ = —u," sin r—u,r’ cos r=u,, sin r+u,, cos r ,
w,’= u, cost—u,r’ sinr=u,, cos t+u,sinr.

Changing u., to —u,, by (1), we can solve (32) for u,, on C:
Uy =,  sin 2r+u,r’ cos 2z .

Since drx=dscost and dy=dssinz, we obtain
(33) SC Uyy (U, do +u.dy) = SC (u,’ sin 27 +u,z’ cos 27)(u,, cos 2r)ds
= SC u,'t' cos? 2rds + SC UM, cos 2rsin 2zds .
By partial integration, we have
(34) SC U U, €08 27 sin 2rds=1} SC (#,?)’ sindrds
=3}|u,’ sin 47r],— SC Ut cos drds .

Since cos® 27 —cos 4r==sin* 2r, substitution of (34) into (33) shows that
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S Uy, (U do + udy) :S w7t sin® 2r ds .
¢ c

Since r’ds=dr, the identity (31) is proved, and with it, the lemma.
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ON THE DARBOUX PROPERTY

ISRAEL HALPERIN

A function f(x) with a finite real value for each x in the closed
interval (a, b) is said to have the Darboux property if f(x) assumes on
every sub-interval (¢, d) all values between f(c) and f(d). This note
discusses local conditions which are necessary and sufficient in order
that f have the Darboux property (and corresponding conditions for a
generalization of the Darboux property).

For each « in (a, b) let I.(x) denote the open interval with end
points

fr@)=lm sup {f(t); t >, t—a} and f.(x)=lminf {f(@); t >, t>z};

let I(x), fY(x), fi(x) be defined similarly, using t<(z, t—x. Let ./
be any family of N-sets with the properties :

(a) Whenever an open interval is an N-set, its closure is also an
N-set.

(b) Every subset of an N-set is an N-set.

(¢) The union of a countable number of N-sets is an N-set.

We shall say that f is .#~Darboux on (a, b) if f(x) assumes on
every sub-interval (¢, d) all values between f(c) and f(d) with the ex-
ception of an N-set. We shall say that f is ./-Darboux at « if for
every h>0:

(i) the values assumed by f(¢) for x<t<x+% include all of I.(x)
with the exception of an N-set;

(ii) the values assumed by f(¢) for x—A<t<x include all of I,(x)
with the exception of an N-set, (i) to be omitted when x=5, (ii) to be
omitted when x=a.

We shall prove the theorem :

THEOREM. [ is A ~Darboux on (a, b) if and only if f 48 4 -Dar-
boux at every x in the closed interval (@, b).

The theorem was suggested by a paper by Akos Csaszar [1] who
established the theorem for the two special cases: Case 1: the only
N-set is the empty set, giving the usual Darboux property; and Case
2: (iii) also holds, every set consisting of a single point is an N-set.

We use the following modification of a lemma of Csaszar:

LEMMA. If E is not an N-set then E contains a point y, such that
IFE fails to be an N-set for every open interval I containing y, and I

Received December 10, 1953.
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Jails to be an N-set for every open interval I which has y, as one of its
end points.

To prove the lemma let E, be the set of # in £ for which I(z)E
is an N-set for some open interval I(x) containing «, let E, be the set
of # in E—E, such that 2 is the right end point of some open interval
J(x) which is an N-set and let E; be the set of # in £—E, such that
x is the left end point of some open interval which is an N-set. Then

E=E > {I(z), all « in E\}
=K, 3 {l(z,}, for a suitable sequence of z,}
= (E1I(x,))=union of a countable collection of N-sets.

By (e), E, is an N-set. Since the J(y) are clearly disjoint for different
y in E,, they form a countable collection; the closure of J(y) includes
y and is an N-set because of (a); it follows that E, and similarly E,
are N-sets. Hence E\+E,+ E; is an N-set, thus not identical with E
which must therefore contain some ¥, not in E,+ E,+ E,. This proves
the lemma.

To prove the theorem, we note that the ‘only if ’ part is an easy
consequence of (b) and (¢). To prove the ‘if’ part it is sufficient to
assume that the set E of real numbers which lie between f(a) and
S(b) but are not assumed by f(¢) is not an N-set, that y, is a point of
E as deseribed in the preceding lemma and obtain a contradiction.
For this purpose we shall prove:

(*) For every sub-interval (a, b)) of (a, b) with y, between f(a,) and
f() and for every m >0 there is a sub-interval (a,, b)) of (a,, b)) such
that iy, 18 between f(a,) and f(b.) and

|F @) —vl<1/m for all a,<t<b, .

Successive application of (*) with m— o will give a nested sequence
of closed intervals such that at any of their common points f(¢) —y,=0,
a contradiction since v, is in F, the set of omitted values.

Thus we need only prove (*). Since y, is in E, we have f(x)><y,
for all @. It is easily seen that if f(x)>y, then f.(y)>y and fi(x)>w,
(because of the particular properties of y,) and hence z lies in some
open interval I(x) on which f(¢#)—y,>—1/m. Similarly if f(z)<ly, then
x lies in some open interval J(z) on which f(¢)—y,<1/m. By the
Heine-Borel theorem, a finite number of I(x) and J(z) cover (a., b;) and
hence it follows that some I(z;) and some J(z,) must contain a common
open interval (u, v) say. We may suppose ,<u<v<a,.. If y, is be-
tween f(x) and f(v) we can choose (u, v) to be the (a,, b)) required by
(*). Otherwise we may suppose f(u) >y, f(x.)<yp. Let a, be sup ¢
with f(z)>y, on u_>z>t. Then f(a,)<y, is impossible; for if f(a.)<y,
held, the open interval (f(a.), %) would be contained in [(a.) and yet
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omitted from the values of f on (u, a,), implying that (f(a,), %) is an
N-set and thus contradicting the particular properties of y, Thus
F@) >y, and u<la,<<w,. It now follows easily that f,.(a.)=y, and that
a, is the limit of a sequence of ¢, with ¢,>a, and f(¢,) <y,. Hence,
for sufficiently large =, ¢, may be selected as b, to give (a,, b,) with
the properties required by (*).

The example f(x)=2a for #<0 and f(x)=1 for #>0 with the open
subsets of (0, 1) as the class ./~ shows that the condition (a) cannot
be omitted.
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ON CHAINS OF INFINITE ORDER
T. E. HARRIS

1. Introduction. We consider stationary' stochastic processes Z,,
n=0, +1, ---, where Z, can take D distinct values, D>2. It is con-
venient to let the values be Z,=0, 1, -.-, D—1. Let u be any sequence
of integers, w=(uy, U4, -+-). Then the transitions of the process are
described by the functions Q(x),

(11) Qi(u):P(Zn:i|Zn—1:ul7 Zn—‘l:um "') ’ ZZO) 11 fry D-1.

Our aim will be to relate some stochastic properties of the Z,-process
to functional properties of the @Q,(w). Because of the fact that the
future behavior of 7, depends in general on its complete past history,
we shall refer to these processes as stationary infinite-order chains.

The first systematic study of such chains was made by Onicescu
and Mihoc [13], and was carried on in further papers [14], [15], and
[16] by Onicescu and Mihoe, and [12] by Onicescu. These authors
considered chains of a somewhat more special type which they called
chaines o liassons completes. Further results were obtained by Doeblin
and Fortet [6], who applied the term chaine & liaisons completes to any
chain for which the relations

P(Z,=t|Z, =uy, +*, Zny_y=Uy)

are specified for every sequence u, »+-, U, k=1,2, --., 0. See also
Fortet [8] and Ionescu Tulcea and Marinescu [17].

The authors cited prove, under various hypotheses on the functions
Q, of (1.1), that P(Z,=¢|Z_y=u,, +++, Z_=u,) has a limit as n—o, and
obtain various other generalizations of the limit theorems for Markov
chains. Also, in [6] the case of cyclic motions is considered. We shall
not treat this case. The case of infinitely many states, stronger hypo-
theses, is treated in [17].

Our point of view is somewhat different. We introduce the random
variables X,, n=0, +1, .-, defined by

Received March 4, 1954. This research was supported, in part, by the United States
Air Force, through the Office of Scientific Research of the Air Research and Development
Command, Contract AF18(600)-442, while the author was at Columbia University on leave
from the Rand Corporation.

1 Throughout this paper a “stationary ” process, Markov or not, will be a process
which not only has transition laws independent of time but also has a stationary absolute
distribution.
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(1.2) X,= S\ Z,_,/D’ .
j=1

That is, X, is the number whose representation in the D-ary numeral
system is .Z,..Z,_.-+- . (If we make the proper conventions, ambiguities
will have total probability 0.) Thus X, contains the complete past
history of the Z, process, and is a Markov process whose transition
probabilities are defined in the following way. Let 0<<x<1 be a number
whose D-ary expansion is

x=.u1ug’ c .

Observe that X,==z is equivalent to Z,_,=uy, Z,_ s=us -++ . Now if
Z,—=1%, then X,,,—.iuu,---=(+2)/D. Now let f,(z) be functions of z
defined by

(1.3) fd@)=Qiw) , i=0, -++, D—1

where .u,u,-++ is the D-ary expansion of x and the Q; are defined by
(1.1). If X,==, then X,,, is formed by applying with probability f.(z)
the transformation [¢+( )]/D to X, ; that is

(1.4) P(X,m::i;x \anx):fi(o:) .

The representation (1.2) was used by Borel [3] for the case where
the Z, are independent and equidistributed. Apparently it has not been
systematically exploited for other cases, although an abstract analogue
of (1.2) is used in [17]. The representation (1.2) has the advantage
that Fourier and Laplace transform methods can be used to deal with
the distribution of the complete past history of the Z,-process.

After making precise the relation between the Z,- and X, -processes,
we show the existence of a unique stationary Z,.-process whose condi-
tional probabilities

P(an’b lZu—lzul, b ')

are equal to specified functions Q;, provided the latter satisfy certain
conditions. This extends a result of Doeblin and Fortet. Next we
study the distribution G(x) of X,. It is shown that this has one of
three forms, provided certain general conditions of mixing behavior
hold. (1) G(«) has a single jump of magnitude 1 at one of the points
i{(D—1), ¢=0, .-+, D—1. This is true if and only if P(Z,=i)=1. (2)
G(x)=wz, 0<x<1. This is true if and only if the Z, are independent
and equidistributed on 0, 1, .-+, D—1. (8) G(«) is continuous and purely
singular.?

*The fact that ¢ is singular if the %, are independent and not equidistributed was
pointed out to the author by Henry Scheffé.
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Next we consider processes which we shall call grouped Markov
chains. Let Y,, n=0, +1, ---, be the variables of a stationary Markov
chain whose states are divided into D mutually exclusive and exhaustive
nonempty subsets B,, By, +--, B,_,. Define Z,=¢ when Y,eB,, 1=0, 1,
«+«, D—1. We shall refer to this type of Z,-process as a grouped
Markov chain; it is in general not Markovian. We study such chaing
for the case where Y, has a finite number of possible states and where
each element of the transition matrix of the Y, ,-process is positive.
Using the Laplace transform, we show how to determine the functions

P(Zn:"zf [Zn—d:uly ct ey Zn—k:uk)
and
P(Zn:@. IZn—IZuly Zn—z:uz; . ') s

as well as the corresponding functions of a real variable f(x) given
by (1.8). This may be considered a solution of the prediction problem
for grouped Markov chains.

The X,-process is closely related to models which have recently
been used for learning and decision processes by Bush and Mosteller
[4], Bales and Householder [1], Flood [7], and others. The author wishes
to thank these men for stimulating the present line of work. ,

Theorem 3 can be extended to certain types of these “learning
models.” A discussion of certain learning models has been given by
Bellman, Harris, and Shapiro [2] and by Karlin [11]. Karlin’s work has
points of contact with ours.®

2. Relation of the Z,- and X,-processes. In this section we make
explicit the relation between the Z,- and X,-processes and give a general
condition which implies the existence of a Z,-process with prescribed
@;. Later sections will show that this condition is satisfied in many
instances.*

Let D>2 be an integer and let u==(u,, u,, ---) represent a sequence
of integers with 0<lu;<<D—1. Let Q(u) be functions of u,i=0,1, ---,
D—1, with

2.1) Qi(u)>0, i=0, ---, D—1,
2.2) Saw=1.

Now if « is a real number, 0<x<1, we adopt the following con-
vention about the D-ary expansion of z in the ambiguous cases. The

tFurther discussion of the relationship follows Theorem 6.
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D-ary expansion of x=1 will be taken as z=.(D—1)(D—1)---. Inall
other ambiguous cases, an expansion terminating in 0’s will be preferred
to one terminating in (D—1)’s. Thus in the decimal system the ex-
pansion of =1 will be .999--. while the expansion of x=1/2 will be
.5000- -+ rather than .499--... Thus the D-ary expansion of x is un-
ambiguously defined.

Now define functions f(x), 0<x<1, by
(2.3) Si(@)=Qi(u)

where z=.u0,--.

THEOREM 1. Suppose functions Q(u) are given satisfying (2.1) and
(2.2) and such that the f(x) defined by (2.3) are Borel-measureable ;
suppose there exists a distribution G(x), G(0—)=0, G(1)=1, which satisfies
the functional equation

D-1 (Dx-J

(2.4) 6= | rwaew 0<a<1.
Then there exists a stationary process ---Zs, Zy, «++ , such that Z, has
possible values 0,1, ---, D—1, and such that

(2'5) P(Zn=?' lZn—ly Zn—z’ b ')=Q1(Zn—17 Zn—zy °* ')

with probability 1.
Proof. We consider a real-valued Markov process -+-X,, X,41, =*°
whose transition probabilities are given by

(2.6) p( it

Xn-1=fv)=f¢(90) , 0<w<1,

where the f,(x) are the functions defined by (2.3). It can be verified

that if G satisfies (2.4), then G is a stationary absolute distribution for

this Markov process; we shall suppose that X, has this distribution.
Define the funection A(x), 0<lx<1, by

(2.7) h(z)=1st digit in D-ary expansion of z.
Now define random variables Z, by
(2.8) Zna=hX,), n=0, +1, +--

The Z, then form a stationary process, whose nature is clearly com-
pletely determined by G(x). It can be shown that

Zoer . 7o
2.9 P[X,,,=L1+JJ+ . .]zl ,
(2.9) 5 i

since P[X,.,=DX,—Ah(X,)]=1 for all n. Also
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Ziger | Zigesy
(2'10) Qi(Zn—-U Zn-—27 "')zf‘i< DI+ D2 "|—"‘>

holds with probability 1. The only sequences (Z,., Z,-s, +++) for which
the two sides of (2.10) might be different are sequences other than
(D—1, D—1, ---) which terminate in unbroken (D—1)’s, and these can
be shown to have probability 0.

It can be shown from this that @Q,(x) is a permissible version of
P(Z,=1|Z, . i=Uyy Zpoy=My, *+) .

3. Continuity properties of the @,, We assume that functions @,
are given satisfying (2.1) and (2.2) and that functions f; are then defined
by (2.3).

We shall refer to a point x whose D-ary expansion terminates in
an unbroken sequence of 0’s as a lattice point.

If u»=(u?, uz, ---) is a sequence for each n=1, 2, ---, then u"—u
will mean that for each k, uy=wu, for all » sufficiently large.

CoNDITION A. For each i and wu, u—u implies Qu")—>Q,(u) as
n—>00,

THEOREM 2. Under Condition A the f,(x) are continuous to the right
for each x, 0<w<1, and continuous to the left except possibly at lattice
points. Left-continuity holds at x=1.

COROLLARY. Under Condition A the f(x) are Borel-measurable (in
fact, belong to Baire class 1.).

The proof follows from the definition of the f.(x). The corollary
follows from the well-known fact that a function with only countably
many discontinuities belongs to Baire class 1.

4, Existence of stationary Z,- and X,-processes, Our procedure will
be as follows. We consider a Markov process X, with transition pro-
babilities defined by (2.6), where the f,(x) are given functions. We
give conditions on the f,(x¢) which insure that the probabilities P(X»<x
| X,=y) are C-1 summable to a distribution G(x) which is independent
of y. The distribution G(x) satisfies (2.4) and is the only stationary
distribution for the X, -process.

Now let functions Q,(x) be given satisfying (2.1) and (2.2). Making
use of Theorem 1 we show that under certain restrictions on the @,
there is a uniquely determined stationary process Z, satisfying (2.5)
with probability 1. This process is ergodic. It is discussed in Theorem 6.

Under somewhat stronger conditions Doeblin and Fortet proved
essentially that

lim P(Z,=4|Z 1, Z_y, «++)

n—oco
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exists with probability 1 and is independent of Z_,, Z_,, ---.° We shall
show the C-1 anologue of this under the weaker conditions.

The method we use is a development of one used originally by
Doeblin in [5].

Now consider given functions f,(z)>0, i=0, ---, D—1; 0<{x<{1;
Sifd{@)=1. We use the notation

(4.1) (@=Y)n

to mean that the first m digits in the D-ary expansion of « are the
same as the first m in the expansion of y. We define

(4.2) &n=_sup |[fux)—- ), m=0, 1, «--
%, (x=y)m

Doeblin and Fortet used a condition which would be equivalent in the

pbresent context to

(4.3) S el .

m=0
We shall use Condition B, expressed by the requirements

(4.4) lim &,=0,

N-—>00

oo

(4.5) S (1— ;Dek>=oo :

m=0 k=0

We shall understand that any of the factors (1—-~;D8k) in (4.5) which

is zero or negative will be replaced by 1. As an example, Condition B
is satisfied provided we have for sufficiently large %

2
&l 2.
“Spi

In addition to Condition B, some sort of condition of positivity will
be required. We shall choose the simplest one.

ConprtioN C. For some 4, f,(x)>4>0, 0<x<1.

It is easy to see how C can be replaced by weaker conditions. For
example, in the case D=2, f,(x)=x, Condition C is not satisfied but it
will be clear from the subsequent arguments that a condition sufficiently
like C is satisfied.

THEOREM 3. Let f,(x), 1=0, -+, D—1, be nonnegative functions with

77578};11;1&: examples show that the existence of limiting probabilities does not, in general,
imply the existence of a stationary distribution. The existence of at least one stationary
Zq-process can be shown under quite weak conditions. The difficulty is to show uniqueness.
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>.fi=1. Let X,, n=0,1, ---, be the variables of a Markov process with
Xo=y, 0<y<1 and with transition law defined by (2.6).
Define

(4.6) G.(y; 2)=PX,<x| Xi=y) .

Then Conditions B and C imply that G (y;x) is summable C-1 to a
distribution G(x) which is independent of y. If (4.8) holds then the
ordinary limit exists. In either case the limit is uniform in y.°

For the proof of Theorem 3 we require the following lemma about
sums of (not necessarily independent) random variables.

LemmA 1. Let x,, @,, - - -, be positive integer-valued random variables.
Let s,=x,+ -+ +x, and let u,, be the probability that for some j we have
s;=m, m=1, 2, ---. Suppose

(47) P(xn>?’ lx]r Lyy v o0y mn—l)2Rz

where the R, are nonnegative numbers which are independent of i, «--,
x,-1 and n and satisfy

(4.8) f; R—co .
Then

4.9 lim L S w.—0
(4.9) ngNmézc,,L— .

The proof of the lemma, which is closely related to a standard
renewal theorem, is simple, and is omitted.

Proof of Theorem 3. The method is related to an idea of Doeblin
[5], who proved the ergodic theorem for Markov chains with a finite
number of states by considering two particles starting in different
states, which move independently until they simultaneously occupy the
same state, after which they merge. An idea similar to Doeblin’s
original one is used in [6], and a related device has been used by Hodges
and Rosenblatt [9].

In order not to obscure the main idea by details we give the proof
for the case D=2. Since Condition C holds we can just as well take
So@)>4>0. Then

1

=lé‘kl<1 ’ k=0y 1; b

Let ¢, t,, - - -, be independent random variables uniformly distributed

tWe use conditional probabilities G,(y;«x), etc., to mean those probabilities which are
uniquely determined by the Markov transition operator, starting from a given value .
They are thus uniquely defined for all y.
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on (0, 1). Define processes X, and X, as follows : X,=y, X,=y', 0<y, v/’
<C1. Suppose X, and X, are determined. Then

;Xﬂ for ¢, < fu(X.)
Xn+1*‘:
1. 1 .
T4 Xn for t">fu(Xn) ’
2 2
while
X, for t,<fo(X;)
X/n+1=

DN = DN =

+ ;X for > fu(X.) .

It is convenient to let U, (U,) designate the transformation applied
to X, (X). That is, U,=i[U,=1] if X,nu=0+X,)2[X,.=0E+X)/2].
Then

(4.10) PU<U, 1 X,, X)) <|fo(X,)— fo XD -
From (4.10) we then have
(4-11) P(Uan;u Un+1: 7,1+1y sty Un-Hc:: ;r+k)2(1_80)(1'—81)' * '(1_8k) )

independently of X,, X,.
Now the event {U,=U,, ---, U,..=U, ..} implies’

(4-12) (Xn+7c+1:‘: ;z+k+1)lc+l
which in turn implies
(413) l)(:rbﬂc-x-l_AX:HIcHI_éz—_’%1 .

Let us say that an “engagement” ocecurs on the nth step if
U,.=<U,.,, U,=U,. If we interpret the random variables x, x,, «--
of Lemma 1 as the intervals between successive engagements, we see
from (4.11), (4.12), Conditions B and C, and Lemma 1 that

(4.14) lim EXpected no. gngagg}nentg in 1st N steps
N0

’

the limit in (4.14) being uniform in the starting points y and y'.
It can be shown from (4.14) that for any &£>0, we have,

(4.15) lim ;Nz P(IX,—X,[>>6)=0 ,

N—co

7A silght modification is necessary if y=1 or y'=1.
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uniformly in ¢ and »’. The argument is roughly as follows. Whenever
U,<U,, the length of time till an engagement occurs is small, with
uniformly high probability, because of Condition C. Therefore, if only
a small number of engagements have occurred in the first N steps,
where N is large, then the probability is high that Uy,=Uy, Uy-1=Ujyx-1,
cor, Uyy=Uy_, where k is large. Thus (4.15) follows from (4.13). (It
is easy to make this argument precise.) A simple type of argument
then shows that P(X,<wx|X,=y) is C-1 summable to a distribution G(x)
which is independent of y. Moreover the difference

N-1
(4.16) o S PXL<w] Ko=) = Gla)
n=0
goes to zero uniformly in y at all points of continuity of G(x).
If the stronger condition (4.3) holds, as well as Condition C, we

can replace (4.15) by the stronger statement
(4,17) P(X,—X,|>&)—0.

In fact, with probability 1 we have U,=U, for all sufficiently large n
in this case. We then get actual convergence, rather than just C-1
summability, of the distributions to G().

THEOREM 4. Assume that Conditions B and C hold. Then G(x) of
Theorem 8 either has a single discontinuity of magnitude 1 at one of the
potnts 0, 1/(D—1), 2/(D-1), --+, 1 or is continuocus.

Proof. First let ¢ in Condition C be 0. If £, (0)=1 it is clear that
G(x) has a jump of magnitude 1 at =0, and conversely. If f,(0)<1,
G(x) is everywhere continuous. First, G(x) must be continuous at 0.
For let K and n be integers, 0<K<n. Consider an X, -process with
an arbitrary starting point X,=y. If the D-ary expansion of X, begins
with K 0’s then U,.,=U,_,=-+-=U,_x=0. Hence

(4.18) PX, <D ")<PUpr=Upoy=+++=U,-x=0) .
Now no matter what is the value of X,_.=2, we have
(4.19) P(U,-1="++=U,-x=0|X,- x=0)= fo(Z) fo(Z/2) f(Z[2*) - - fo(Z[2%7").

Because f,(0)<1 and f(«) is continuous at 0, the right side of (4.19)
—0 as K—co, uniformly in Z. Using (4.18) and (4.19), we have continuity
of G(x) at 0.

Similar arguments show continuity of G(x) at other points 2. The
argument is almost the same if the ¢ of Condition C is not 0.

THEOREM 5. Under the conditions of Theorem 3, G(x) ts a stationary
absolute distribution for the X, -process and satisfies (2.4). It is the only
stationary distribution.
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Simple examples show that if the f,(x) do not satisfy the proper
continuity conditions, there can be a limiting distribution independent
of the starting point which is nevertheless not a stationary distribution.

The uniqueness of the stationary distribution, once its existence is
known, is an immediate consequence of the existence of a C-1 limiting
distribution for X, uniformly independent of X,.

In the case f,(¢/(D—1))=1 it is readily verified that P(X,=1/(D—1))
=1 is a stationary distribution satisfying (2.4). We can thus limit
ourselves below to the case where G(z) is continuous. (Theorem 4.)

Instead of starting with a fixed value for X, it is now convenient
to give X, an arbitrary continuous distribution Gy(x) assigning probability
1 to the interval (0, 1). Letting G, (x)=P(X,<x) we have

D-1 ("Dx~j
(4.20) Gunle)= S| £ A6, n=0,1, -
Then G, (x) is continuous for each n, and we know from Theorem 3
that G,(x) is summable to G(z). It follows from Condition B that it
is justified to pass to the limit under the integral sign in (4.20) (C-1
limit if necessary), and Theorem 5 follows.

We can now give the main results of the present section. As
before u and « will denote sequences of integers between 0 and D—1
inclusive. For convenience we let V denote the set of all sequences
which terminate in unbroken (D—1)’s, with the single exception of the
sequence, each of whose members is D—1. For any stationary process
whatever it can be shown that

Prob[(Z.., Z_;, -+ -)eV]= Prob [(Z, Z,, ---)eV]=0 .
We use the notation (u=u’), to mean that the first m elements in
the u sequence are the same as the first m elements in the u’ sequence.
Now let @,(x) be nonnegative functions of » with ngi(u)zl and
define -

(4.21) Ep= sup |Qi(u) — Qi(u")].

i, (u=u"Im
ugV,u' ¢V
Then the quantities &, defined by (4.21) are identical with those defined
by (4.2) if functions f,(x) are defined by (2.3).
We shall say that the @, satisfy Condition B if (4.4) and (4.5) are
satisfied. These are requirements that the future is conditioned only
slightly by the remote past. Condition C will mean that for some j

(4.22) Q,(u)=>4>>0, ugV.

Now let I be a finite sequence of integers,
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Iz(i(n 7;1, R ’I/k)
and let

(4.23) M) =P(Z, =ty ++*) Znsw=x| Z_1=sy ++*) .

The quantities @%(u) are to be interpreted as defined, relative to the
“past” u, by means of the @,(u); they thus have meaning even before
it is known that there is a stationary absolute distribution.
THEOREM 6. Let the functions Q,(u) satisfy Conditions B and C.
Then
a) there exists a stationary wprocess Z, such that (1.1) holds with
probability 1;
b) this is the only stationary process for which (1.1) holds;
c) the C-1 limit of QNu) exists for every u (except those in the set
V defined above) for every I, and is equal to the stationary
measure of I. The C-1 limit is approached uniformly in u.
d) For every u not in V we have, for each i=0,1, «--, D1,

(4.24) lim P(Z0=1:1Z-1=u1, coo Zop=uy) = Qu(u) ,
k-»c0

provided the left side of (4.24) is defined for each k.

Proof. Define functions f(x) by (2.8). From Theorem 3 there is a
unique distribution G(x) satisfying (2.4). From Theorem 1 there exists
a stationary Z,-process for which (1.1) holds with- probability 1. As
remarked in §2, the nature of the Z,process is determined by the
distribution G. Hence, since G is uniquely determined, so is the Z, -
process. This proves (a) and (b) above.

The proof of (c) is an immediate consequence of the relation be-
tween the Z,- and X, -processes, together with Theorems 3 and 5. A
slight modification is required if u=(1, 1, ---).

The relation in (d) above is, it is well known, true for almost all
u. A simple argument shows that it holds for every u not in V.

5. Further properties of G(z). We now change our point of view
somewhat. Suppose we are given a stationary infinite-order chain Z,
as defined in the introduction. Define

(5.1) X, =Zps| D+ Zyeo| Pt <o+, n=0, +£1, «+ .

Then X, is a stationary process.
We shall further suppose throughout § 5 that the Z,-process is of the
mixing type® The X,-process then is likewise.

Let the functions Q) be defined by
Qi(u)=P(Zo»=7:lZ =Wy, Ly Uy, ot ') .

n

8See [10, p. 36]. Roughly, if 4 and B are events, and B(x) is the event B translated
7 units in time, then P[AB(n)}—P(A)P(B).
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As in §2 we then define functions f.(x) by
(5'2) fz(x)zQz(u) ’ 7'=0! M) D—-1 s

where .u,u,--- is the D-ary expansion of z. The functions Q,(u) are
defined at least for almost all u-sequences (“almost all” in the sense of
the measure on sequences in the Z,-process.)

Let G(x) be the distribution of X,. It is then clear that the
functions fx) are defined for almost all « (G-measure). It is also
readily seen that the X,-process is Markovian and that G(x) satisfies
(2.4) with the f,(x) defined by (5.2).

Remark on uniqueness. Let G* be a distribution satisfying (2.4),
with G*(0—)=0, G*(1)=1, and suppose G* is absolutely continuous with
respect to G. Then G and G* are identical. This follows from the
general theory of Markov processes.

LEMMA 2. Let Z, be a stationary infinite-order chain as defined in
the introduction. Suppose Z, is mixing. Let

Xn——z i Zn—j/Dj
J=1

and let G(x) be distribution of X,. Then G either has a single dis-
continuity of magnitude 1 at one of the points 0, 1/(D—1), -+, 1 or is
continuous. '

The proof is similar to that of Theorem 4 and is omitted.

LemMMA 3. Under the conditions of Lemma 2, G(x), if it is continous,
is either purely singular or purely absolutely continuous.

Proof. Suppose we have the continuous case. To obtain a con-
tradiction let us suppose

G=cG,+1—0)G,, 0<le<1,
where G, and G, are the singular and the absolutely continuous parts
of G respectively, neither being identically zero.

If we write (2.4) in the operator form G=TG, then we have

(5.3) (G —TG)=—(1—-c)(G.—TG,).

Now it is easily seen from the nature of T that TG, is singular and
TG, is absolutely continuous. Moreover, neither G,—TG, nor G.—7TG,
can vanish identically. This follows from the remark above on uniqueness.
Thus (5.3) is a contradiction.

LEMMA 4. Under the conditions of Lemma 2, the f, are determined
uniquely by G up to a set of G-measure 0.

For from (2.4) we have

<t o . Dot

G4 c@-6(})-|" rwicw, %
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Uniqueness of the f; follows from (5.4) and the Nikodym-Radon theorem.
THEOREM 7. Let Z, be a stationary infinite-order chain of the mixing
type. Let
X,= 3,2,./D'
j=1
and let G(x) be the distribution of X,. Then G(x) is one of the three
Sfollowing types.

(a) G(x) has a single jump of magnitude 1 at one of the points
i/(D-1), i=0, --+, D—1. This is true if and only if P(Z,=1i)=1.

(b) G(x)y==, 0<x<<1. This is true if and only if the Z, are inde-
pendent, each being equidistributed on 0,1, ---, D—1,

() G(x) is continuous and purely singular.

Proof. If G(x) has any discontinuities, then (a) follows from Lemma
2. Next we introduce the moment-generating function (s is any com-
plex number)

()= S:e”dG(x) :

From (2.4) it follows that ¢ satisfies

(5.5) HD9)=9(5)+ 5 (=1 e @)d6(@)
Setting s=2nki, t=1/—-1, we have
(5.6) H2rkDi)=p(2rki) , k=1, £2, o+ .

First suppose ¢(27ki)=0, k=+1, +2, ---. Since ¢(¢t) is the characteristic
function of a distribution on (0, 1), it is uniquely determined by its
values at the points 27k ; hence in this case

et —1
P@)="

and G(z)=xz. It can be verified directly that (2.4) is satisfied with
G(x)== and f,x)=1/D. From Lemma 4, this is the only case where
G(x)=a can occur.

Next suppose that for some integer & we have ¢(27ki)><0. Iteration
of (5.6) shows that ¢(¢t) does not—0 as ¢—c or t——c and hence G
is not purely absolutely continuous. Thus Lemma 3 shows that G, if
continuous and not of type (b), is purely singular.®

a simple argument not involving Fourier transforms.
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6. Grouped Markov chains. Let Y, be the variables of a Markov
chain with a finite number of states, which we shall call 1, 2, ---, K.
Let the transition matrix be M=(p;), %, j=1, ---, K. We assume
pi;>0. Otherwise, even if some power of M has all positive elements,
there may be complications. We also assume K >>1. Now let the states
of the chain be divided into D mutually exclusive and exhaustive
nonempty subsets By, +-+, B,_;. We can define an infinite-order chain
Z, by

(6.1) Z,=i2Y,eB,.

We shall call such a process a grouped Markov chain. We shall be
particularly interested in the case where the Y, -process, and hence the
Z,-process, is stationary. We show that Conditions B and C are satisfied,
determine the distribution of the “past” of the Z,-process, and show
how the functions Q,(x) and the corresponding f,(«), can be determined.
The Q, or f, give the solution to the problem of predicting the future
values of Z,, given the past.

We first give a result about Markov chains.

THEOREM 8. Let M=(p,;) be the transition matrix of a Markov chain,
i, j=1, «++, K>1; p,,>>0. Let Y, be the variables of the chain. Let

(6.2) A= min PePi

L3kt K2 Dy

(Note that 0<2<1.) For each n=1, 2, ---, let A, be a nonempty subset
of states of the chain. Let g and h be two states. Then
(6-3) ]P(Yn+1eAn+llY0=g; Y1€A1, s YneAn)
"‘P(Yn+1 € An+1lY0=hy Yl € Al: M 'yYn € An) S(l_z)n ’
n=1,2, «--.

The proof is omitted. It ecan be carried out with Doeblin’s “two-
particle ” method.

It is readily shown that for every u, 0<<u,<D—1, the limit
lim P(Zy=i| Z_1=uy, - -+, Z_ =)
k—oo
exists, for the grouped Markov chain. We may take this limit as a

permissible version of @ u) for the Z,process defined by (6.1). It can
also be seen that

(6.4) 1Qu(u) — Qu(w)| (1 — A", m=1,2,---,

whenever the first m terms of # and #’ coincide. Thus Condition B is
satisfied with®

10 The stronger condition (4.3) is of course, also satisfied.
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En<(1=-2)"1, m=1,2, - .

Condition C is a consequence of the obvious fact that the Q,(«) are
uniformly positive.

THEOREM 9. Let Z, be defined by (6.1). Let
(6.5) X,= S Z,_,|D
j=1

and let G(x) be the distribution of X,. Then G(x) is continucus, 0<x<1,
and strictly increasing, 0<a<l.

Theorem 7 is applicable since Z, is of the mixing type. Since Z,
has a positive probability of taking at least two distinct values (we are
assuming D>>1), continuity follows. The strictly increasing character
of G follows from the fact that the event (Z.,=u, ---, Z_;=u,) has
positive probability for every sequence 0<luy, ---, u,<<D-—1.

DerFINITIONS. Let Y, and Z, be as in (6.1) and let X, be defined
by (6.5). Define

(6.6) H@)=P(X,<z|Y,=j), 0<x<l,j=1,2,..- K,
(6.7) 1)~ eati @), i=1,2, -, K,
0
s any complex number.
Let =, j=1, -+, K be the (unique) set of stationary probabilities

satisfying

K
(6-8) U .=217TTP7.]- ’ ‘7::.1, -no’K.

Let pf be the set of inverse probabilities

(6.9) D=pm,[m; .
Let M(s) be the matrix defined as follows:
(6.10) M(s)=(pie™)

where 1(j)=Fk when j belongs to the group of states B,.

TueEoREM 10. (See preceding definitions.) The function 64s), j=1,
<o, K, is the sum of the elements tn the jth row of the convergent
matric product

(6.11) M(s/D) M(s/D*) M(s| D" - - .

Proof. Let Y¥ be the variables of a stationary inverse Markov
chain with transition probabilities given by (6.9) and let Z;=4 when
Y} e B;,. It is clear that Z; is inverse to the Z,-process in the sense
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that the process Z*, obeys the same probabilistic laws as the Z, -process.
Define

Xi= SZ5,ID .
r=1

(Incidentally X, and X} follow the same law, not inverse laws.)
It is clear that Hj(x), as defined in (6.6) above, is also given by

(6.12) Hy(a)=P(X;<w | Y =j) .

We now use (6.12) to find the functions H,(x).
Suppose r is an integer, 0<{r<{D—1, and suppose r/D<_a<(r+1)/D;
that is, a=.ruu;---. Then
(6.13) Hya)=P(Z*|D+ 25 |D*+ « « « <.ruy+ + + | Yo* =)
=P(Z*<r|Y*=j)
+P(ZF=r, Z5 | D+ Z [D* 4 o o Uty | Yo =5)
:P(Zl*<’r[ Yo*=j+ 3 Dhe H,(Dx—vr) , T/DS.’E<(7‘+ 1)D.
meE B,

Next we note that X has the same distribution G(x) as X,. Moreover
(6.14) Gla)=P(X: <2)= 3\ 7, Hy(2) .
r=l

Since G(x) is continuous (Theorem 9), the H,.(x) must also be continuous.
Now (6.13) implies the differential relationship
(6.15) dHj@)= 2, piwd[H(Dz~7)],

meRB,

7 r4+1 .
g =1,---, K.

D§w< D J

Defining f4s) by (6.7) and letting &(s) be the column vector whose

components are the #;, we see that (6.15) implies (multiplying both sides

of (6.15) by ¢” and integrating)

(6.16) O(Ds)=M(s)0(s) ,

where M(s) is defined in (6.10). Iterating (6.16) and replacing s by s/D
gives

6(s)=M(s/D)- - -M(s/D")O(s/D") -

Since 6,(0)=1, 6(s/D*) approaches the column vector each of whose
components is 1 as n—co, while M(s/D") approaches the stochastic
matrix (pf). The powers (pj;)" converge exponentially as n—co, and it
is readily seen that the elements of the difference M(s/D")—(p};) are
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O(D~"), where O is uniform in s for any bounded s-region. Hence the
matrix product in (6.11) converges uniformly in any bounded s-region,
and Theorem 10 follows.

The 6,s) and the H/(x) can be calculated in various ways. One
possibility is to determine the coefficients in the power-series expansions
of the 6; by differentiating (6.16) at s=0. The values of the 4; on
some interval near 0 on the imaginary axis can be calculated, and (6.16)
can then be used to determine the 6; on the rest of the imaginary
axis.

We can now find the functions Q,(») and f.(x) for grouped Markov
chains. In theorem 11, Z, is a grouped Markov chain as defined above.

THEOREM 11. Let u,, ---, u; be integers, 0<u,<<D—1. Then

P(Z,=i|Z,.i=uy, «+, Zy=Up)= ieZB ”j[Hj(x‘Z) _H](xl)]/[G(xZ) - G(xl)]

where
Xy=uy[D+u,/D*+ « « - +u,/D* , 2o=u,/DH4 -+ +u,/D*+DF

and

K
G(x)= ]g, rnH(x) .

The proof is merely a reinterpretation of Theorem 10.

We thus have an expression for the conditional distribution of Z,
if a finite segment of the past is known.

Next we consider the situation when the complete past is known.
Consider the X,-process and the associated functions f,(x). Then, if
T= Uy v vy

6.17) fl)= - S H (@)= P(Z, =i Zror=ttsy Zey=tly +++)
dG(x) jeB,

where (6.17) holds for every z, 0<a<(1, provided we take right-hand

derivatives on the right side. Thus (6.17) gives the conditional distri-

bution for Z, if the complete past is known.
Example. Suppose

(pis)=

PO o[ [
S I
I
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Then =, =4/11, =,=3/11, 7,—=4/11, and in this case p}=p,;. Take states
1 and 2 as B,, state 3 as B;, so that D=2. The 0,(s) then satisfy the
equations

1 1 1,
(6.18) 0,(2s)= 4 0.(s) + 4 0.(s) + 9 €*04(s)
0,(25) = ;tf)l(s) + ;02(3) + —;6303(8)

0,(25)— ;01(8) + iez(s) +»L]-l‘-6803(s) ,

which, with the conditions 6,0)=1, determine them uniquely. The
Hyx) can then be determined by Fourier inversion.
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ON CERTAIN SERIES EXPANSIONS INVOLVING
WHITTAKER FUNCTIONS AND
JACOBI POLYNOMIALS

PETER HENRICI

1. INTRODUCTION

1. 1. Outline of the paper. By substituting polar coordinates in
the partial differential equation

U
oxr Y x ox Y

(1) Loy Apkl o Akl SZ + k42— k(@ + ) Ju=0 ,
and separating variables, one is led in a natural way to certain com-
binations of Whittaker functions and Jacobi polynomials (called for
brevity J.-W. functions in this paper). With a view towards deriving
some functional relations involving hypergeometric functions, we
develop in the first part of the paper a technique for the construction
of expansions of arbitrary regular analytic solutions of (1) in terms of
these J.-W. functions. The method of our investigation consists in
setting up a one-to-one correspondence between the class of even
analytic functions of one complex variable regular in a cirele around
the origin and a certain class E of regular solutions of (1). This
correspondence associates with a solution u(z, y) ¢ E the function
u(x, —ix) obtained by considering u (x, y) on the (imaginary) characteristic
x—iy=0 of (1).! Since the maps of the even powers of a single variable
in this correspondence are shown to be the J.-W. functions mentioned
above, the expansion problem in question is reduced to the problem of
finding the Taylor expansion of a given analytic function of one variable.
Applying this technique to some special solutions of (1), we are
led to three expansions involving various kinds of hypergeometric
functions. The first of them contains a number of well-known theorems
on special functions as special cases, namely, among others, Bateman’s
addition theorem in the theory of Bessel functions, Ramanujan’s
formula for the product of two confluent hypergeometric series, and
Erdélyi’s addition theorem (with respect to the parameters) for the
product of two M-functions. The second application gives rise to

Received October 9, 1953. This paper was prepared under a National Bureau of
Standards contract with American University. The author is indebted to Prof. A. Erdélyi,
who saw a first draft of this paper, for some most helpful critical remarks.

» This procedure is related to Bergman’s operator method in the theory of elliptic par-
tial differential equations with regular coefficients; see the remark at the end of §4.
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another addition formula (in the ordinary sense) for the product of two
M-functions, while the third may be looked at as an alternate formula-

tion of Bailey’s decomposition formula for a special case of Appell’s
function F..

1. 2. Definitions. In (1) the parameters g, v, 4, k are arbitrary
complex numbers with the only exception that ¢ and v are subject to
the condition

(2) Qut2—2, —8, —4, on- .

Sets of values (v, v, 4, k) satisfying (2) are called admsissible values of
the parameters.

If <% denotes a domain of the complex («, ¥)-space which contains
the origin, we denote by Eg the class of analytic functions u(x, y)
of the two complex variables  and y which

(i) are regular in & ,
(ii) are even fuctions of x and of y, and
(iii) satisfy (1) for certain admissible values of the parameters.?

We denote by . the circle |z|<r of the complex z-plane, and by
5% .27 the bieylinder |z|<r, |2*|<r in the space K* of the two complex
variables z and z*.

Our notation of special functions follows the traditional lines. For
the ordinary and the generalised hypergeometric series we found it
convenient to use Bailey’s notation [1, p. 8]

2. JACOBI-WHITTAKER FUNCTIONS

Our first aim is to construct a set of solutions of (1) by the
elementary method of separating variables. Introducing in (1) the new
variables

x* ——y~
) :xz_l_zz’ T 2
(3) P Sy

we obtain for v(p, r)=u(x, y) the equation

i)
,0~~ +2(1+,u+u)p +(1 )52
T
(4)

+2[,U——y——(1+{t+v)*] +ch( ’ff) —0.

If v(,o, z') R(p) T(r) is a solution of (4), one finds by the usual sepa-

2 We do not investigate the problem of the extent to which the three conditions (i),
(ii), and (iii) imply each other.
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ration method that R(p) and 7T (r) have to satisfy separately the
equations

&R 1 dR s kR
5 +2(14pt 77+[— ,,,+,,,_,,,]R_o,
( ) d‘Oz ( /,l V) {) d{) p‘l ‘0 4
and
(6) =TT Lopp— 4 g™ 4+ sT=0,
dz? dr

where s is a separation parameter. Writing s=n(2ux+2v+1+n), we
find that solutions of (5) which are regular near p=0 are represented
for n=0, 1, 2, --- by

R(p)zp—u_v—an\, ,u,+v+%+n (kP)

:k}b+v+l+1zpne—§p Fli‘u“_l/'*‘l’*“?’l”“Z; ]Cp]
UL2p 4204+ 2+ 20 ’

where M denotes the Whittaker function of the first kind, while (6)
has for the same values of s the polynomial solution

T(e)= P, ()

(8) _@+1),

—n, 2/1+2u+1+n;1—7
n! i 2 ’

2v+1

where P stands for the Jacobi polynomial in the notation of Szegé [11,
p. 61]. Provided (2) is valid, solutions of (1) regular near x=y=0 are
thus given by the functions

( 9 ) fn("”‘>(‘0, 75 2! k) = CnPn(Zm zp)(r)]g—n(kp)—-u—-v—l M/\, u+v+%+n (kP) ’

where

2l 2p+2v+1)m!

(10) PR s L S—— ,
Cu+2v+14n), (p+v+Plr+rv+1),

is a normalisation factor introduced for later convenience. We shall
call these functions for brevity Jacobi-Whittaker functions (J.-W.
funections) of order n. The arguments A and & in £,%* will usually be
omitted, if it is not necessary to exhibit them explicitly.

For later reference we note the following special and limiting
cases of the functions f,%*:
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(i) For 1=0 we have [6, p. 13]

ay SO w0 k) Pk ) ,
e P ) [ 3 LA ip
—CnPn( 2”')(1') I (ﬂ + v+ *2~ +- n) (*’4*) (—4*) E_I/L+Y+%+n(7> ’

where 7 is a modified Bessel function.

(ii) Putting i= 4’; and letting £—0, we obtain the function

fn(#’\/)(p’ 75 K/)':hm fn(p’yw(p’ Ty o 4 k)
(12) k>0 4](7

=, P, () " (2pu+2v+ 2+ 2n)(7z )_" (*’f&)""v‘% J (Vxp)

2u+2v+1+2n

where J denotes the ordinary Bessel function. Evidently (12) satisfies
the differential equation

2 2
(13) au 4 Eiu + 4/‘:+_1 ou + 4”,+1, ;8’5677
ox* oy x ox Y

+ru=0.

We will refer to (12) as to the ‘‘reduced’’ case of the functions
S, The limiting values of 2 and % leading to it are included in
the admissible values of the parameters.

(iii) For 1=k=0 we have from (9), (11) or (12)
(14) S (p, 73 0, 0) = ¢,p" P, *(7) .

We study next some properties of the J.-W. functions considered
as functions of the two complex variables z and z* defined by

(15) =T+ , FF=x—iy .}

As such they satisfy the differential equation

16y 2U | 2/:,5;{82&2}_23,1:3{?2__62}+k[z_kﬁ%’i]gzo ,
ozoz*  z+2* Loz 02F) z—2zFlDdz 2* 4

which is readily constructed by inserting in (1) the variables (15).
From (3) it is evident that

p=zz*, re== 0

Thus we have for

P "z, z¥) zfn(p’ » (P! T)

81t is assumed throughout the paper that » and ¥ are independent complex variables,
so that also z and 2* take on independent complex values.
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the representation
a7 F,*"(z, %)

=c, P(ZV ""')(z2+i > ‘”(kzz*)”*“”’lMA,Mw 1§+7z(kZZ*) .

Using the relations [11, pp. 58, 61]
P, (z) =(= J'P, > —7)

and

2

2p+2v+14n), ([r—1)n —n, —n—2p;
Pn(zﬂ',zy) =( /1”: - < ) .'F I: - ]
(<) n! 2 ) _on—gu—2, 177

and observing (7), we may write this also as follows:

Fn(u, v)(z, z-k)

o 2p ke +v+1+n--2; kzz*
= Z+Z* 2712F[ o ] [P ] )
AR —2p— 2)(”2*) 20 +2v+2+2n

From this representation it is easy to draw the following conclusions :
LEMMA 1. For all admissible values of the parameters,

F, "z, z*)e E_,
LeEMMA 2. For all admissible values of the parameters,
F, " (z, 0)=2*".

In order to prove Lemma 1 we observe that the last two factors in
(18) are entire functions of zz*, while, since the series ,F' in (18) termi-
nates after at most n terms, the first two factors form together a
polynomial in 2z and z*. The solution (18) of (16) is thus an entire
function of z and z*. Furthermore the conditions of symmetry im-
posed on the elements of E, which for functions of z and z* amount to
the relations

19) F(z,2*)=F(—=z, —2%), F(z, z*)=F(z*, 2),

are satisfied by (18). Lemma 2 follows simply from the fact that for
z¥*=0 the last three factors in (18) reduce to 1. It is easy to see that
both Lemma 1 and Lemma 2 remain also true in the reduced case.
We come now to a simple equiconvergence property of series of
J.-W. functions.
LEMMA 3. Let >0 and let
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(20) F@)=Sa.2"

n=0
be reqular in 7. Then for fived admissible values of the parameters
the series

(21) F(z, 2)= S a,F"(z, 25 1, k)
n=0

converges uniformly in every closed subregion < of & =27.x %, and
represents there a function € Eg@ with the property

(22) F(z, 0)=f(2) .

Proof. Obviously the second statement of the lemma follows
immediatly from the first and from Lemma 2. In order to prove the
uniform convergence, we again use for the J.-W. functions the re-
presentation (18). It follows in the general case from a well-known
theorem on M-functions [8, p. 93] and in the reduced case from an
analogous theorem on Bessel functions [13, p. 44, formula (1)] that for
bounded (z, 2*) and for n large the product of the last two factors in
(18) is asymptotically equal to 1. It suffices therefore to consider the
case 1=k=0. We make now use of the well-known generating funec-
tion of the Jacobi polynomials [11, p. 68. formula (4.4.5)]. Replacing
the variables «, 8, , w in Szego’s formula by 2v, 2p, (22+2%%)/222%, fz2*
respectively and observing (17), we obtain the power series in ¢

(23) S Lz, 245 0, 0 =E(z, 2*; 1)
n=0

where for given »”>0, E(z, z*;t) is a certain analytic function of z,
¥ and ¢ regular in (2, 2%) e {7, x 2.} N {lt]<er"7*}. Let now <7 be
enclosed in a bieylinder .27, x .27, where »'<r, and choose r", "
such that »'<#"'<{¢""<». Applying to (23) Cauchy’s estimate for the
coefficients of a power series with |t|==r"'"? yields

(24) |F, 9, 2% 0, 0)|<K|e,lr''"™ ,
where
K= max |E@z2%?)

tl =gl -2

(=, 2%)€ Hypr x K,

is finite and does not depend on n. Therefore the terms of (21) are
dominated in <7 by the terms of the series

K3 lalle, e
7=
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which converges absolutely, since |e,/¢,..| — 1 (n— o) and (20) converges
for some z=9""" with »""<l¢""<pr.?

3. A UNIQUENESS THEOREM FOR SOLUTIONS OF (1)

LeMMA 4. Let 2 be a domain C K?, containing the origin, and
let F'(z,2*) be a function € E such that F(z,0)=0. Then F(z,2¥)=0 in .

Remark. The proof of this lemma does not follow from the
general uniqueness theorems for hyperbolic initial value problems
(see, for example, [7, p. 321]), since some of the coefficients in (16)
are singular.

Procf. In view of the relations (19) the power series expansion of
F, which by assumption converges in a certain neighbourhood of the
origin, must be of the form

©o m
(25) F(Z, Z*)IZ Z Cm, ”z“m gk )
m=0 n=0
where
(26) Cin, n™=Cm, am~n

If we call s+¢ the weight of the monomial z2*', we may say that
(25) contains only terms of even weight. By assumption and by (26),

(27) (‘m 0 C'm, am=— =0 ’ m:O, 1! 2,

By differentiating (25) and substituting into (16) we obtain, after multip-
lying by #2*—z*,
§ icm An@m —n—2p—2y—1)z""* ¥ =1L Am —n) (L—r)2" " 2
(28) m=0 n=
—(m-—-n) (n+2p+2v+ 1)z " 1g¥" L R} =0,

where the symbol R, denotes terms of higher weight than m. We
prove now that ¢, ,=0 for all values of m and n in question by induction
with respect to the weight.

By (27), ¢, =0. Let us assume that we have proved

(29) ¢, n=0 for n=0,1, ---,2k; k=0,1, ---, m—1.

Consider now in (28) the terms of fixed weight m. Then the terms
Rm will be multiplied by coefficients ¢, , with k<<m, which are zero by

4¢The author is indebted to a referee for the following remark: Using the theorems
about the growth of a power series of one complex variable whose coefficients satisfy
certain conditions, one could obtain bounds for the functions (21) in terms of the coeff-
icients an,
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(29). Considering now the fact that the coefficients of each fixed
power 2™ "z*" must vanish separately, we are led to the recurrence
relations

(30) cm,](m+/l+V)+20m,0m(#_u)=0 ’

Co, naa(M+1) @m—n+2p+20) +4e,, o(m—n)(r—v)

(31)
—Cpyn1(@m—n—1) (m+2p4+2,)=0, n=1,2, -+, 2m—1.

Since ¢,,=0 and since m+ p#+1==0 for admissible values of the para-
meters, we have from (30) ¢, ,=0 and hence from (81) ¢,, ».,—0 as long
as 2m—n+2p+ 200, for n=1,2, ---, 2m—1. It follows that (29) is
true for k=m and hence for all k.

4. EXPANSION THEOREM

The following theorem, which will be the principal tool for the
special functions work in the later part of this paper, is now easy to

prove.
THEOREM. Let >0, <% = .2 x 27 and let F(z,2*) € Kg. If

(32) Flz, 0)=S a2 ,

n=0

then the series

oo

(33) A (2, 2F)
n=0
(which by Lemma 3 converges in <7 ) is equal to F(z,z*) in <7 .
Proof. By Lemma 3, (33) represents a function € Eg which is
equal to F(z, 0) for 2*=0. By Lemma 4 the function

F(z, z%)— > a,F, %"z, 2*)
n=0

vanishes identically in <% .

The expansion (33) will sometimes be called J.-W. expansion of
F'(z, 2%). The function (32), the knowledge of which is sufficient for the
construction of the J.-W. expansion of F(z, z*), will be called the
generating function of this expansion.

Remark. For fixed admissible values of the parameters Lemma 8
sets up a mapping of the class of even analytic functions of a single
complex variable regular in a .2 on the class Ex, xx,. This mapp-
ing is one-to-one by Lemma 4. The inverse mapping is given by the
formula

f(Z)=F(Z, O) ’
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which is essentially identical with the inversion formula for Bergman’s
so-called integial operator of the first kind,® whose existence, however,
has been established in general only for the case where the coefficients
of the differential equation are regular analytic functions in the con-
sidered domain. Our theory presents an example of a representation
of an operator analogous to that of Bergman in a case where the
considered differential equation has singular coefficients.®

We proceed now to construct explicity by our method the J.-W.
expansions of several special solutions of (1), which are again obtained
by the method of separation of variables.

5. APPLICATIONS OF THE EXPANSION THEOREM :
CARTESIAN COORDINATES

If the function u(z, y)=X(x) Y(y) is introduced in (1) (with k=1),
we find that the differential equation is satisfied if X and Y satisfy
separately the equations

a?PXJr 4p+1 dX+
dx? r dx

&Y | 4+l dY
dy* Y dy

(4o —a)X=0,
(34)

provided a+p3=1.

Solutions of these equations which are regular near x=0 and y=0
can again be expressed by means of Whittaker functions. In view of
the differential equation satisfied by these functions it is readily verified
that, provided none of the numbers 2¢ and 2» is a negative integer,
one may put

X(@)=a7 ' M,,(x*) ,
Y(y)=y "M, (v*) .

Introducing the variables z and z* and passing to hypergeometric
series we have

(35)

z+z*¥ z—z* .
TR RTRN_Ule, 2
“( 2 2i ) @ 2")
(36) o 1 (z+2¥) 1 4 (z—2)
=g A [/Hr 2 TC T ']XFl [”Jr*z’ F 4 ]
2v+1 2v+1

® See [2, p. 117]. Contrary to the situation described there, our operator maps func-
tions f(z) which are real for real z on solntious of (1) which are real for real « and y.

® Other cases of differential equations with singular coefficients have been treated by
Bergman [3, 4]. The ‘““reduced’” equation (13) has in the case 4u-+1=0 been considered
by the present author in [10], where a different method has been used.
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The generating function of the J.-W. expansion of U(z, z*) is thus
given by

1 - 1 ®
U, =1 2 =0Ty m [ T ]
20+1 2v+1

<z“ )“‘ i (/‘ + ; - “>m( —2p— mh(u + :12 — /?>n (—m),

= (——ﬂ+a—m+é> 2+ 1) (20 + 1)umin!

(37)

- </1 ! —a> —2p—m, v+ ; B, —m; 2\
=3 . 3F2[ ! :I( > )
m=0 (2/1+ 1)m! +, 2v+1 4

’

Applying the expansion theorem, writing the J.-W. functions in the
form (9) and using the relations (following from (3))

1+7 , 1-7

r’= ’ Y=
P 9 Yy=p 9

we obtain the following J.-W. expansion for the product of two Whit-
taker functions with different pairs of indices and arguments, which
is valid for unrestricted values of p,z, @, 3, as long as none of the
numbers 2¢, 2y and 2x¢+2v+1 is a negative integer:

) ) ) )

(38) (,u+ - ) |:—2,u—m, u—l—;——ﬁ, —m; 1

S ,
n=0 (2,u+1)m(/3p+2u~r—1+m)m ~,U+at—m—i—;,2u+1

XRZ(W’ZIQ(T)KO—’L—WI @By v+ %Mrs(f’) .

This mother expansion has a great number of children and grand-
children, of which some are known since long. In the following we
list some of those of its special cases where the function ;F, can be
expressed in a more closed form, and some other consequences.

5. 1. Bateman’s expansion. Putting in (38)

p=kr*, r=cos 24 ,
a=cos” p/4k, B=sin® ¢/4k
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and letting £—0, we obtain, using (12) and replacing 2¢# and 2v by ¢
and v respectively,

(7 cos ¢ cos )", (7 cos ¢ cos &) - (r sin ¢ sin J)~J,(r sin ¢ sin &)

(39) (=) 2ml(p+v+ 1+ 2m) (g +v+1+m)

zéo (p+1+m) ['(v+1+m)
X Pm(v’ “)(COS Z‘P)Pm(y’ 'J’)(COS 2 (9)7‘ —”—V—IJM+V+1+M(7‘) ’

which is equivalent to Bateman’s expansion for the product of two
Bessel functions [13, p. 370]. As pointed out by Watson, a great
number of theorems on Bessel functions can be considered as special
cases of this expansion.

5. 2. Product of Bessel functions, second case. If a=/3=0, we
have, using a theorem by Watson [1, p. 16],

( (; )n(/l+u+1+n)n

—m, —m—2/, u+; , if m=2n
7| = e} +n)
—/1—m+;,2u+1 (v Dl 2 2 u
0, if m=2n+1,
n=0,1,2, .-,

and thus by (11), after dividing by a numerical factor and replacing p
by 2p,

1+r>"‘ ( 1+r> ( 1——r>"’ ( 1—7¢
L(p177). V1
(” 2 “\P g Py £og

1/2['(/J-+u+ L > - (1> (/u_{_,,.*_,,,l +2n></1+u+~14>
— 2 }_‘ 2/n 2 2/n

[(p+1)C(+1) i (¢+1)(v+ 1),

P —p-y-1
XPzn(Zy’z“)(T)P moY 21;:.+v+%+2n(|0)'

This Neumann series for the product of two Bessel functions cannot be
deduced from Bateman’s expansion. The special case pg=v of it has
been given by us already earlier [9, p. 333].

5. 3. Product of two Bessel functions, third case. Replacing in (38)
e, a, B by kp, 1/4k, —1/4k, respectively and letting k—0, we obtain
in view of (14), writing again g, v instead of 2y, 2y,
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PR R S RO AR/ red

= ‘f‘“’w ( 1)7z VW)
2 nEOI(/t+n+1)[(u+n+1)< )P( @) .

Equivalent forms of this formula are well known in the theory of
Bessel functions.”

5. 4. J.-W. expansion of a single Whittaker function. In the case
f=v+% the ;F, in (38) reduces to 1 (one of its numerator parameters
being zero) and the second of the two- M-functions on the left becomes
an exponential function. Thus we have

1

o 1;’1 <P l+r) a2 Mw,u<{) 1+ 'r>
(42) 2 2

oo (/H— ! —a) o () Y
—_ _ P Ho V) (z. —p=y—1 eval mavadom .
=0 @pt )2+ 20+ 1+ m), £ wrved wavadem ()

An expansion which is equivalent to this one is listed by Buchholz [6,
p. 180], who gives credit for it to Erdélyi. Buchholz also indicates
various special cases of the expansion.®

5. 5. Product of two Whittaker functions, Remanujan’s case.
Another case in which the function ;F, can be summed elementarily is
given by the conditions a=f, g=». Then we have, upon application
of a theorem by Dixon [1, p. 13]

5 L {(2%}‘ ; a> <p+é+a> ; 0
- ﬂ m, /1+ o, —m, TG . n , 1L M=—4n,
SF{ 2 :l | '( Ll ) 2p+1),
—p+a—m+ 2,2[1—5—1 ] At 2 “« Zn( a )
L\O, if m=2n+1,
n=0,1,2, «--,

furthermore [11, p. 80]

P,em ) (7) = ((i.u::i))n Cx+h (2,

7See, for example [13, p. 148]; or for the special case =, =0 also [12, p. 2].
8 The case where the M-functions in the summation reduce to Bessel functions has
(with v=1) been rediscovered recently by Slater [16].
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where C%+*% denotes the Gegenbauer polynomial. Thus (38) becomes®

21jﬁ)%%M (1+Tyu (%iﬁ
<P 4 ww\ 0 2 an\ P 9

(2n)!(,u+ ; —a) (#+ ; +a)
n1(2p+ 1)+ 1)

(43)

E Cgff%(z')p'z” —1M2ay2u+%+2n(()) .
For =0 we obtain in view of

Cxrd ()=~ B D
n:

after multiplying by (p/2)***! and replacing p by 2p the series
[M,, . (0)F

(- )"(2n)' p+ p+t+a) (2e+
A ((Ei)227z+>1‘§"(4}1”+1)jn>( 2> Moo susgonl2P)

(44)

which expresses the square of an M-function as a series of M-functions
in which the first index and the argument are duplicated. Expressing
p and = on both sides of (43) by z and z* and putting 2*=0, we have
in view of Lemma 2, using (37) on the left.

zZ

1 2 1
L+ —ay S p+ - —a; — -
w2 ]
2r+1 2p+1

(45) -3 (v =a) (w5 ), (ZY

it (2p+1)u(2p+1)m! 4
1 2t
L+ —a, ,u+ -ta;
— J’{ ? 64 :l

5 p+1, 2,u+1
This result was already found by Ramanujan [1, p. 97].

5. Generalisation of Erdély’s integral. Assuming 5R,u>——% ,

6.
1 oy

RNy > — 9 multiplying (38) by

9 The special case p:a:-i of this formula has been given in a different notation by

Rainville [15]. (The M-functions on the left can then be expressed in terms of the error
function.) Some misprints in [15] are pointed out in [14].
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(o[2) 7 (L= (L + 24P ()

where n is a fixed nonnegative integer and integrating with respect
to r from —1 to +1 we obtain in view of the well-known orthogonality
properties of the Jacobi polynomials [11, p. 67]

[ et Jor o] amorian, [p ! 7 P

+v &l 1
o _EUT@) e (i )
n! I'2u+2v+2n+2)
—2u—n, u+é———ﬂ, —n;

X 3F2[ :| . Mm+B,u+V+—%—+n(P) .

~,u+a—n+—12—,2u+1

For n=0 this reduces to a formula equivalent to a well-known result
due to Erdélyi [8, p. 134]; see also [6, p. 128]. It is then most easily
proved by means of the Laplace transformation.

5. 7. Neumann series for the product of two M-functions. We
mention finally that the special case obtained by putting f=—a, pg=»
has been given by us already earlier (See [9, p. 829], and [10, p. 270],
where also some special cases are discussed). In this case (and also in
the more general case p=Fv) the M-functions on the right of (38)
reduce to Bessel functions, without this being the case for the M-
functions on the left.

6. APPLICATIONS OF THE EXPANSION THEOREM:
JACOBIAN ELLIPTIC COORDINATES

Other particular solutions of (1) can be found by introducing in
(4) or (16) new variables £ and 7 defined by

(47) E=a+p, J=a—p ,
where
(48) =1 (a—2)a—2")=Va*—2apr+p* ,

with some real constant «, the square roots being positive for z=2z*=0."

10 These coordinates can be shown to be a special case of the general ellipsoidal coor-
dinates, as investigated by Jacobi. Their use is also suggested by the structure of the
generating function of the Jacobi polynomials.
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By elementary computations one finds that if U(z, 2*)=W(Z, »), (16) is
transformed into
O A R i .4
(49) 21+ g+ (=)l 41 @+ ) =@ =) W=
oy 2 16

This equation can again be separated. One finds by the usual method
that if W(¢, 7)=5(¢)H(y) is a solution, 5 and H have to satisfy
separately the two ordinary differential equations

(=) GE 201+ = (=)o) S k[ e Lo e =
dé 2° 16
(50)

(7 al)df+2[<1+yw)v+(y—»>a] k] p—29-E p -0,
where p is a separation parameter. In order to obtain solutions of
these equations in terms of known functions, it seems necessary to
simplify them by assigning special values to some of the parameters.
Two such simplifications will be indicated below, one of them Ileading
again to Whittaker functions, the other to ordinary hypergeometric
functions.

6. 1. Addition theorem for Whittaker functions. If in (50) we set

1 ak

p=0, y=— 5 A= , the first equation becomes divisible by é—a and

the second by 7+a. Cancelling these factors and setting (without
essential loss of generality) k=1, we obtain the two equations

(5+a),915§+(2,1+1)@5, £ g9,
: 5 16

_NEH T H=0
(7 a) +(2+)77 —2H=0 }

(51)

which again can be easily reduced to Whittaker’s equation. Carrying
out the reduction one finds that solutions which as functions of z and
z* are regular near z=z*=0, that is regular near é=7=«, are given
by

(52)

8

H(vy)z(%‘;?? )‘“'%Ml, “<,a —7/) ,
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and that, as long as 2¢ is not a negative integer, the product of these
two functions belongs to E.x,x.x,. Since for z¥=0

f=p=Va* — az’,

the generating function of the J.-W. expansion of W(g, 7)=5(¢) H(y)is

(53) f(z)z(afyw—%M;,#(a% 1/a‘—"qz~)M (a 1/a‘— afz>.

If we write
(54) (D)= A,9a)z™
m=0

the required J.-W. expansion, valid in 5%, x .7, and provided 2y is not
a negative integer, is

( ap U?)‘“ Y (“+P+‘“)Mm (“igtﬁ{)

-l 2"m!
W (-1, 21) e “
=2, An ()(2 ), — P, (2)p~ zM L nem(0) 5

(55)

where & is given by (48). It does not seem possible to express the
coefficients A4, in any closed form. Using a result of the previous
section it is however not difficult to derive for them a series whose
general term is again a M-function and whose coefficients can be ex-
hibited explicitly. If in (43) we replace p,z,a by a,v/1—2/a, /8
respectively we obtain on the left just (53) and have therefore

(56)  f(»)

@l L) (e L49)
oo n n sual oy =2 =1 « +1eom .
P R /e [ e I St

Now, by Gauss’ quadratic transformation,

1-V1-2'|a
Cu+d e (4!1;{—1)7,“17[ 2n, 4p 414 2n; :l
2 2(1/1 Z/ ) (2 )' 241 2#+1 2
_(4p+1), F\:——n,Z;er ';-Hz; zﬁa]
2401
(2n)! 2p+1

Inserting this in (56) and rearranging the series by collecting equal
powers of z (which is permissible in view of Weierstrass’ theorem) we
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obtain in view of (564) the desired series representation

1 )
s ),_re 15 ) e

@r+l)m! 2 (e—m)! @p+l),

)

m (a)—‘

(57)
X Mo ,2u+21_ +on (a) .

Since in virtue of this formula (56) expresses the product of the two
functions

M (4F0TDY, —i1,
8 2

in terms of products of M-functions with the arguments p and «
respectively, (55) may be looked at as an addition theorem for the
functions on the left in analogy to a similar situation in the case of
the well-known addition theorems of Graf and Gegenbauer in the
theory of Bessel functions [13, p. 358].

For r=—1 we obtain from (55) the following addition theorem of
a more elementary character:

58) (a+p)*- %Mm a+p)= Z( )2 7"(2#-{—1),"

A, -5 Ma +m
2 (2p+m), (@)p 2 e (P)

6. 2. Hypergeometric functions. Inserting in (51) the special
values p=q/k, a=1, and letting £—0 yields the two differential
equations

I

[U’l) S 2L gt E— w~nJ —q5=0,
(59)

1(77“ 1),,, +2[(1+,u+p)77+(,u—p)] —-qH=0,

which are of hypergeometric type. Using this fact it is readily proved
by substitution that solutions of these equations regular near z=z*=0
(that is regular near £é=7%=1) are given by

[u—{—u-!— -7, ptv+— +T,£2§]

5(5)=2F1
2v+1

(60)
l pivt beppaot Loy, 127
H(v)zzpl[ 2 2 2 ]
2p+1
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where
r=VQ@e+2+1y—q
is arbitrary, since ¢ was arbitrary. Writing Uz, 2*)=Z(£)H(7) anb
61) Uz, 0)=i az" ,
n=0
we have, according to the expansion theorem,

(62) Uz, 2%) =3, a, .z, 23 0, 0) .
n=0

Since here the parameters 2 and k& are both zero, the coefficients «,
can be easily determined by putting z=z*. From (47) one has in this
case &=1, 7=1—22" and from (14), since now r=1, p==2

(63) Bz, 25 0, 0):,,@/‘,f 20+ 1)u(2v+ 1)y on

r+v+ ;7>n(fl+v+1),,
Thus (61) reduces to

1 1 .2
2F1[#+V+ 9 7> ,U+IJ+ 2 +7; 4 i‘ ia/n“@#-{—-zyil)n‘zl«"‘l)n P ,

2re+1 " <h+y+;) (t+2+1),
which yields
1 1 1
(64) (ﬂ‘*‘”‘*‘ . —T)”<F+V+ o +T>n(ll+»+ ) ),, (r+v+1), .
Bn = Cpr+ 1)y 20+ 120 +20+ 1!

Thus (62) may now be stated more explicitly as follows:

by L 1, 1-p+a
B A A AL

2v+1

el WS B
(65) o L A R T

21+1

(#+v+l~— r) (,U+v+~-1»-|—r)
E, n ] 2 B J pnPn(zv, 2;:.)(1_) .
10 (2p+1)u(2v+ 1),
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A result equivalent to this was derived by Brafman'' from Bailey’s de-
composition formula for a special case of Appell’s hypergeometric
function F, of two variables [1, p. 81.] Since it is also possible to
derive Bailey’s formula from (65) simply by replacing the Jacobi
polynomial by its hypergeometric definition and inserting appropriate
values of p and z, our proof of (65) contains also a new proof of that
formula.

Restating (61) with the explicit value of a, given by (64) we obtain

1 1 1—V1—2
. [#+u+—2- O :'
2r+1
! 1, 1-V1-2
(66) ><2F1FU+V+‘2"'—T1 P+U+72——+r, 5 € :I
B 2v+1

pAvE L vk L b Lt L 2
=4F3l: 2 2 2 ] ,
2p+1,20+1,20+20+1
which is equivalent to a result proved by Bailey [1, p. 88, formula (3)]

by means of transformations of terminating generalized hypergeometric
series.
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THE SOLUTION OF CAUCHY'S PROBLEM
FOR A THIRD-ORDER LINEAR HYPERBOLIC
DIFFERENTIAL EQUATION BY MEANS OF
RIESZ INTEGRALS

JOoHN G. HERRIOT

1. Introduction. M. Riesz [3] solved Cauchy’s problem for the
wave equation by means of a generalization of the Riemann-Liouville
integral and a consideration of Lorentz space. L. Girding [1] solved
Cauchy’s problem for two linear hyperbolic differential equations arising
from a consideration of spaces of symmetric and Hermitian matrices by
means of similar generalizations of the Riemann-Liouville integral.
Garding [2] also proved some general results for the solution of Cauchy’s
problem for general linear hyperbolic partial differential equations with
constant coefficients again using Riesz-type integrals.

In the present paper the explicit solution of Cauchy’s problem for
the third-order partial differential equation

(1.1) du="nh(x,, x5, ;) ,

where 4 denotes the operator 2°/(2x; dx, ox5), is given by means of a
similar generalization of the Riemann-Liouville integral. We restrict
our attention to the case in which % and its first and second derivatives
are given on the plane S whose equation is x;+x,+a2:=0. We verify
in detail that the solution given actually satisfies the differential equ-
ation (1.1), and also that it and its derivatives assume the proper
values on S.

Before proceeding to a study of (1.1), we give a brief discussion
of the Riemann-Liouville integral and Riesz’s generalization of it. (We
use mainly the notation of Garding [1].) Let p be a complex variable,
and consider the Riemann-Liouville integral

(1.2) I f(z)= ;,%O) [[ rexo—tr-ar (a<w<b<o0) ,

where .77 (p)>0,' and f(x) is a continuous function when a<a<b<eo.
This integral diverges if 2 (p)<0. If p and g are such that <2 (p)>0,
Z(q)>0 we have

Received January 19, 1954. Presented to the American Mathematical Society, September
3, 1953. The results presented in this paper were obtained in the course of research
conducted under the sponsorship of the Office of Naval Research. The author wishes to

thank Professor C. Loewner for suggesting the problem discussed in this paper and for
his continuing interest in it.

L R(p) denotes the real part of p.

745



746 JOHN G. HERRIOT

(1.3) I f(x)=1"" f(x)
and

(14 & pofa)=D (@) .
dx

Clearly I?f(x) is an analytic function of », regular for .Z7(p)>0,
and depending on the parameter z. It can, however, be continued
analytically beyond this region provided that f(xr) has a sufficient
number of continuous derivatives. Let us write

(1.5) ()= 2 FO@E=TY a1, 7)
7!

so that »(z, ¢, k)/(t—x)* is bounded when a<t< @. Then on substituting
in equation (1.2) we find that

(1.6) I f& )——r( )S e, t, k) (@—t)P-dt
+ S P@@—a) p(p+ ). - (= 1)
= ' (p+5+1)

Here the integral converges for .22 (p)>—k, and (1.6) provides an analytic
continuation of I?f(x) for such values of ». In particular,

(1.7) I f ()= fOAx) (7=0,1,2,--+) .

By successive integrations by parts we can find another formula
which is also useful for the analytic continuation of I?f(x). We have

» pem p(m K f(J)(a)(x a)]
(1.8) I f(z)=I"""f )(x)+JZO Fp+i+1)

If we let p—0 we find that

9
(19) f(:r) lmf(m)(m>+ jzﬂ f J (a;(fj a))

The right member of (1.9) gives the solution of the differential
equation

am u(m)

(1.10) o

= F (@)
whose derivatives of order less than m assume the values f(a),---,
S (@) when x=aqa.

When generalizing (1.2), Riesz considers Lorentz space L with points
x=(2, &y +-+,2,). The square of the distance of z==(x,, @, -++, x,) from
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E=(61, &, +++, &) is
r@—§&)=(x;—&)—(x,—&)'— -+ —(x,— &) .

The interior of the light cone with its vertex at a fixed point « is
characterized by r(x—¢&)>0 where & is variable. It consists of two
parts, the direct and the retrograde cone, characterized by

r(@—&>0, El_w1>0 and ?‘(CE—-G)>0, &—a, <0,

respectively. It is the retrograde cone denoted by D(x) which is mainly
considered by Riesz. The domain of integration used is the bounded
domain Dg(x) limited by the nappe C(x) of the retrograde cone D(x) and
a certain sufficiently regular surface S having the property that every
straight line in L with a direction of nonnegative square length meets
S in at most one point. The volume element in L is dé=d&déE,- - -dé,.
Let f(x)=f(a, 2, --+,x,) de a real function defined in the region
consisting of all points 2 whose retrograde cones D(x) intersect S. Then
Riesz’s generalization of (1.2) is®

(1.11) IPf@)—= 1

— £)]P-Cing ,
H,(p) SDg(fz)f(E)[T(x 2l 3

with

Hn(p>=2w—*[l' (g)]’l”l‘(p)l'(p— "2

If f(«) is bounded, the integral is a regular analytic function of p for
7 (p)>(n—2)/2. It can be shown that (1.3) is valid and, corresponding
to (1.4),

(1.12) I f(x)=1I" f(2) ,
where 4, is the wave operator
(0/0@,)* — (8/0@,)* — « - - — (3f 0w, ) .

If f(x) has derivatives of sufficiently high order it is possible to continue
I?f(x) beyond the region in which the integral converges. The
generalizations of (1.7) are found to be

(1.13) LPf@=f@), I7f@)=4f() (1=1,2,8,--+).

By means of Green’s formula it is found that

?To get uniform notations in this paper, as in Garding [1], Riesz’s variable « is
replaced by 2p here.
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(1.14) I7f(z)=I*'4f(x)

1 AF @) [y eypribr _ pp A=) |
+Hn(p'+ 1)Ss<x>{ g @l £ dv a5,
where S(x) is the portion of S interior to the cone D(x), d/dv is taken
in the direction of the Lorentzian normal to the surface S, and dS is
the Lorentzian element of surface area.

If we let p—0 in (1.14), the right side gives the solution of the
differential equation

(1.15) dyu(x)="h(z)

u(x) and its (Lorentzian) normal derivative being given on S.

In the present paper we consider three-dimensional Euclidean space
with points a=(x:, ., ;). In this case the retrograde light cone D(x)
with its vertex at a fixed point « is characterized by x,— £ >0, z,—£,>0,
x;— & >0, where £é=(¢, &, &) is variable. We denote by S the plane
& +6,+&=0. The domain of integration used is the bounded domain
Dy(x) limited by the boundary of D(x) and the plane S. Then our
generalization of (1.2) is

1
(1.16) I’f2)=-—-—
[I'(p)F
where 7(x — &)= (x,— &) (x,— &,)(@;— &) and dé=d& dEdE. I f(2) is bounded,
the integral is a regular analytic function of » for <2 (p)>0. We show
that (1.3) is valid and, corresponding to (1.4),

(1.17) A1 F(x)=I7f(x) .

] SDM FOIr =1z,

As before, I”f(x) can be continued analytically if f(x) is sufficiently
differentiable. The generalizations of (1.7) which we prove are

(1.18) Li@)=/f@), I"f@)=4f().

In § 3 we apply Green’s formula to discover a formula similar to
(1.14), namely,

(1.19) I'f@)=I""4f (@) + 15 f () ,

where I f(x) is an integral over S(x), the portion of S interior to
D(z), involving f and its first and second derivatives. If we let p—0
in (1.19), we obtain the solution of Cauchy’s problem for the equation
(1.1). The verification of the solution is carried out in § 5 making use
of a series of lemmas developed in § 4.

The methods of this paper can be applied to the solution of the nth
order partial differential equation
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o"u
- ==, By, e, )
X, 0L,> + + 0T, (@, @ )

However, the formulas required are very cumbersome to write and for
this reason the present discussion has been limited to equations of third
order.

2. Generalization of the Riemann-Liouville integral. Since we wish
to consider the differential equation

2.1) du = *u[(0x,02,02) =h(x:, sy T5)

the appropriate formula for the cube of the distance between points
X=(T1, @, ;) and E=(&, &, &) 1s

(2.2) r@—&)=(x,— &) — &) — &) .

The retrograde light cone D(x) with vertex at a fixed point « is
characterized by 2,—& >0, x,—§&>0, x,—&>0, where ¢ is variable,
We do not make any use of the geometry of the space based on this
distance formula but in finding volume elements and surface elements
we regard the space as ordinary three-dimensional Euclidean space. It
is only in determining the proper generalizations of the Riemann-
Liouville integral that (2.2) plays a role. We first consider an integral
extended over the whole of D(x). We suppose f(x) defined in a region
such that if this region contains a certain point « it contains also the
retrograde cone D(x). In order to assure the absolute convergence of
the integral considered we suppose among other things that f(x) tends
toward zero sufficiently rapidly when z, 2, 2;—>—oc. We then define,
for complex values of p such that 2 (p)>0,

2.3 rr@= g W, Fere=ar-e.
We should like to have

(2.4) AIP*1 f(a) =17 f ()

and

(2.5) I fe)=Ir""f () .

In order to find the correct form of Hi(p) to accomplish this we consider
the particular function

Si(@x)= exp (@ +x,+ ) .

Clearly 4f.(x)=fi(x), so we should have I?f,(x)=f(x). Introducing
this funetion into (2.3) we easily find that we should choose H;(p)=[1"(p)F.
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With this choice of Hi(p), it is easy to verify that (2.4) holds by
merely carrying out the necessary differentiations. We proceed to verify
that also (2.5) holds with this choice of H(p). After interchanging the
order of integration we find that

(2.6)
r1s@= o (1 e 7 ‘”LHW [M(e= D) r@—&)-d .

If we make use of the well-known formulas

@7 [ e=armo-gp-az=p-a B, p)

and

(2.8) Bla, )= T @) (a+P) |

we find that the right member of (2.6) reduces to I”*?f(x). Thus (2.5)
is established.

In the applications to follow, the domain D(x) will be replaced by
a bounded domain Ds(x) which is limited by the boundary of the retro-
grade cone D(xr) and by the plane S whose equation is & +& +&=0.
We shall therefore in all that follows use the following definition of

I?f(x):
1 :
(2.9) rr@= e | rere—ora.
[P D)

Since this is the same as (2.3) if only we assume that f(¢§)=0 when
£+ & +£,<0, it is clear that the relations (2.4) and (2.5) hold also when
I f(x) is defined by (2.9).

In the application of (2.9) to the solution of Cauchy’s problem we
shall be concerned with the limit of I”f(x) as p—0. We therefore
prove :

THEOREM 2.1. If f(x) is continuous in the region x,+x,+ ;>0 then
I?f(x) defined by (2.9) is a regular analytic function of p for # (p)>0,
and

(2.10) Hm I*f(z)=f(x)

in the region x,+x,+x;>0.

Proof. That I?f(x) is analytic when .<#(p)>0 follows at once from
its definition by equation (2.9).
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In order to prove (2.10) we make a change of variables by writing,
in (2.9),

—&=do cos’0, , x,—&=dosin*d, cos®d, , wx,—E&=do sin’d, sin’d, ,

where d=ux,+a,+x,>0. If we also make use of (2.8) and the well-
known formula

@.11) Bla, ﬁ)=2g""sin2w~lﬁ cos®10 df |
we find that

dasr /2 ({2
- - F ,01, 02 "'F(Oy 01) 02)]
F(3 +1) F@ = [[(p)]e‘gg So LE( )

«46%7-1 sin'?-16, cos*?-16, sin** 16, cos**~14,dd.d6.ds ,

2.12) I*f(x)—

where
Fo, 0., 0,)= f(x,—dos cos*,, x,— do sin*4, cos*d,, x;— do sin*d, sin*d,) .

But since f(x) is continuous, if >0 is assigned we can find a ¢ such
that 0<60<1 and such that |F(s, 6, 6,)—F(0, 6, 6,)|<e when 0< o<,
uniformly in 6, and 6,. We now break the integral in (2.12) into two
parts J; and J,; in J, o goes from 0 to &, and in J, from § to 1, while
6, and 6, assume all values between 0 and #/2 in both J; and J,. We
see at once that

T\ <ed??/I"(3p+1) .

If M is the maximum of F(s, 6,, 6,) in the region of integration, an
easy calculation shows that

|| <2d**Mes**-*/ " (3p)

if 0<p<{1/3. By choosing p sufficiently close to zero, we can make J,
arbitrarily small, and it follows that

1}33 [I7f(x)— 1,(3 )f(x)] 0.

Equation (2.10) follows at once from this since d*?/I"(3p+1)—1 as p—0.

3. Green’s formula for I?f(x). We shall find it convenient to make
use of the function

(3.1) v=v(x, )= [r@=F _ [@—&)@=-&)@—&)"

F(p+DF [F(p+DF

We wish to transform the volume integral
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(32 11 oy (70 4007202

into a surface integral. Here 4; denotes the operator 4 with respect
to the variable é&.

The function to be integrated must first be transformed into the
form of a divergence. We easily find that

SAw=(fvee)e,— (Fe,ve)e, + (fe,6,0)e, —v4ef .

By permutation of £&,6&,& we obtain altogether a total of 8! such
equations. The left member and the last term of the right member
are unaltered by such permutations. Adding these 3! equations and
dividing by 3! we obtain

(3:8)  fAwrvdef—| L (onntofee) = L (Favntvese) |
+ [; (fvge, + 0 56) — (15 (f'&,0¢, +?)§3f§1)1
+ [é (fvee,+0See)— *é (f&lvgz‘*‘vslfgﬂ

£

&

We note that if <2 (p)>>0, v vanishes on the boundary of the retrograde
cone D(x), ve, vanishes for &=uw;, (j=<t), and Vgg, vanishes for &.=u,,
(k=<i, k=<, i=<)).

Applying the divergence theorem and noting that

A= —[r@@=1"/LI'(D)] ,

we obtain

(B.4) I'f(x)=D""4f(2)

1 1
+ Vs SL@{ n [f (Veye, +veye, + Ve ) + 0(Fee,+ Fee, + glgz)]

— »é—[(fgz‘i‘ffg)vﬁl + (S Se)ve, + (fgl+f§2)v63]}ds ’

where S(z) is the portion of S included in the retrograde cone D(z),
and dS is the surface area element on S(z). If f(2) is continuous, then
by Theorem 2.1 the left member of (3.4) becomes f(xr) when we let
p—0. If 4f(x) is given in Dg(x), and f together with its first and
second derivatives are given on S, then the right member of (3.4) can
be calculated. We are going to show that it yields the solution of
Cauchy’s problem for the differential equation du=~h(w).

It is clear that if » and its first and second derivatives are preseribed
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on S, then these derivatives cannot be prescribed arbitrarily but certain
relations exist between u and its derivatives. Only a complete inde-
pendent set can be prescribed arbitrarily on S. For example, one may
preseribe # and its first and second normal derivatives on S, or one
may prescribe u, u, and ug, on S. It is easily shown that it is always
possible to determine a function g(&, &, &) which agrees with « on S
and whose derivatives agree with the corresponding derivatives of % on
S. This being the case, it is reasonable to introduce the following
definition :

(3.5) I f(x)= 1/13

= Lt Fedve,+ (Fo FeJvoe+ (Fe + fevel}ds

1
SSS@) { 3 Lf (ve,e, +vepe, +vee) +0(Fee, + Fee, + )]

where v is defined by (3.1). We can then write (3.4) in the form
(3.6) IPf(x)=I"""Af(x)+I2% f(x) .

If we are to solve the differential equation du=~A(x) subject to the
conditions that « and its first and second derivatives agree with ¢ and
its corresponding derivatives on S, then according to (3.6) and Theorem
2.1 we must have

(3.7) w(@)=1I"n(x)+ lim I2*g(x)

as the solution. We write the limit as »p—0 in the second term on the
right because some of the integrals fail to exist if p=0.

4, Lemmas for the evaluation of the surface integrals, The surface
integral in (3.5) which is required for the solution of Cauchy’s problem
converges for &% (p)>0. In order to find the solution of Cauchy’s
problem according to equation (3.7) we need to show that the limit of
I g(x) exists when p—0. To verify that » and its derivatives assume
the preseribed values on S it is necessary to differentiate (8.7). This
is trivial for the first term on the right but not so simple for the
second term. But if . (p) is sufficiently large the differentiation of
12*g(x) is very easy. The resulting integrals fail to exist near p=0,
and an analytic continuation is required. We wish to show how this
analytic continuation can be accomplished and that instead of differ-
entiating the second term on the right of (8.7) after letting p—0 we
can differentiate I?*'(g) first and then let p—0. We, of course, make
suitable assumptions concerning the differentiability of g.

We note that all of the integrals occurring in (3.5) are of the
form
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@1 JPI@

- ,,]:,,, B SS 3 2 — &) (2, — £, B-1( . — £.)7-1dS

"\/EVP(C()P(B)[T(T) S(m)f(&, E.» Es)( 1 51) ( 2 _) ( 3 Cs) )
where we assume that f(&, &, &) possesses continuous derivatives up
to the first, second, or third order. We note that the integral in (4.1)
converges when the real parts of «, f#, and 7 are greater than zero.

We proceed to a study of this integral, proving a number of lemmas
some of which are of interest in themselves.

The first lemma which we need is similar to one given by Riesz
[3, p. 60].

LEMMA 4.1. Let G(u,v) be a function defined for 0<u<a< oo,
0<v<b<oo, and let it have continuous derivatives to the qth order. Then
it may be written in the form

(4.2) G, v)=r(, v)+ 51, (0) "+ ke) +mlu, ) ,
7=0 7!
where
(4.3) n(u, V)= $ q_rz_l G(_T,S_)_(_Q’O)u’/(;s
7=0 §=0 rls!
and
(4.4) h(v)=0""), k(u)=0wy, m(u,r)=0u*") .

Here G™¥(u, v) =3""G(u, v)/(ou"dv°).

Proof. If G(u,v) could be expanded in a Maclaurin’s series for
sufficiently small » and v, the result would be obvious. Since we do
not assume this we proceed as Riesz does. We write

7o) =G0, v)— S GX(0, 0) ;’,
$=0 .
_ 1 S”Gw—n(o,77)(v—77)q-7'-1d77.
(g—r—=1)" Jo
and
ko()=G(w, 0)— SGrv0,0% = 1 S“G“”‘”(E, 0)(u—g)~ds .
' T, T (@=1)! o
Then
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q-2 u?'
mn, 0)= G, )= (e, v)= 5 b (0) ¥, — k()
r=0 r.
q-2 ,u/?‘ q-2 ur
=G(u,v)— >, G0, v) ’—-G(u, 0)+ >, G0, 0) .
=0 all r=0 r!
— 1 wv Y(q-1,1) 2] e Q—Zdr &
ooy I G D—gyanas
The equalities are verified by integrations by parts, and the order

relations are now evident.

Clearly the roles of # and v may be interchanged in equations (4.2)
and (4.4). Moreover, other similar lemmas may be found giving dif-
ferent powers of u and v in the estimate of m(u, v).

The second lemma is an immediate consequence of equations (2.7)
and (2.8).

LEMMA 4.2, If d=w+x,+2,>0, we have

(4.5) Jo BTl =de 8 T+ f47)

If the real parts of a, B, or v are less than or equal to zero, this formula
provides an analytic continuation of the left member.

The next three lemmas provide the principal tools for use in § 5.

LEMMA 4.3. Suppose that f(&,, &, &) has continuous derivatives up
to the third order. Let d=ux,+x,+x>0. Then J*P"f(x), defined by
(4.1), can be continued analytically throughout the region R in «, B, 7
space, where R is defined by the fact that one of the following three
conditions holds :

@ F>-2, FEH>-1, FO>-1,
or

®  R@>-1, PE>-2, FO>-1,
or

©  Rl@>-1, PE>-1, Z@>-2.

Moreover, J¥F f(x) assumes the following special values. (In all cases,
if o, Bo, 70 18 on the boundary of R, the formula is to be interpreted as
meaning the limit as a—a,, f—f, 7—70.)

(4.6) rrr@=3|[  re e eas,
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r

(4.7) J"""f(x)=g Pl =t a)de

r

(4'8) ']M’—lf(w)z-g/ 1 l[ffg(fl; —&—xs, wa)"f&;(él; —&—;, xs)]d&
+f(9l1—d, Ly (173) ’
(4.9) Jl’l'_2f(x):S ' d[fﬁsfs(él’ — &1 — s, xa)—'zfgsgz(fn —& =3, )
xr1—

+ Fee, (61, —E— a3, @) ]dé
+2f53(w1—d, T, ws)—fgl(xl—d, s, x3)—f§,z(x1-—d, Xy, T3)
(4.10)  JYO0f (@)= f(w—d, ) B5) = f(— 2 — X5, T, T5) ,
(4.11) J0f (@)= fe (@ —d, @2y @) — [ (01— d, 2, 75)
(4.12) J2f (@)= fep, (@ —d, 2, L) = 2f e (@1 — A, B2y @) + g, (01— d, @, 0),
(4.13) SV (@) = fe, (@ —d, @,y xa)——fglg,d(wl-—d, Ty, )
—fglgz(xl—d, T, x3)+f£1£1(9:1—d, Loy X3)
4.14)  Jof(x)=0,
(4.15) Jov-'f(x)=0,
(4.16) Jo-V-1f(x)=0.

Formulas analogous to these can be obtained by permuting the superscripts.

Proof. Since J*P7f(z) is defined by (4.1) and is analytic for
R (a)>0, A (PF)>0, F(r)>0, equation (4.6) is immediate. To obtain
equations (4.7), (4.8), and (4.9) we have

3
(4.17) T f(z) = L S F(e) (@ —&)7de,
F(T) —X Xy
where
X1
(4.18) F(&)=S_é e 85, 80

Then (4.17) is an ordinary Riemann-Liouville integral which can be

continued analytically for % (r)>>—38 since F(&;) has a continuous third
derivative. Also, by (1.7), we have

(4.19) JUV f (@) =F(w,) (r=0, -1, =2).

Equation (4.7) follows by setting &=uw, in (4.18). Also from (4.18) we
have
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dF _ [
(4.20) d{ - E [Fe(Er —Ei—Enr €)= Fo (6 — 1o E)1dE

3 —&3—xy
+f(—53'—1172, Ly 63) ’
and
d*F
4.21
(4.21) des

X1
= S [fgsgs(fu —&—&, &) — 2f§352(517 —&—6&, &)+ fgzgz(fn —&1—&, E3)]d51

—&§y—y

+2f153(—'53“‘$z; Loy Es)"'fgz(“"gs_‘xz, Ly, Es)“ffl(_és"wz, Xy, Eg) .

Equations (4.8) and (4.9) follow by setting &=wx; in (4.20) and (4.21).

Turning our attention to equations (4.10)-(4.13), we shall express
the integral (4.1) in terms of the variables & and & and use Lemma
4.1 with ¢=38 to expand f(&, &, &) in the form

(4.22) f(&, &) &)=F(x—ad, 2, 25) + (55'2*“52)(./“51 _fgz)u+ (xs-fs)(fsl—fgg)a
+ (x?; Ez)z(f bt~ 2 e, Srph + (%; &) 2(f 6,2 e, e

T @ —&)@s— &) ([, — frg,— Lo, T Fre)o+ L&, &)

where

(4.23) L(&:, &) =Li(&:) + (25— E3) La(&:) + Lo(&5) + Lu(&:, &)
with

(4.24) L&) =0(2—&)) ,  L(&)=0((—&)) ,

Ls(fa) = O((xs - 53)3) ’ L4(Ez: 53) = O((xz - Ez)(xa - 53)2) .

Here the subscript 0 indicates that the values of the derivatives are
calculated at the point (x,—d, ., x).

Considering the first six terms of (4.22), we deal with the term
involving (@,— &) (@,—&)*/(2! p!) where A+ p<2. The contribution to
JUPYf(x) of this term is found to be

FE+)L( + et

Al PE (@l (@+B+1+i+p)
by Lemma 4.2. We note that this function is analytic for all values
of a, B, r. When a=1, f=7r=0, it reduces to 1 if 2=p=0 and to zero
otherwise. When a=1, =0, y=—1, it reduces to —1if 1=0, #=1, and
to zero otherwise. When a=1, =0, y=—2, it reduces to 1 if 1=0,
#=2, and to zero otherwise. When a=1, f=yr=—1, it reduces to 1 if
A=p=1, and to zero otherwise. Thus these terms yield the values
stated in equations (4.10)-(4.13). We have only to show that the
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contribution of L(&,, &) to J*#7f(x) can be continued analytically through-
out R and reduces to zero when «, £, y assume the values needed in
(4.10)-(4.13).

We first show that J*?7f(x) can be continued analytically throughout
the region R, where #Z(a)>2, ZE)> -1, FZ(y)>—2. We consider
in turn the contributions arising from the four terms of L(&, &) given
in (4.23).

We have, for L,(&,),

1

['(Vai)F(ﬂi)P(yj) S Ly(&,) (@, —&,)P~ dg, S P (05— &) M (@1 + &, + &) ' dés

—X1— 3

Lo ]
= TN L(&:) (@, — £:)° (a0 + 05+ £,)**7 N dE,
REICTR Il

on using (2.7) and (2.8). On taking account of (4.24) we see that the
integral is analytic in R,. Moreover, the expression is zero if =0 or

—1 even when r——2,
The contribution of (x,—&;)L,(&,) is similarly

o T L2 [12 )X, — &, -1 X + 2a+yd”’
F(ﬂ)F(a+r+1)S_m_x3 ()@ — &) (@ + a5+ £)"7dE

which is also analytic in R,. It is also zero if =0 or —1 even when
r=—2.
The contribution of Ls(&) is

1 Sxa ) o ] |
(@B (7) Li(&s) (25— &)""'d 3S — )P (@ + £+ €)' dE,
F@IATQ) Yoy P BT BT aymat
1 3
- L, . — &)Yy + s ) B-1de, |
' (a+p) S—ml—mz (&) (@3 — &) (@ + @y + &) de,

The integral is again analytic in E,. This contribution is zero if y=0,
—1, or —2 even when f= -1,

On taking account of (4.24) it is at once evident that the contribution
of L&, &) is analytic in R, and vanishes when =0 or y=—1 even on
the boundary of R,.

Thus we have shown that J*#?f(x) can be continued analytically
throughout R,. Since the roles of «, 3, y may be interchanged it can
also be continued analytically throughout five similar regions obtained
by permuting «, 8, 7 in the definition of R;.

We note that d=(z,—&)+ (2.~ &)+ (0s—&) on S(x) and we multiply
equation (4.1) through by these expressions to obtain

(4_25) dJ”’B’yf(x)=aJ‘“1‘B’yf(£c) +,3J”"5“’7f(90) + er,ﬂ,yﬂf(x) .
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We use (4.25) to show that J*PYf(x) can be continued analytically
throughout R.

We first suppose that .22 (a)>1. If 2 (B) >0, A ()>0, JPf()
is clearly analytic on using the integral definition in (4.1). If “FZ(B)>1,
F#(r)>—1, then J**'P7f(x) is analytic since (a+1, 3, 7) belongs to R,
JoB+LY f(x) is analytic since (a, f+1,7) belongs to a region similar to
R, and J*®"*!f(x) is analytic by (4.1). Thus J*®7f(x) is analytic if
A P)>1, Z#()>—1. We proceed in this way using (4.25) to show
the possibility of continuing analytically J*#”f(x) in turn into the
regions Z(B)>1, Z@)>-2; ZE>0, A@i)>-1; F(F)>0,
F()>—2; ZE)>~-1, ZG)>—1; FE)>—-1, FZ(1)>—2. At any
stage we remember that the roles of 5 and 7y can be interchanged
where necessary. We conclude that J*P?f(x) can be continued ana-
lytically throughout the region & (a)>>1, Z(B)>—1, F#(r)>—2 and
throughout five similar regions obtained by permuting «, 5, 7.

We next suppose #(a)>>0, We proceed as before using (4.25) to
show the possibility of continuing J*#”f(x) analytically in turn through-
out the regions 7 ()>0, .2 (1) >0; FZ(F)>0, #(r)>—1; #(5)>0,
B()>-2; RE>-1, AG)>—1; AEH>~1, Z7)>—2. We
conclude that J*P"f(x) can be continued analytically throughout the
region .77 (a)>0, # (f)>—1, H#(r)>>—2, and throughout five similar
regions obtained by permuting «, S, 7.

We next suppose %7 (a)>-—1. We have already shown that J*#¥f(x)
can be continued analytically throughout the region & (5)>0,
FH#(r)>—2. We then use (4.25) to show that J*P”f(x) can be continued
analytically in turn throughout the regions #(f)>-1, Z(G)>-1;
FP)>-1, #(r)>—2. We conclude that J*P?f(x) can be continued
analytically throughout the region % (a)>—1, 2 (p)>—1, FZ(r)>—-2,
and throughout the two similar regions obtained by permuting «, 3, 7.
Thus we have shown that J*P?f(x) can be continued analytically
throughout R.

We have yet to show that the contribution of L(&, &) to J*P¥f(x)
reduces to zero when «, 8, v assume the values needed in (4.10)-(4.13).
If « were 2 instead of 1, and # and 7 were as in (4.10)-(4.13), our
analyticity discussion would show that this contribution is zero. If we
apply (4.25) using L instead of f we find that the desired result
follows easily. This completes the proof of formulas (4.10)-(4.13).

The formulas (4.14)-(4.16) follow immediately from equation (4.25).

If f(x) has continuous derivatives up to only the second or first
order we can still get results similar to Lemma 4.3, but the region into
which J*®7f(x) can be continued will be smaller; however, those of
formulas (4.6)-(4.16) which are still valid are unchanged. The method
of proof is the same as for Lemma 4.3 and the results can be expressed
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in the form of two lemmas :

LEMma 4.3.1. If f(&,8, &) has continuous derivatives up to the
second order, then Lemma 4.8 holds if the region R is revlaced by the region
B* in which (a) 2 (a)>—1, #ZB)>—1, Z2G)>—1, or (b) a=p=1,
A(r)>—2, or (¢) a=r=1, #E)>—2, or () f=r=1, #(a)>—2,
and if formulas (4.12), (4.18), and (4.16) are deleted.

LemMA 4.8.2. If f(&, &, &) has continuous derivatives of first order,
then Lemma 4.3 holds if the region R is replaced by the region R** in
which (a) F# («¢)>—1, Z(8)>0, # (r)>0, or (b) 2 (a)>0, #(B)>—1,
Z(1)>0, or (¢) Z(a)>0, #ZP)>0, FZF)>—1, and if only formulas
(4.6), 4.7), (4.8), (4.10), and (4.14) are retained.

From equation (4.1) it follows immediately that

(4.26) ,,ai JOHI8Y £ () = J 2B (1)

1

as long as 2 (a)>0, 25 >0, “#(r)>0. Similar formulas hold, of
course, for derivatives with respect to x, and x,. By analytic continua-
tion the validity of (4.26) follows as long as («, f, 7) lies in the interior
of a region into which J*P'f(x) can be continued analytically. But
even if («,f3,7) should lie on the boundary of such a region, if it
assumes one of the sets of values occurring in equations (4.6)-(4.16)
then (4.26) remains valid, as is easily verified by carrying out the
appropriate differentiation of the right members of equations (4.6)-
(4.16).

The importance of this lies in the fact that it shows that in
finding the derivative of u(x) as given by (3.7) we may interchange
the order of the limiting procedure p—0 and the differentiation in the
term Ii*'g(x). This simplifies materially the task of verifying that
(8.7) gives the solution of Cauchy’s problem for the differential equation
1.1).

5. The solution of Cauchy’s problem for the equation dJdu=Ah(x).
It has already been pointed out in § 3 that if the Cauchy problem for
the differential equation (1.1) is to have a solution, this solution must
be given by (8.7). We are now able to prove the following theorem
which gives the solution of Cauchy’s problem.

THEOREM 5.1. Let h(x) be continuous and let g(x) have continuous
derivatives up to the third order in the region x, +x,+x,>0. Then, in
the notation of equations (2.9) and (3.5),
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(5.1) w(@)=Ih(x)+ lim I2*g(x)
-0

18, when x +x,+x;2>0, a solution of the equation du=h(x); moreover,
when x;+a,+x,=0, we have u(x)=g(x), and all the derivatives of u(x)
of first and second order equal the corresponding derivatives of g(x).

Proof. We first note that

(5.2) I%(w)ssggl)

S

3 Ty x
LCLS S S S hE, & £)dE A5 dE, |
x

— =X —E3—x1J —Ey— &3
and

(5.8) Ig@)= [ [J7*7 gla) + 70 gla) 70 g (z)
+ Jp+1’p+l’p+1(gm2z5 + gISQJ] -+ gmlm_,)]

1 p p, D »+1L,p+1,p
+ 6 [Jn,p+1,p+1(gm2+gzs)+!]1 +1,1,z+1(gm3+gxl)+J1+11+1 I(gml+gmz)] ,

by (3.5), (3.1), and (4.1).
We now verify that (5.1) satisfies the differential equation du=a(zx).
We have

(6.4) du=A4I'h(x) + lim 412" g(x)
on account of the remark at the end of §4. If (5.2) is used, an

elementary calculation shows that 4I'A(x)=h(x). It follows directly
from (3.5) and (3.1) that

(5.5) AL g(w) = Lsg(x)
if 2 (p)>1, and a suitable analytic continuation as indicated in §3

establishes the validity of (5.5) for ZZ(p)>>0. If we now let p—0 and
make use of (5.5), (5.3), and (4.14)-(4.16), we find that

(5.6) lim 4I27g(x)= lim IZg(x)= lim I2*g(x)=0 .
p—>0 =0 p>=-1

This completes the verification that (5.1) satisfies the differential
equation du=~n(x).

Next we show that u(x) assumes the correct value g(x) on the
plane S whose equation is z,+x,+a,=0. We consider u(x) at the point
x= (21, X2, ¥3), where x;+a,+2;=d>0, and let d—0. From (5.1), (5.3),
and (4.10), we find that

(5.7) w(@)=Ih()
+ "éﬁ[g(wl - d; wz; (173) + g(wly xz - d; xs) + g(xly xZ’ xd - d) + ']1’1’1(ng13 + g:n3:v1 +' gmlzz)]

1
t [T NG, + Gry) + TGy + G ) + (G, + 92))]



762 JOHN G. HERRIOT

Since A(x) is continuous, equation (5.2) shows that PPA(x)=0(d?). On
account of Lemma 4.2, we see that if f(x) is continuous, and «, £, 7
are real and nonnegative, then

(5.8) JoBf () = O(d+F+171)

Thus when x approaches S, that is, when d—0, (5.7) shows that
u(@)—g().

If it is desired, u(x) can be written explicitly in terms of A(x) and
g(x) and its derivatives by using (4.6) and (4.7).

Next we consider ou/ox,. On account of the remark at the end
of §4 we have, from (5.1),

(5.9) ou _ 3l'h@) | y3, oLTg(x)
axl axl >0 axl

We caleulate al2*'g(x)/ox, by differentiating (5.3) and using (4.26). We
then let p—0 and make use of equations (4.14), (4.11), (4.7), (4.8), and
(4.10). On using equation (5.2) it is easily verified that ol'h(x)/3z,=0(d?),
and hence tends to zero with d. We also note that the integrals in
(4.7) and (4.8) tend to zero with d. We thus find that ou/ox,—g, (@, 2., %))
when z approaches S. In the same way we can consider du/dx, and
du/dxs.

In a similar manner we treat o*u/oax} (i=1,2,3). We have only to
use equations (4.15), (4.12), (4.8), (4.9), and (4.11) and observe that
*I'h(x)]oxi=0(d).

The treatment of 2*u/ox,0x; (¢,7=1,2,3; t=<j) is also similar and
makes use of equations (4.15), (4.13), (4.10), (4.11), and (4.14).

This completes the verification of the solution.

In Theorem 2.1 we showed that, if f(x) is continuous, I"f(x) is
analytic for ~#(p)>0 and I"f(x)—f(r) when p—0. The following
theorem shows that I”f(x) can be continued analytically when f(x) is
sufficiently differentiable.

THEOREM 5.2. If f(x) has continuous derivatives up to the third
order in the region &+ ,+x;->0 then IPf(x) can be continued analytically
throughout the region 7% (p)>—1, and

(5.10) lim I” f(a)=4f ()
-1
if @ +x,+x, 0.
Proof. We make use of equations (3.6) and (5.3) with g(x) replaced

by f(x). Then if 2 (p)>—1, Theorem 2.1 shows that I**'4f(x) is
analytic, and Lemmas 4.3, 4.3.1, and 4.3.2 show that IZ*f(x) is
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analytic. If we let p——1, equation (5.10) is a consequence of Theorem
2.1 and the last equality in equations (5.6) with f(x) in place of g(x).
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APPLICATIONS OF THE RAYLEIGH RITZ METHOD
TO VARIATIONAL PROBLEMS

J. INDRITZ

Introduction. Let R be a bounded either simply or multiply con-
nected plane region with boundary [I7, consisting of a finite number of
non-intersecting simply closed regular arcs of class ¢*. A plane curve
is a regular arc if the defining functions x(¢), y(t), a<<t<b have con-
tinuous derivatives with z/(£)*+4'(¢)’><0 on a<{t<{b. A regular arc is
of class ¢* if the defining functions z(s), y(s), s being arc length, have
continuous derivatives of order k. We shall say a function A(x, ¥)
defined on R=R+ I is of class ¢* if the partial derivatives of % of
order », 0<r<k exist in R and have limits on I" so as to define func-
tions continuous on B. Let g(x, y) be a given function of class ¢* on
R. The main problem considered is that of finding the function ¢,
which yields minimum value to the funectional

1191 (| (@g+ b4+ ep+ 204)da dy

defined over the admissible class of functions ¢ which are of class ¢*
on R and assume the values of ¢ on I

We shall assume a(z, y)>0, b(x, ¥)>0, ¢(z, ¥)>>0 on B; a, b, ¢
bounded and integrable in R; f(x, y) integrable in B. In the sequel,
unless otherwise specified, integrations will be taken over R and the
symbol R omitted.

Let G(z, y) be of class ¢* on R, vanishing on I', positive in R,
with normal derivative 3G/dy on I" different from 0. We show that,
if £>=3, every admissible function ¢ has a uniformly convergent ex-

pansion on R

g=g+ :21 b fi(x, v)

where f, are obtained by a Gram-Schmidt process from the functions
{Gaiy’} 7,7=0, 1, 2,--- and b, are generalized Fourier coefficients con-
nected with the quadratic functional

D1y~ ((ag+vg3+ epazay

Received February 6, 1954. Presented to the American Mathematical Society August
1953. The preparation of this paper was sponsored, in part, by the Office of Naval Re-
search, Contract N onr-386(00). It is a part of the author’s thesis under the helpful direc-
tion of Professor S.E. Warschawski.
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In fact, b,=D[¢—g, fi] where

Dlg, 77]=Sg(a &, 7. +bE, 7, +cépdrdy.

An estimate of the error obtained by using for ¢ only the first =
terms of the expansion is given in terms of # and k. Sufficient condi-
tions are obtained for the convergence of

V|:g+§;bif¢]

to p¢ and an estimate is given for the rate of convergence.
In particular, if ¢, is an admissible function minimizing I[¢], then
the expansion

dy=g+ Zia/ift

yields an explicit solution for ¢,, since the coefficients a, are given, in
this case, by

a,== || .dz ay-Dlg,

which are independent of ¢,.

The problem of minimizing the functional I[¢], with ¢g=0, has
been studied by Kryloff and Bogoliubov [4] and by Kantorovitech [2],
both obtaining estimates for convergence to ¢, of functions obtainable
by the Rayleigh Ritz method. The first paper deals with convex
regions R, the second with regions R bounded by x=0, x=1, y=g(x),
y=h(z); h>g on 0<{x<1. Neither obtains an explicit solution for ¢,
nor studies the convergence of the derivatives.

In the final section of this paper, we assume the existence of a
funetion ¢, yielding minimum value, for p=>1, to

pig1=|| @i +sgrepyavay, y=g on I

and obtain an estimate for the rate of convergence to ¢, of functions
obtained by the Rayleigh Ritz method.

§ 1. Preliminary Considerations. A variation v shall mean a func-
tion of class ¢* on R vanishing on I'. Form the Hilbert space H by
completing the linear manifold V of variations v using the positive
definite quadratic form D[v] as the square of the norm of a variation.
If 2e H, we represent the norm of 2 by 2. If & and 7 are varia-
tions, the inner product will be

& p=DI¢, 7].
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Let f;, be any complete orthonormal set of variations in H. If ¢ is
admissible, then ¢—g¢ is a variation and thus expressible in H as
g—g =§;bzﬁ

with b—=D[¢—g, f].
If ¢, is an admissible function yielding a minimum value to I[¢],
if 2 is real, and v is a variation, then ¢,+Av is admissible, and

T T4+ i1=10¢] + 42D, o1+ { (20 die dy) +2Dlo1.
This implies that the coefficient of 2 must vanish so that
D¢y, v]— —ggfv de dy
and
I[¢o+ 2w]=1[¢y]+ 2*D[v]

for every variation v.
The first relation shows that the Fourier coefficients of ¢,—g,

a=Dl¢s—g, fl=DI¢», f—Dlg, fil= —SSfﬁ dz dy—DIg, fi]

are independent of ¢,.
The second relation implies that if ¢ is admissible,

I[¢1=1¢o+ ¢ — ¢l =I[¢u] + D[ — ¢0] .

Thus if
¢n=g + i; a’iﬁ y
then
0=lim | ¢, —(g+ 3 @i )| =lim Digs—,1=lim I, ]~ T[]

so that ¢, is a minimizing sequence.
Moreover,

is a minimum when ¢;=a, implying that ¢, are chosen to yield mini-
mum value to I[¢,]—I[¢] and hence to I[¢,] in the class of functions

Sbn:g’}' i;ciﬂ .

Thus ¢, may be obtained by the Rayleigh Ritz process applied to the
functional I[¢].
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We will prove, in Theorem 1, that the class of functions {G P}
where P is a polynomial in = and y, is dense in A. This class is the
linear manifold determined by the set {G &'y}, a set linearly indepen-
dent in H. For, if

n i
v==3 2, Galy,
=is

then D[v]==0 implies «;;=0.
It follows that we can obtain an orthonormal set f; complete in H
by orthonormalizing the set {G «'y’}. Let

=G 2"y

v,=Gxy, v,=Gz"y

(Y R (Y 40 g
Ve +1 +1~'G9/ Yooy vk(k+1)+k+1”—Ga/ Y.
2

P

Then
v 5 0 £)
S|

[COR T [ @, ) | ,
= . . |- . i . ‘. |
{ (vm ?)1)' M (’Uny /Un—l) Vnt | (vn—l ’ ’Un—l) \ J (/Un ’ vn) ‘

The function f, is of the form GP,, where the degree of the
polynomial P, is that of v,/G. If v,=G x" ¢ with r+s=£k, then

k(e +1)
2

+ 1@3’“’“; 2

+k+1

so that k< k(k+1)<2n—2 and the degree k of P, is less than 1/2n—2.
Similarly % is greater than 1"2rn—2.

§ 2. The Minimizing sequence. We shall use certain approxima-
tion theorems which can be derived by methods used by Mickelson [5].
To simplify the notation, let

xz(mlv" 'ws) ’

O =(a®, - a) ,

1 For detailed proofs of Lemmas 1, 2 see J. Indritz “ Applications of the Rayleigh Ritz
method to the solutions of partial differential equations” Ph. D. Thesis, U. of Minnesota,
1953.
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f(il')::f(il71, ) ms) ’
Qrit s
F@ =2 e, @,

0@ 10+ 0% s

29— | = S @020
=1

The modulus of continuity for a function f defined over a closed set
4 —1<x,<1 (i=1,---,9) is

O3, f)=sup |f(@®)—f(@®)

for all points 2@, ® in A with |j2® —2® | < 5. The uniform modulus
of continuity of a finite number of functions f,,---,fy is the largest of
the moduli of each f, for each .

LEMMA 1. Let F(0) be a continuous periodic function of period 2r in
each 0, and of class ¢*. Let w(8) be the uniform modulus of contimuity
of the partial derivatives of F' of order 1 to k for 6<z\'s. Let j<k.
Then, corresponding to every set my, +--, m, of positive integers, there is
a trigonometric sum T™ of order at most m,; in 0, such that

F0)-TrOI<K(% )’zw(%) for 0 e 1<y

i=1 m[
where K, is a constant independent of F, s, m; .
If the partial derivatives of order 1 to k satisfy

(00~ F (0 < L 33 60— 0]

then

\F(6) — T <L K(z = ) 0 vee e 1
i=1 M,

where K, is also a constant independent of F, s, m,.
If F is even in each 0, separately, T contains only cosine terms.

LEMMA 2. Let f(x) be of class ¢ in the set A: —1<x,<1 (i=1,---,8).
Let M be the maximum of the absolute values of the derivatives of order
1 to k, and Q(0) the uniform modulus of continuity of the derivatives
of order k. Let B denote a closed set interior to A. Let j<k. Then,
for every set of positive integers m,,---, m, with m, =k there is a poly-
nomial P™ of order at most m; in x; such that
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)= Pr@) <K 3 ) 5. o 1)

1
=1 m; i=1 My

for x im B and 0<r,+.--+r,<j. Here K, is a constant independent of
f and m;.

If also, the k-th partial derivatives of f(x) satisfy a Lipschitz con-
dition with parameter A, then, for x in B,

S k=j+1
F@-PY@ISK(S ) for 0<pietn<i,
=1 i

i=

and where K, is a constant independent of f and m,;.

To apply the lemmas to a function defined over the region R, we
shall extend the domain of definition of the function. The ques-
tion arises whether the differentiability properties of the function are
maintained under the extension. The answer depends upon the pro-
perties of the boundary [I" of R. For example, Hirschfeld [1] has
shown that even a cusp in the complementary region may prevent c'
extension of a function of class ¢ on a closed set through a continu-
ous boundary arc. Whitney [6] has given a different definition for a
function to be of class ¢* in a closed set 4. If f is of Whitney class
c® in A, then there exists an extension I to the whole plane E, which
is of class ¢* in the ordinary sense on FE, and is analytic in FE,—A4.
The derivatives of F' of order <k coincide with those of f at any
interior point of A. Moreover Whitney [7] has shown the following :
Let (a) f be of class ¢* on R+ 1", where R is a region, /' its bound-
ary, in the sense we have defined in the introduction, and (b) R have
the property ‘“ P’’, that any two points P, P, in R, whose linear
distance apart may be represented by ' P,—P., can be joined by a
rectifiable curve in R of length L, with L//P,—P, bounded uniformly
with respect to P, and P,; then f is also of Whitney class ¢* and thus
can be extended to E, to be of class ¢* on E,.

For our purposes we assume R to be a bounded region with bound-
ary I" consisting of a finite number of non-intersecting simply closed
regular ares /7, and we will show R has property ‘““P”.

Choose, for each I';, a 0>>0 such that no two tangents to /7, on
any portion of arc length <6 make with each other an angle greater
than 5°. We may choose ¢ independent of 4 and smaller than one-
fourth the distance between any two I',. Now fix 4, and let P,, P,
be points on I'; on a subarc of length <(9. There is a point @ on that
subarc between P, and P, such that the tangent line at @ is parallel
to the chord P, P.. Set up an (x, y) coordinate system at @, using the
tangent line as x-axis, the normal as y-axis, and note that the subarc
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considered has an equation y=y(x) of class ¢' in view of the implicit
function theorems. Let P, =(x, y), P, =(®, ¥.), |P.—P,|=distance

between P, and P, HI/%TD2 |=length of the subarc joining P, to P,
Then |P,—P, =|a;—a, and |y'(x)|<1 so that

(D \P=PI<I PR = [P0 e
<V2l-ml=v2 |P-P.

Moreover, since tan5°<1/10, the mean value theorem shows that
sup [y(@)| <[ A— P, |/10.

We shall also use the well known property that if I; is a regular
are, there is an »,>>0 such that for any subarc joining points P;, P,

on I';, we have H?’?H I/| Ps—P,|<w,. , can be chosen independent
of 7.

Now suppose S;, S, are any two points interior to the region R.
If the segment S;S, is interior to R, we of course have H/S,\Szl
[ISi—S:|=1 by using the segment as the arc. Otherwise, let @ be
the first intersection of the directed line S; S, with the boundary, say
with 7';. Let Q! be a point on S\@Q; in R. Let Q. be the first point of
intersection of the directed line S,S, with 7', and @} a point in R on
S.Q. such that the open interval Q,Q} is also in R. Note that @, and
Q. may coincide. If QLS, is not in R, let Q; be the first point of in-
tersection of the directed line @3S, with the boundary, say with 77,
and @} in R and on Q}Q,. Let Q, be the first point of intersection of
the directed line S.Q: with I', and @} a point in R, on @.S,, with the
open interval @Q,Q} in R. Continuing in this way, after at most =n
steps, we form a finite sequence of points Q)=S,, @}, Q,++-,Q, @it
=S, such that Q.,,-; and @, are on the same regular arc, and the lines
joining Q. to Qi.., £=0,---,m are in B. If we can show there is an

»>0, independent of the points, and arcs 4, in B joining consecutive

N
points @} to Qj.; such that | Q} Q). |[<w|Q}—Qj.: ||, then we can attain

the desired results by addition. It suffices to show that @} and @: and

an arc A joining @ to @} and in B may be chosen so that Hé}FQ\é\
<w|Qi—Q:||. Suppose first that @, and . coincide. A sufficiently
small circle with @, as center will have one of the arcs cut off by S.S,
entirely in R and we may choose @} and @) as the intersections of
S.S, with this cirele. In this case

LU T
1@ Q)= 9 [Qi—Q:].

Otherwise, let L be the length of an arc on /7, joining Q, to Q..
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Divide this arc into N equal segments of length f=L/N where N is
sufficiently large so that <(8. Draw circles of radius »r=/£/1"2 about
each of the division points and the end points. We first show that
consecutive circles intersect. If R, and R, are two consecutive centers,
(1) implies

so that

|Bi—Ro| | B~ Rl - B yp_p,

2 1/21/

and the circles must intersect.

Moreover, since r=>|R,—R,|/V 2, the semi-length r of the common
chord is

ST

whereas the arc joining R, to R, has distance <|R,—R,|/10 from the
chord. Hence the arc lies entirely within the circles.

Now let @ be an intersection of S,S, with the circle whose center
is @, and Q! an intersection of S, S, with the circle whose center is @,,
the points being chosen to lie in R and have the desired properties.
Starting from Q! we may proceed to Q! via the circumferences of the
circles. The total length of the curve thus formed will be less than

N+1)2z P N+1 2z ;4= p
W+lem 2o =N ve 1500

and

I QlQ1 I L 4n L 4z

! = < - w; .
|Qi—Q: 1/2 1QI-Q V2 [@-Q.] V2

This concludes the proof that R has property ‘“ P’’.

We will be particularly interested in extending a function of the
form v(z, y)/G(x, y) where G(z, y)>>0 in R, 3G/3»>0 on I', G=v=0 on
I' and we seek differentiability conditions on v and G which insure
that »/G is of class ¢® on R+ /. Here again the nature of the bound-
ary is of importance. The next two lemmas deal with this problem.
The letter P will refer to a point in R and @ to a point on /', the
boundary of R. By a neighborhood N(Q) in R+ I" we will mean a set
of points S in R+ /" such that for some sufficiently small circle with
center at @, every point of the ecircle which lies in R+ /" also lies in
S.



APPLICATIONS OF THE RAYLEIGH RITZ METHOD TO VARIATIONAL PROBLEMS 773

LEMMA 3. a) Let R be a region bounded by 1, a finite number of clos-
ed Jordan curves, no two having a point in common. Let r be a requ-
lar subarc of ', and Q, an interior point of y. Let N be the mormal
to v at Q,. Then there is a mneighborhood N(Q,) i R+1" such that
through each point P in RN(Q,), the line parallel to N cuts yr,=yN(Q,)
in one and only one point Q, PQ lies in N(Q,), and @ ranges over 7.

b) Let ¢(x, y) be of class ¢' in RN(Q,) and suppose ¢, ¢., ¢, have
continuous limats on r,. Define (3¢/0s)(P) to be the derivative at Pe
RN(Q,) in the direction of the tangent at the corresponding point Q on 7, .
The derivative (0¢[0s)(P) has continuous limits on 7, which we will
denote by (2¢/9s)(Q).

If ¢=0 on y,, then (2¢'[3s)(Q)=0 for Q on y,.

Proof. Let y be given by a(f), y(¢) and Q, defined by the parameter
value ¢. Let (&, 7) be rectangular axes along the tangent and normal
at @,. In a suitable neighborhood of ¢, ¢ <{<%,, defining an arc i,
containing @, v admits a representation 7=7(¢). We may assume i,
so small that no two tangents to it make with each other an angle
greater than 5°. There is a positive distance d between 7'—j, and
the arc 4, defined by the parameter range (t,+¢t,)/2<t< (¢, +1.)/2. Take

o<lmin[d, [£(t)—&((t+1.)/2)], 1€(t) —&((E+11)/2)]]

and draw a square T of side ¢ with sides parallel to the (& 7) axes
and center at @, Let 7,=7yT, the projection of RT on y by lines
parallel to N, and let 7, be the arcs formed by displacing 7, a distance
% parallel to itself into R along N. For i<k, sufficiently small, y,=7'.
The regular arc y, may be given a representation a=u(s), y=y(s),
0<s<L, in terms of arc length s, where L is the length of y,. Then
7, 1s given by

x=a(s)+ A cos «, y=y(s)+h cos 3,

where cos «, cos  are the direction cosines of the line N directed in-
ward into B. The neighborhood N(Q,) may be chosen as given by
these equations with 0<s<L. 0<A<lh,.

It is clear that

o¢ 3¢ dx | dddy
I =l + [t
%8s dxds dyds

has continuous limits on y,. Write

by =29 ((s) +h cos @, y(s)+h cos f)=F(s, h).
08 08
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If 2 is any closed subarc of y,, we have
lim F(s, k) =22(@Q)
-0 o8

uniformly in s.
Along 7, we have

¢(Pz>—¢(ﬂ)=§f F(s, h)ds

where P, and P, are points on y, corresponding to points @, and @, on
2 with parameter values s, and s,. As 4 approaches 0, the limits on
the integral remain fixed. Since ¢=0 on 1, we find, by letting ~2—0,

0" %@ as

5, 38
for arbitrary s;, s.. Thus (3¢/3s)(@) =0 on /1 and hence on y,.

LEmMmA 4. Let R, 7, Q) N(Q)), N, 7, be defined as in Lemma 3. Let
v(x, y) and G(x, y) be of class ¢ on N(Q,) and of class ¢ on N(Qy)IE+ Q.
Let v=G=0 on 7, G>0 in RNQ), (BG[3v)(Q)><0. Then there
ewists I;rré v(P)/G(P) for PeR.

]

If 7 is of class ¢**' on N(Q,) and v, G are of class c* in N(Q,) and
of class ¢*** on N(Q)IR+Q,], then v/G is of class ¢® on N(Q)[E+Q,].

Proof. Denote differentiation along a line parallel to N by 9/24. By
the mean value theorem one finds that (3G/3)(Q,) is the limiting value
of (3G[oR)(P) as Pe RN(Q,) approaches ¢, along the normal at @, and
hence (3G/ov)(Q,) is the limiting value of (3G/3Z)(P) as P approaches @,
by any approach in RN(Q,). A similar statement is true for (9v/ov)(Q,).

Let P, be any sequence of points in RN(®,) converging to ¢, and
let @, be the points on y, associated, by projection along N, with P,.
By the generalized mean value theorem,

(P _ v(P)—v(Q.) _(v[oR)(Py)

GP)  GEP)—G(Q,) (3G[eh)(P;)
where P, is interior to the line segment P,Q, .
Thus

(P _ (20/2)(@) .
oy, G(P)  (0G/3)(Q0)
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It is clear from the construction of N(Q,) that the equations
x=X(s, h)=a(s)+hcosa, y=Y(s, h)=y(s)+hcosf

yield a one to one transformation of N(Q, into N*@Q,): 0<h<h,,
0<ls<L and 7, into r,*: =0, 0<s<L and @, into Q;*: A=0, s=s,. In
fact, in view of the restriction on the slope of the tangent to r,, the
Jacobian of the transformation is

J=a'(s) cos f—y’'(s) cos a=<0 .

If 2(s), y(s) are of class ¢**' on 0<(s<L then so are X(s, 4), Y(s, 2) in
N*(Qy)—71,*. Any partial derivative of X(s, #), Y(s, #) of order »r<C
k+1 converges, as A—0, uniformly on any closed subinterval of y,* and
thus this derivative has a continuous limit on 7,*. By the implicit
function theorems, the inverse functions s=S(», y), A=H(x, y) are of
class ¢*' in RN(®,). Moreover, the partial derivatives of S, H of
order »<k+1 have continuous limits on 7, for the relationships

oh

1=8X- % oX ak=x’(s)§§- + cosa
ox o

ds dx ok ow
Y s , Y oh ,, \0s oh
0= 3s aw+ oh am——y (S)’ém + cos o
can be solved for 0s/ox, 2h/dx, 3s/0y, oh/dy and the resulting equations
indicate that these derivatives and their derivatives of order <k have
continuous limits on 7, .

Under this transformation wv(x, y) becomes v*(s, ) and G(z, y)
becomes G*(s, k). It is sufficient to show v*/G* is of class c¢* at @Q*
since any partial derivative of order r<<k of v(x, y)/G(x, y) is a poly-
nomial in the derivatives of v*/G*.and in the derivatives of s and 2
with respect to z and y of -order <r.

By the hypothesis and comments above, v*(s, ) and G*(s, h) are
of class ¢* on N*(Q) and of class ¢*** on (N*(Q)—71r,*)+Q*. In view
of the continuity of 3G/oh at Q,. there is a neighborhood of @, where
(3G/[ah)(P)>6>>0, It is no loss of generality to assume (0G/ok)>6>>0
in N(Q,) and we shall do so. By Lemma 3, 2v/3s and 9G/[0s vanish on
7o. By repeated application of Lemma 3, o»/cs” and 0"G[3s” (0<r<lk)
vanish on 7,. _

The proof is greatly facilitated by an auxiliary transformation.
Let t=s, 2=G*(s, k) carrying Q,* into Q,**, 7,* into r,**, N*(Q,) into
N**(Q,). For eachs, z is a monotone increasing function of % and the
inverse funection ~=H*(¢, 2) is a monotone increasing function of z for
each t. As above, we see that v*(s, A)=v**(¢, 2) is of class ¢* on
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N**(Q,) and of class ¢**' on (N**(Q,) —7r**) + (Q,**). Moreover, it suf-
fices to prove that v**(¢, z)/z is of class ¢* at @,**. For notational
simplicity, let w(l, 2)=v**({, z). Note that N**(Q,) is the set 0<
<G, k), 0<t<L.

By induection, we verify

r | 7 7 7,
9 () rli(= 1)< L BTw 1y ® aw)
P Zr+t % 2! o ¢! oz"

for 0<{r<{k when z>0.
For ¢ fixed, w(¢, z) has a Taylor expansion of the form

w(t, H=w(, 2)+ ow @, 2)E—2)+-+ a7w(t, ?) -2
oz oz !

o+l (C_z)r+1
T GO

for 0<{r<_k, where 0=¢<&(t, 2, &, r)<z so that, when ¢=0,

0=w(, 0)=w(t, 2)— zrm(t 2)+ (_%):zr 2’2:)
r

L (=Dt 3w,
(r+1)! az’“( &

Hence

a‘<f)=i Tt ¢),

oz" r+ 102!

which has a limit as the point (¢, 2) approaches Q,**.

We have thus shown that the partial derivatives of w/z, with
respect to z alone, of order <<k have limits at Q,**.

We next show that the partial derivatives of w/z with respect to
t alone have limits at Q,**. First note that the derivatives of w with
respect to ¢ alone vanish at z=0. For, w(t, z)=v*(s, ) so that

* A
v owt +awaz aw+aw oG

s 8s ot 9z os ct 0z 08

and, as we have seen, Jv/ds and 9G(ds vanish at 2=0. Thus 3w/3t=0
at z=0. Similarly, successive differentiation shows 2"w/ot"=0 on r,**,
0<r<k.

We apply Taylor’s theorem to obtain

ar(w>= 1 ow(t, 2) _ [a’w(t E)]} 3 dw(t, &)
o\ z z ot” z az ot” 0z ot

06z, 1)<z

’
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and conclude that (27/3¢")(w/2) has a limit at Q,** for 0<r<k,
Finally, any mixed derivative may be written as

n+m
0 (w) , n+m=r<k

oz"ot™ \ 2
and this may be written as o {7178 wl
22 L zotm J

where 0™w/0t™ vanishes on 7,** and is of class ¢*™ on N**(Q,) and of
class ¢~ on (N**(Q))—7r.**)+Q,**. By the first results for deriva-
tives with respect to z, the mixed derivatives have the desired
property.

THEOREM 1. Let R be a bounded region whose boundary I’ consists of
a finite number of non-intersecting simply closed regular arcs of class
¢, (k=2). Let G(x, y) be a function of class c¢* on R+ 1", vanishing on
I', positive in R, with 3G[2v=6>0 on I'.

Let H be the Hilbert space formed by completing the linear vector
space V of variations—functions of class ¢* on R and vanishing on 1'—,
using the functional

Dle) = Sg(as: e+ e8)dx dy

for £eV as the square of the norm, where a, b, ¢ are bounded and in-
tegrable, a >0, b>0, ¢c=0 wn R+ 1.

Ther the set of functions Gr, where r is a polynomial in x and y,
is dense in H. The set {f,} obtained by orthonormalizing the set {Gx'y’}
s complete in H.

If g(=, y) is a function of class ¢* on R and ¥ is the set of func-
tions ¢ of class ¢ on R, assuming the values of g(x, y) on I', and if
for any ¢ e ¥ we define by=D[P—g, fi], then

‘2

I

| 9—g— 20,

=D I:S!"!]— g:i bifi]< o)

—_‘nk;—Z

where lim 0(n)=0, 0 depending on ¢—g.

N—»co

In particular, if f is integrable,

I[¢]= Sg(a¢i+ b2+ e+ 2F ¢dz dy

and there exists an admissible function ¢, which minimizes I[¢] for
de ¥, and we define
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—_—szﬂ dilf dy—D[Q; fz]’ ¢71=g+§aifi ’
then

| o= P=D[¢y— ] < < 0(%)

where lim 6(n)=0 .

NnN—o0

Proof. If v is a variation, we show there is a sequence Q; of poly-
nomials such that

lim|v—GQ; 1|‘—11m Sg[a(v—G Q). +b(v—G Q)i+ c(v—G Q)] da dy=0.
P
In view of Lemma 4, v/G is of class ¢*-' on R and it is thus pos-
sible to extend the definition of v/G over the entire plane so that it
is of class ¢*' over the entire plane. Let Q(§) be the uniform modu-
lus of continuity of the (k—1)st partial derivatives of v/G over a
rectangle with sides parallel to the axes containing R in its interior.
By Lemma 2, with s=2, j=1, m;=m,=j there is a sequence Q; of
polynomials of degiee 2j in « and y such that, for (z, ) in R,

g —Q,% ) KZ){ —Q, |, and I(E)J —ij';_ are all O( jkl_z Q(j))

Hence

o-vare[(5 -a)]-[(g -e) o+ (§-0)e]

<(2 Q)G+G(,—Q,)+2G\Gl( —Q;Mlg—@{

~0(pks [2()

A similar result is true for (v—G@;)? and (v—G Q,)* Thus thf Lijv
-G Q,]=0 for k=>2.

It has thus been proved that the linear manifold formed by {Gz'y’}
is dense in V and thus in H. By the previous discussion the set {f;}
is complete in H.

Now let v in the above be the particular variation ¢—g and let
[N] represent the largest 1nteger <_N. For fixed n, let j=[(V n [2)—1]
and r,(z, ¥)=0Q,x, y). “Thus there is a ‘sequence r, of degree at most

2 jg[z(Vz?? — 1)]: [V2n—2]
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such that

Dl¢—g—G Tn]=o( n}w( 1/87,% )) .

Now ,Z, b, fi=Gp, where p, is a polynomial of degree greater than
V2n —2, and it is known that

P—g=2 afi
is a minimum when ¢,;=(¢—g¢g, fi)=b;. Thus

D g—g-3bfi|-0( 1,0), lmo—o.

In particular, if ¢, minimizes I[¢], then we have seen that

Dldo—g, fil— —ngfz dz dy—Dlg, f.].-

Thus, in this case, the Fourier coefficients depend only on known
quantities.

COROLLARY bnzo( o(n) )
-

Proof. ti=Dlbufi)=D (4=g-Sb.f)~(4=s-S 0.1 |
<D[y—g-S b s |+2(D[v-0-"5 b.si]
Dy—g-% b, fi])”l D ¢—g-3 b f]=o(2™).

§ 3. Expansion Theorems. We use the notations in Theorem 1 and
seek conditions which insure that convergence in H yields uniform

convergence in R.

THEOREM 2. Let R be a bounded region with bomzdaa:g_/ 1'. Let ¢, ¢, be
continuous on R, absolutely continuous on each line in R and all taking
on the same values on I'. Let D[J]<co, D[¢,]<oo. If hm D¢ —¢,]
=0, then a necessary and sufficient. condition that lim ¢,= sb umformly
on R is that ¢, be equicontinuous on R. If lim ;)_t},;—¢,n]=0 then a
necessary and sufficient condition that lim ¢, négz:s‘ts unsformly on R is

nroo

that ¢, be equicontinuous on R .

Proof. The necessity is clear since a sequence of continuous functions
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which converge uniformly are equicontinuous.

Let u(z, y) be a function with the continuity properties of ¢(x, y)
and vanishing on I'. Let P, be a point interior to R. Place polar
coordinates at P,. If a ray from P, meets the circle S, of radius p<d,
d being the diameter of R, with P, as center, before it meets /7, label
P, the first intersection point with S, and @ the first intersection
with 7. Otherwise both P, and Q will refer to the first intersection
point of the ray and /.

;ﬂ{ S\u )] da}ZgSZ”uﬂ(Pl)d0= SHQ '(;?;dq«]‘de

[T 1 ou LAY (ouY
L,y i fao < ve U] Y aran

<log - SS(?L +ul)dx dy<a log -~ D[u]
P

where a=1/min (a, b), since
R+F
Sg(au'j; +bu? + cu?)dx dy=min(a, b)SS(u’m +ul)dx dy .

Apply this result to the functions u,=¢—¢, (or 1o uy, =¢,—¢.)
which are equicontinuous on R+ I’ and thus have a uniform modulus

of continuity (8), which approaches 0 with 4.
Since P, is on or interior to the circle of radius p, we have
[t (Pr) — (L) Zw(p), whence |u,(P)|=|u,(P)| —w(p) and

27 Jun(Py)| — 0(p)]<<V 2za log dfp Dlu,] .
Thus

quz(PO)IS‘/QC;[D[ZLn] 10g‘ ;d; + ‘”({’) ’

which is true even if P, is on /.
Now, for ¢>0, choose p=p; so small that w(p,)<¢/2 and then choose

N so large that

27

“ Dlu,] log <, -
p

for n>N. Hence
e 0-240 N(e) 3 n>N-D-|P(Ly) — f(Po)|<Ce .

LEMMA 5. Let R be.a bounded region with boundary I" and diameter d.
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Let u(z, y) be continuous on R+ 17, absolutely continuwous on each line in
R+, and vanish on I', and let 0<_D[u]< eo. Let «=1/min (a, b). Let
R+

Poe R+1I'. If there exists >0, K=>0 and
lw(P) —uw(Po)| <K | P—P,

Jor all points P such that the ray PP is in R+ 1", then

aDlu] ; K
m(P@g/ e log* o +4D[u]

where 4 is any number >0, and
loga of a>1
log*x=
0 if <1,
Proof. If P, is interior to R, and p<{d, then as in Theorem 2

1 J S lu(Py) lda} < alog dfp Dlu],

where P, is a point which is the first intersection of a ray from P,
with either I or the circle of radius p<<d about P, as center.
Since P, is on or interior to the circle of radius p, we have

[w(P) —u(P) <Kp°,  |u(P)|=|u(Po)| — Kp®,
2n{u(P,) — Kp*1<<V'2na log dfp Dlu],

(P I<y/ S5l log ;f +Kp*,
T

which holds even if P, is on I'.

Let £>0. If
A 1s
(422" <e.
choose
— (,412[%] )“"
K
to obtain

| (Fo) IS/ 2:81)[”] log Ai‘;ﬁ | +4 Dlu] .

Otherwise,
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and we may replace K to obtain

D[u]

{u(Po)lS‘/ ;D[u] log (Z + 7

Choose p=d to obtain |u(Py)|< 4 Dlu].

COROLLARY 1. A sufficient condition that a sequence u,, absolutely con-
tinuous on each line in R, vanishing on I, continuous on R, and having
hm D[u,]=0, converge to 0 at P, is that 30>0 and a sequence K,, with

hm Dlu,] log K,=0 such that

n-ryco

lun(p) ——uﬂ(PO)IgKn H P—PO ”5
for all P with ray PP in R. If o, K, are independent of P,, the con-
vergence s uniform. In any case,
’ . d°K,
ealPI<y/ ¢ D U, To * +4, Dlu,]
VY gy Dl 0 4, D[]
Jor any 4,>0.

LEMMA 6. Let R be a bounded domain with boundary I°. Let
P,e R and suppose there is a circle of radius ¢ lying in R and contain-
ing_Po. Place polar coordinates (v, 0) at P, Let u(x, y) be of class c'
in R and suppose that there exist 1 >0, >0 such that

lu(P)—uPo)|<o | P— P, [*

for all points P such that the ray PP is in R.

Then
pu@)P=eppapy ()T ey o S D).
Ar e A
Proof. [, (Po)| < e, (P)|+ o7

Integrating over a circle S, of radius p<e¢ which contains P, S,C
S,, we obtain

Sg \u (P dr d0£,2“ w(Pyr dr df+ 2“ v dr df
Sp ~SP Sp

We may assume that the polar axis lies in the direction of pu(P,).
Hence u.(P,)=|pu(P,)|cos ¢ and

S S lpu(Py*(cos* O)r dir dO<<2c D[]+ 2+*2p) rp* .

Sa
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We will show that the minimum value of “ (cos* M) rdrdl is mp*/4.
S

Suppose first that the pole O is interior to S, . Lpet 7(f) be the equa-
tion of the circle relative to the pole O. Let @ be the point (+(6), )
and Q' the point (#(0+=), 0+x). Q@ and
Q' are thus the intersections of a ray
through O with the circle. Let O’ be the
center of the circle and suppose the co-
ordinates of O’ relative to O are (¢, ¢).
Then the angle between OQ and OO’ is
¢—0. Drop a perpendicular from O’ to
QOQ’ hitting the latter at 7', the length
of OT being |ccos(p—0)]. Thus one of
the lengths [[OQ|, |OQ'l| is m+|ccos(p—0) and the other is m—
lc cos (p—0)| where 2m is the length of QQ’, and the product |0OQ’!
|| 0Q |=m*—¢* cos*(p—0). Also, if OO’ meets the circle in points A4,
A’ it is easily seen that |OA’ | [OA[=[0Q]| | 0Q’ | so that (o+c)(p—c)
=m*—c*cos*(p —0) and m*=p*—c*+ ¢ cos*(p—0). Hence

10QF+] 0Q" F=[m+|c cos(¢p—0)| '+ [m—[ec cos(¢p—0)[
=2m” + 2¢* cos*(¢p — ) =2p* — 2¢* + 4¢* cos*(¢p — 6).

We note that

([, cosorarao=1{"r@cos0 a0 = L[ 0QF +1 0@ Pcost 0 a0
Sp 2 0 2 0

='512 S [20" —2¢ + 4¢* cos(p— )] cos* 6. dO .
0
Moreover this formula holds even if O is a point on the circumference

for in this case

Y+
v

SS (cos? 0) r dr df — 1/25 "r(0)cos? 0 dB
SP

where 7y is the angle between the polar axis and the tangent to the
circle at O in that direction which has the area to the left of the
tangent line. Here »*=[2pcos(¢p—0)] and since the square of the
cosine has period =, the integral reduces to

; Sﬂ 4p* cos*(p—0O)cos® 6 dO .
1)

Thus, in any case,
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SSS (cos® O)r dr di = ; S: [20* —2¢* + 4¢* cos*(¢p — 6)] cos* 0 dO
P

= ; Pt — ; wc+ ”Z [14+2cos*¢].
For fixed ¢, the minimum is obtained when ¢= g, and is "‘U-—i et .

The absolute minimum is obtained when ¢=p and is zp*/4.
It follows from this result, that

" pu(PoP<2aDlu] + 2 @)

8a D[u]

2

|pu(P) <<

- Q2N 2 f'-.n\ .
7P

Consider the function y=A/p*+ Bp*™ where A=8«a D[u]/m, B=22+%5
The minimum value is

Y= AM()H-!)B”()‘H)(,{ + 1)2—)-/()\4-1)

2 ey & Al(A+1) . . :
:(g D[u])‘)”( b ; (A + 1) QA+BI(A+1)
AT

obtained when

{)=< A >1/(27\+2\ ::< a D'_?{«] )1/(2A+2)

B gt
If
( aD[u] )1/(2A+2) <€ .
Awa?2
choose
‘0:< « D[u] >1/(2,\+2)
Ama2™
and have

MA+1)
[Pu(P1<(s* D[u]*)‘““”(%) 2EA+DIA+D() 41,
T

However, if

(aB Y

a2
we have

2 @ D[u]

— 22)\2”82)\4-2
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and integrating over S,, as in the beginning of this proof, we find
that

SS (Bl dre df = 2“ w(pyrdrdn+2 S0 e,

" pu(P < 2aDfn] + 2 DLl e

4 TAe”

pupyp<®e Dl 8 Dlul_(y, 1)l
’ 2

Ane’ e’

Thus, in any case,

qu(Pu)lzé(aﬂl)[u]“)mmgf )”‘“”zcsm)/w(a 4 1) 4 B Dlul (2 4}—1) _
T e {

LEMMA 7. Let R be a bounded region with boundary I and diameter
d and let R have the property that there exists an ¢ >0 such that every
point of R+ 1" is within some circle of radius e lying in R+1.

Let u(x, y)=Gr+ H where t 1is a polynomial of degree m, G and H
are of class ¢ on R+ 1" and vanish on I', G0 in R, |pG|=6>0 on I'.
Let |G|<G, |HI<H, \[pGI<G,, \[pH|<H, for constants G,, G,, H,, H,.

Suppose also that

|GoA(P) = GoP)<Go | P= By ||, |G(P)=G(P)I<G,| PPy,

|HAP)~ H(P)|<H, | P=Py |, |H(P)—H/(P)<H,|P~P,| for constants
G,, H, whenever P, P, are points in R such that the line P,P is in R.
Let A be an upper bound for D[u] and D[u]log m.

Then there exists a constant B, depending only on a, A, G,, G,, G., H,,
H, H, &, ¢ d, G but not on m or r, such that for P,eR.

(P, )1</ 2% Dl log ; D[‘J + B( Dlu]) (D))"

for any 4>0. (m to be replaced by 1 if it 1s 0).
Proof. We may assume D[u]>0 for otherwise u=0 in R.
Let L=max |r|. By a theorem of Kellogg [3], |pc(P)|I<Lm’le for

PeR. ) ~
If P and P, are on a straight line in R, then

oB) =Py = Sar| < PP

IH(P)-H(Po)léﬂz ” P*Pu h ’ lG(P)”‘G(Pu)Ing “ P*‘Pn H ’
[u(P) —u(P)|<<|G(P)z(P) — G(P)z(Py)| + |G(P)z(P)) — G(P)r(Py) + | H(P) — H(F)|



786 J. INDRITZ
Lm | |
< (G LG, + Hg)g] P—P,|=K| P—P,|.

By Lemma 5, with 4=D[u]-"?,

(2) |u(Po)I£V/ 2 Pla] log* l/dff ]+1/D[u]

Also, z,, 7, are polynomials of degree m and absolute value less
than or equal to Lan’le, so that |pr|<(Lm?/e)(m’le,) and

P 4 ‘
oP) =PI Ireddr <27 PR
0

Thus

2_Lm

lpe(P) —pr(Py)|< | P—Py] .

Then
lPu(P)—pu(Py)|
<IGP)pr(P)—G(P)pr(P)| + |c(P)yG(P) — t(P)yG(Py)| + | H(P) — p H(F,)|
<UG(P)po(P) —G(P)pe(Po)|+| G(P)pz(P) — G(Po)pt(Fy)
+[2(P)rG(P) —(P)y G(P)|+| «(P)pG(P) — (P)r G(F,)
+|HAP) — H(Py)| +| H(P)— H,(P,)|

g( 2 Lm! +@—G2+L2G +G2Lm
€

+2H)||P l=a | P—P,] .

Whence Lemma 6 yields

(3) | ru(Py<y/ (ozD[u])”z( “-)”‘32 1 16a Dlu] |
e

By use of inequalities (2) and (3) we now find a bound for L.

Either L<1 or else there exist constants ¢, ¢, such that K<C
¢, Lm?, o<c,Lm* where the factor m is to be omitted if it is zero, and
¢, ¢; depend only on ¢, Gy, G,, H,, H, G,.

Assume L>1. Since |pG|=<0 on I', there exists a continuous
curve (or curves) 7 dividing R into two closed sets R, and R, such
that B,R,=7, R, being a boundary set where | pG|>5/2>>0, and R, the
set separated from /" by y. There is a constant ¢; such that G(P)
>¢;, >0 for PeR,.

Suppose first that | r| assumes its maximum L at a point P,eR..
Then, by (2),

| G(P)e(P) + EH(P) g/ .z‘ip[u] log* f/cbl[’;"jz +v/ D[]
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or,

< L/« d e, Lm? J
(4) < [H‘ s / pm log* L/ Dl

Since Dfu]log m and D[u] are bounded by A, equation (4) implies
the existence of a constant ¢, depending on ¢, ¢, d, A, «, H; such
that L<e,.

On the other hand, if || assumes its maximum L at a point P,e
R,, write

pu=Gpr+rpG+ypH pG=rpu—upr+ Hpr—pH,
?lpGl<|c| [pul+lu| |pri+|H| |pr|+|c| [pH|

< L]/(cg LAms D[u])“( ) 32+ 16a Dlu]

2

e
_Iin_f «a + d clillni v Dl H Lm
+ . ( 2ﬂD[u] log 1/D[ ] + [u]>+ v~ +LH, .
Therefore,
(5) L=< 2{)/s0( om DLuly” (¢)" 26 DLl
m*( Ja Dluly . d e L’ 4 Hm?
+ (l/ o log Bt -H/D[u]) : +H2} .

This inequality, which is of the form

L<K, + K;m*+ K;m*V'log L + Km*V' L,

shows that
VI < Vjii + .i{/@ + Ksm‘“’}/ 10%[4 + Ko< K, + Kym?+ Kym* + Kone?,

since I.>1, whence L<e;m*' for some constant c¢;.

Thus, in any case, there is a constant ¢, such that L<esm', where
the factor m is to be omitted if it is zero. From this one can con-
clude that K<le,¢;m*. However, we may obtain a better estimate by
noticing that K merely serves as a number such that |u(P)—u(P,)
<K |P-P,| whenever P and P, are on a straight line in B. Hence
K may be replaced by sup lpu|.

R

The inequality o<lc,Lm*<e,cem® and formula (3) yield

;Vu(Pu)lg‘/Cz(}s m D[u]‘”(f‘ )1/2. 324 16“D[u]1/:Dlu]lll :C7D[%]1/4’m} ,
T

e
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since D[u]<<A. Thus we may replace K by ¢ D[u]*m* and substitute
in Lemma 5 to obtain

;o o A D T, b
i<y Dt tog+ PR apal

Let d=dc,4D[u]*"' and B=de; to obtain the conclusion.

LEMMA 8. Let R, G, have the properties in Lemma 7 and let u=
Gt where © is a polynomial of degree m.

Then D[u]>>cplu(P)|*/log m where ¢, >0 is a constant depending only
on Gy Gi, Gy, d, o «, 8, G. The factor log m is to be omitted if m=0
or 1.

Proof. Whether L<<1 or not, the formulas for K, s show that
K<e,Im?, o< c,Lim*. Moreover, either formula (4) or (5) holds, with
=0, H,=0. If (4) holds, we have

Let w=L/V'D[u]- The above inequality is then of the form w <<
K V'log wm*+ K, whence L/ D[u]<c; log m for some constant ¢;, depend-
ing on a, ¢, d, ¢;. Here the factor log m is to be omitted if m=0 or
1. On the other hand, if (5) holds, we have

Vzg—[z?]g%{ ‘/;ZW v g[uj <§>/ 2+ 1;?? |

= g ow dew L))

from which we conclude L/V/D[u]<cym*log m (m and log m to be omit-
ted if m=0 or 1).

Thus, in any case, there is a constant ¢, such that Ljy/D[u]<
com® . Therefore

K olm® ;
p = Sclcm’)’n' .

e
V'Dlu]™ Vv'Dlu]
Substituting in equation (2), we have
WPy Dl log* deseum + 1/ Dl et/ log m /Dl
T

m to be omitted if it is 0 or 1.
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THEOREM 3. Let R be a bounded region whose boundary I’ consists
of a finite number of simply closed regular arcs of class ¢, k>3. Let
G(x, y) be a function of class ¢ on R+1I", vanishing on I', positive in
R, with 3G[0y>6>0 on I'. Let f, be the set obtained by orthonormaliz-
ing the set {Ga'y’} using the functional

D[¢]= “R (a2 + b€ + c)dx dy

as the square of the norm, where a, b, ¢ are bounded and integrable,
a>0, >0, ¢c0 on R+1I'. Let g(x, y) be any function of class ¢* on
R+I'. Let {(x,y) be any function of class ¢* on R+1" assuming the
values of g(z, y) on I'. Define b;=D[y—g, fi].

Then

p=o= S0s=0 (VI eg ")

where
EEE AR

with lim 8(n)=0, @ depending on ¢—g, and where N is any fized constant

n—>co

>0. Moreover, if k=10, then

oo Sur-o([%]")

Finally, +f S is any closed domain in R, k=T, then for points P in S,
) i /4
romr( Spr)—o([ 10 ken ]

nk-—c

Proof. Let u,lzsb—g—éb,f,-. Then u, is of the form Gr,+H
where the degree m, of r, is less than 1724 —9 and greater than 1/2xn
—2. By Theorem 1, D[u,]<#(n)/n*-*, k>3, where hm O(n)=0 so that
Dfu,] log m,<<A for some constant 4 independent of n By Lemma 7,

By % Dl log | e |+ BADlw) D]

for any 4,>0.

|un|—<~ 2g D[un] 10g+ 111{‘2[72’ ] + B(A7ZD[_un])4D[u7z]1“
T n
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There is a constant £, depending on N, such that 1/n<E/(logn)"e,
n=>3. Then

Diu< <0(n) OME=  _on /2n
""(logn)”“““” e"'ﬂ’dn ed,

if
1/2%(105%‘ n)N(k 2)
= dmE

The function xlog (1/2n/4x) is monotone increasing for 0<"w<{1/2n/ed so
that we may replace D[u,] by 6(n)/n*-* to obtain

2a ﬁ(n) 0(n)E"'
\u"\g/ -2 log (log P z)g(n)

() oy

ofy/ VAt e )

(log n)¥

In the proof of Lemma 7, we saw that L<legm* and o<lc,LM*<
c,cem®. Hence by equation (3) of Lemma 7,

et <]/(' camn<i%)_> (n> 16026 0(n)

et mF?

Since m,<1/2n, we obtain the statement of the theorem regarding

uniform convergence in R of |pu,| for k>10.

Next, let S be any closed domain in R. We may suppose the
boundary /" of S is sufficiently smooth so that a circle of radius e
may be rolled around /”/ while lying in S. Let Ln’:s%p |zl and P§™

be the point in S where L, =|r(P§™|. As in the proof of Lemma 7,

o<y @Dty (%) s24 8D gor pe s

me”

where

_ 2 4 4 4 2 ,
5= G, 2Ly I G 1,26, + FE o,
€

&t

Using Gz, as the function u of Lemma 8 defined over R and remember-
ing that Ge,—— S.b.f., we obtain
i=1
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G Ll=y/ [ S logmfe. -
i1
In S, |G(P)>e>-0. *Also
p| Lusl- Bu<E-nly-g.
i=1 iz =1

Therefore L,<lci1/logn , on<ci:7*1/log n , and

PPl <y/ euny/1og n( 2

k-2

~0 ([ (Z(%}gg n ]’) .

THEOREM 4. Let R, I', GG, f, be defined as in Theorem 3. Then
there is a constant ¢y such that whenever Pye R, then

V()" 52 1660
T

n_sz,nrc—z

K; FLPY< ¢ logm .

The theorem is true if F, is a point where f,,.--, f, all vanish, in
particular on /'. Let P, be a point in R where not all f, K=1, ...,
n vanish. Consider the problem of minimizing D[u], where u is of the

form u= nEcK fx, under the condition u(P)=T=<0. Now
K=1
Dlul=D| Seafe |- Sk,
K=1 K=1

so that we must minimize an‘jc under the condition i]cx S x(P)=T.
K=]1 K=1

By Lagrange multipliers we find a necessary conditicn for a minimum
to be

5 _TFulP)

Crx==Cg

2 FiE)
and the function &= iEK [« satisfies
K=1
DIl=T"| 3 Fi(P) .

=1

n
This is actually a minimum value, for, if u= 3¢, f,, then
K=1

T[S 0xfu(PIF< 3 cie 31 FH(P)
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S0
/A

) <3 eh=Dlu] .
S PP

K=

Now # is of the form G r, where -, has the degree of f, and this
degree is less than 1/2p,—-2 .

By Lemma 8, we have D{#]>=¢,,T%/log /212 .
Hence

r =D[a]> T
Z fK(PO) 10g 1/2)2 —

MIOES ! log v/2i-2

4. An Associated Problem. As in the previous sections, let B be a
bounded region whose boundary 7' consists of a finite number of simply
closed regular arcs of class ¢*, k==3; G(z, ¥) be a function of eclass ¢*
on R4 I', vanishing on I', positive in R, with 8G/0v=>0>>0 on I"; g(x, y)
be any function of class ¢ on R+ 17"; a variation be a function of class
¢® on R+ /7" vanishing on /.

Let

D= (o vesyndy

where ¢ >0, >0, ¢=0 on R+1I"; a, b, and ¢ are bounded and integr-

able on R; p is a real number greater than or equal to 1.

Assuming the existence of a function ¢,, yielding minimum value
to D*[¢] in the set of admissible functions of class ¢ on R+ 17, which
take the value of g on /', can we obtain ¢, by the Rayleigh Ritz
method ? This question is answered in the affirmative and an estimate
is obtained for the rate of convergence.

Let | ¢||=(D"[£])'"**, for &in the set of functions of class ¢ on R+ /.
This functional has the properties [£]>0, [aé|=|a]||&| for real a,
le+nl=<l&l+]7].

The functional |&|| is a true norm in the linear space V of varia-
tions. Let H be the Banach space formed by completing V with respect
to this norm. As in the proof of Theorem 1, we see that the set of
functions Gr, where r is a polynomial in « and y, is dense in H.
Moreover, if ¢ is admissible, there exists a sequence of polynomials
Q; of degree at most j such that
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[ —g—GQ =Dy — g~ G =0 ’;‘7’ )

where 6 depends on ¢—g¢g and lim 6(;)=0.
jooo

There exists inf D?[¢|>0 for admissible ¢». Let z; be a polynominal
of degree at most j which makes D'[g+ Gr,|<<D'[¢g+GQ;] for all poly-
nomials @, of degree at most j.

That such a polynomial r; exists can be seen as follows. The class of
all functions GQ; where Q; is a polynominal of degree at most j is also
the linear manifold determined by f:=GT;, the orthonormal sequence
of Theorem 1, whose polynomial factor T, is of degree at most j. As

stated in the introduction, 1<@\g<7;1)+j+1=a so that we may

write GQJ=HZC,.f,-. Now let @; be any fixed @, We may restrict
i=1

ourselves to those @; such that D’[¢g+GQ;]<D*[G+GQ;]. For such Q,
we have

lal+19+GQi| =]g]+]9+GQ;[| =GR, -

Sinece D[£|<<D*[£]"?|R['"* where (1/p)+(1l/q)=1, |R|=area of K, we
find that

RI" g1+ 19+ 6Q;F=D16Q1=D] S afi |- 5.

Thus the permissible ¢; lie in a bounded closed set S in s-dimensional
space. Since

D”[g+GQ,-]=D"[g+ Se fi]

is a continuous function of ¢; in S, it attains its minimum in S.
Since D*[g+ Gr;] is a decreasing function of j, we have

lim | g+ Gr,|<lim inf g+ GQ; | .
oo P

Let ¢ be admissible and choose Q; so that lim D¢ - g—GQ;]=0. Then

lg+GQ; <P +]¢—9—GQ,| implies that hm inf |g+GQ,|I<|¢|. It
follows that lim| g+ Gz, |<|| sl'U for every admlss1ble ¢ and thus ¢+ Gz,

J)>eo

is a minimizing sequence.

If ¢>0 in a set of positive measure in R, the functional |£| is a
true norm in the linear space (¢*) of functions of class ¢* on R+1". If
¢=0, a.e. in R, this is still true provided we identify funections differ-
ing by a constant. In either case we will complete the space (c¢*) to
form a Banach space B.
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A set S in a normed linear space is uniformly convex if there
exists a continuous monotone increasing funection g(e), <1, with
lim g(e)=0, such that whenever &, » are in S and HE\\—M!F , [ (E+7)/2]

g->00

—~1—¢, then |§—7[<g(e).
We shall show (¢*) is uniformly convex. It is easily verified that
if «, f# are >0, and p=>1 then

3o+ P2\ a + f|7+ | — 3|7,

Apply the inequality to the integrand below, where we assume ¢
and ¢ are in (c"), [¢]=[¢|=1, [(@+¢)/2|=1—¢.

el (737N ) o (2") ]

R R C R G
<2 |(tass+ b+ 9) + (@it b3 gy pamay
+ SS]aqS,gﬁa +b,0,4,+ cpd|Pda dy
<2 SS(“"" +bg, +og)rdady) (Sﬂg(a¢z,+b¢;j+¢c'-’)"dxdy/;””}"
B S 5(1/ agt + bt + cd*V/ agt + b+ ey )'dw dy
+y/ gg(a¢;+ b+ cordadyy/ gg(ag’ﬁ. b+ og)da dy—3
Hence

[((a(25 Y +0(27 ) we(*5 7)) dw dy=z—sa-ey,

and

» 1720
1o=9l=] [{(ato—92:+56 =90, + g —9y) day |
<2(3[1— (1 —¢)*])*"<2(8°")(2pe) " =g (&)
for ¢<1, since the function y=[1—(1—2a)*]—2p2x vanishes at 0 and is

a decreasing function of x for 0<{a<1.

LEMMA 9. Let B be a Banach space, Y a set in B with the property
that if v, y. are in Y, then so is (y,+y.)/2. Let the linear manifold
spanned by Y be a uniformly convex set in B. Let
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p=inf | y[ -0,
YEY
let y, be a sequence in Y with
];%m “ Yn ||=P, pn=” Yn || .

Then there exists a unique x in B such that |z |=p and we have

lo—va|<po( ") +pa—p
p

where g(e) is the function in the definition of uniform convexity. If p==
inf |y |=0, and lim|y,||=p, then there is a unique x in B such that
YeY n—>00 ,

Hw":p’ and we have "w_yn I‘ZPn—P-

Proof. Let 2z,=y,/p. so that |z,|=1. Write
Tt L(ﬂ@tyﬁ): yn(i _ },;) + y(i 1 ) ,
2 e\ 2 2\ow P/ 2\pw p
ZatZn | 1| UntYn| _ Hyn”(,l_l)-w(l_l)
2 pl 2 2 \p p/ 2 \p pu

>1 .,,_&(, L _1_>_&n(_l._ 1 >=1_(Pn,—,P):*:(P,m',‘P), _

2\p p/ 2\p p. 2p

Hence

Thus there exists z=limz, in B. Let x=pz=limpz,=

N—>oc0

lim p,z,=limy, .

N—>o0 n

Then ||=lim|y,|=p. Also |z,—2z|<g((rn—p)/2p) implies

| =y | =] 2= pu2n || p2— P20 | + | P20 — P12 IISpy(&‘Z%B) +pu—p -

To show z is unique, suppose also y,€Y, lgxlﬂy;, |=p, @' € B, |z’ |=p,

#'=limy, . Then form the sequence {y,}=w, ¥, ¥, ¥, ete. of ele-

N—>co

ments of Y with limy,=p. As above, gz’ e B with z/'=limy, =

7—>00

lim y,=limy,. The last part of the lemma is obvious, since only ||0|=0.

N—>co N—>o00

To apply the lemma, let B be the completion of (¢*), Y the set of
admissible functions,

?/n=g+Gr,,, p=inf Dp[sl,]]/zp ,

for admissible ¢. By the lemma, there is a unique & such that |z|=
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p. Assuming that x=¢, is in Y, we can choose polynomials @, of degree
at most j such that

=9-6Q,1=0(%2) .

Then
—p=|g+Gr;| =<l g+ GQ; |11 & |

=g+ GQ;— s+ ¢ || ¢ |<| o — g — GQ,|=0 (g(a))_

By the lemma,
—_— v =P\ A 00G)
(v=g=Geyk<2p(@ny (P ) 4 pmp=0( 90

a better result, O(0(j)/5*-*), is obtained in the case p=0.
Since
Dlu]<(D"[u])"|RI"" ,
where |R| is the area of R and (1/p)+(1/g)=1, we find

Dlu ]<( 0(.7) )1/,,

where hm 0(75)=0, when we take u;=¢,—9g—Gr;. A proof similar to
that of Theorem 3 can now be constructed for the following result.

THEOREM 5. Let R be a bounded region whose boundary I" consists
of a finite number of simply closed regular arcs of class ¢, k=>3. Let
G(z, y) be a function of class c¢® on R+ I, vanishing on I", positive in R, with
3G[0v=>6>0 on I". Let a, b, ¢ be bounded and integrable on R, and

a>0, b0, ¢c>0 on R. Let g(x, y) be any function of class ¢* on R+ 1.
Choose polynomials =; minimizing D*[g+ GQ,] in the set of all polynomials
Q; of degree at most j. Then, if ¢, yields minimum value to DY[{] for
¢ in the set of functions of class ¢ on R+ 1" assuming the values of g on
I', we have

¢y —g—Grjl= O<‘/ (17_32(_921 > " log ﬁoéifj;&‘ ) ,

where N 18 any fixzed positive constant, 0(j) depends on ¢,—g and
lim 8(4)=0.
J>mo v
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If k=>16p+2, then

7 -V(9+Grj)l=0([ 0(j) ]’)

k-3 16p
)
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THE FLEXURE OF A NON-UNIFORM BEAM
E. E. JoNEs

Summary. The flexure of a beam of non-uniform flexural rigidity
and non-uniform loading is deduced by the use of the method of the
Laplace transform, the results being in the form of a single equation
involving integrals which are in a suitable form for evaluation, either
numerically or otherwise. Two examples of practical importance are
introduced to illustrate the method, and the results are also applied to
determine the equation to the elastica of a beam supported by many
rigid supports.

1. Introduction. The method of solution of linear differential
equations by means of the Laplace transform was used by Jaegar [6]
to deduce the deflection of a beam with concentrated loads along its
length, the beam having uniform flexural rigidity and variable loading.
These results were extended considerably by Thomson [10], who
indicated that the Laplace transformation method led to the simplest
approach to the beam problem. These results were obtained in the
form of a single equation in terms of certain end conditions, and
eliminated the necessity of determining the equations between points
of discontinuity of load, and then connecting them at these points, [9],
[1]. Thomson’s results apply to problems concerning beams of uniform
flexural rigidity, and in order to extend them to problems involving
beams of varying and discontinuous cross-sectional inertia it was
necessary to reduce these latter problems to the former by the intro-
duction of an artificial modified loading of the beam, [4], [11]. This
present paper indicates how the problem of the beam with non-uniform
loading and flexural rigidity can be solved directly by the use of
standard operational methods, an appeal being made only to well-known
results in the calculus, [3, p. 257], [7, pp. 71, 82], [12].

It is assumed in this paper, that if < y(x)is the Laplace transform
of y(x), then

(Z’y(x)=re"’xy(x)dx,
1]
and in conjunction with this the following theorem is also required :

L y(@) L) = f/jjyl(uwz(wu)du,

Received March 26, 1954.
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if these integrals exist.
The results of the subsequent analysis can also be put into more

convenient forms by the introduction of the unit step-function, defined
by

H(.r—a){:(l) ! x‘<u ’

, x>a .

2. The beam under consideration is assumed to have s sections,
separated by the points xz,, (=1, 2, --., s—1), the origin of coordinates
being at one end of the beam, and the x-axis directed along the
undistorted position of the beam. The y-axis is then taken in the
direction vertically downwards, i.e. in the direction in which the
gravitational forces act. The weight per unit length of the beam in
the section w,.;<a<lx, is w,(x), and in order to simplify the notation,
the flexural rigidity in this section is defined as B,'(x). The beam is
subjected to m concentrated loads P,, acting at the points X,, (n=1,
2, 0n, m)

In order to avoid assumptions regarding the distribution of the
concentrated loads along an element of the beam at the positions where
they act, it is more convenient to deduce an expression for the shear
force acting on a right section of the beam in terms of the forces
acting on the beam. If z measures the bending moment at a point of
the beam distant  from the origin, then—dz/de measures the shear
force at this point. Assuming that 2, is the value of dz/dx at the
origin, then the shear force at a distance » from this origin is given
by the differential equation

(2.1) % i+ (e,
where
2.2) (,s(w)_«_so wde + 5 PX,)

Here ¢(x) is equal to an integral plus a step-function, and P(X,)=P,.
Any distributive loads can be included in w, which is a simply dis-
continuous function of « of the form

$—-1

w(@)= (W, —w, ) Hz~z,) ,

=0

where w,=0.
Equation (2.1) can easily be deduced by resolving all the forces acting:
on the length of beam between the origin and the point distant «
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from this origin normally to the beam in the direction of the y-axis.
The Laplace transform of equation (2.1) is

(2.3) p‘gz—zﬂzzl/p"’“Sj¢($)6'1’mdx ,

it being sufficient to assume that p>>0, since ¢ is bounded, and possesses
a finite number of finite discontinuities in the range of integration.
On rearranging equation (2.3),

1

& z_—_g‘,’ + 2L + - S P(x)e~r*da.
p P ph

The inverse of this equation is determined by using the convolution
integral, giving

@)=z +zx+ Siﬁ(u)du .
On integrating by parts, this leads to
(2.4) z=z,+zz+[up@)— Swudcp(u):zg +zax+ Sw(x —u)dep(u) .
0 0

This equation expresses the bending moment z at a point of the beam
in terms of a Stieltjes integral, [13, chap I], and thus can be inter-
preted in a series form.

From equation (2.2), by substituting for ¢(x) into the integral involved
in equation (2.4),

2.5) S:(m—wdau):Sf(w—-u)w(u)du + 5 @ XP,,

since contributions to the integral from the step-function only occur
when u passes through a point of discontinuity. Hence finally equation
(2.4) takes the form

(2.6) r— 2o 2T S (@ —wyw()du + P (@ — X, )Hiz—X,) ,

where the last term in equation (2.5) has been modified by the use of
the unit step-function.

The deflection y at the point x of the beam is given by the
differential equation

@Y —s()B(@)

where
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s—-1
B(@) =S (Byni— B)Hz—a,)
with B,=0. Here B(x) is a simply discontinuous function of , and
z(x) is defined by equation (2.6)
If 9%=(¥)s=o, and y,=(dy/dx),.,, then by repeating the above
process

1

y=Y% Y @B),
D o

whence
2.7) Y=o+ 1+ S"'(x—u)z(u)B(u)du ,

using again the property of the convolution integral.
By combining equations (2.6) and (2.7), the deflection of the beam
can be written in the more convenient form

Y=o+ yx+ Sm(m— u) (2o + z,u)Bdu + Y(x - v)deS"(v —u)wdu
0 0 0
(2.8)
+ ZP,,H(m - X")S“ (x—u)(u—X,)Bdu .

n=1
n

The integrals involved in this expression are all interpreted in the
same manner, the range of integration is subdivided into intervals
corresponding to the subdivisions of the functions B and w, thus

x

@ r—1 T+l
S (x—u)Bdu= S (x—u) BanquS
0

n=0 T,

(x—u)B,.du ,

Xy

when <<z, , (0<r<s—1). This integral may also be interpreted
in the form

Eﬂ(m—-xn)r (@ —u)(Byur— B, ).

T

Similar expressions occur for the remaining integrals although greater
care must be taken over the subdivision of the last two integrals of
equation (2.8).
It follows from equation (2.7) that
gy =y, + r(zd +zu)Bdu + ST degﬂ(v —uywdu
£ 0 0 0
2.9)

+ 3P, H(z~X,) S “ (w—X)Bdu .
n=1 X,
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In any practical problem the values of the constants y,, ¥, 2, and
z, can be deduced from the given end conditions, it being noticed that
the equations apply along the whole length of the beam.

3. The first example illustrates the effect on the flexure of a beam
of a variation in the flexural rigidity of the beam. The beam is assumed
to have uniform loading w, and is freely supported at the same level
at the ends =0, I. The beam is subdivided and stepped in cross-
section at the points «,, (n=1,2, ---,2s), so that w,.,=I[, and these
points are symmetrically placed with respect to the mid-point of the
beam, such that
(3.1) Bt 8=, 1, 10, )

Lose o1 — =1, .
The flexural rigidity of the stepped beam is constant in each section,
and is also symmetrically distributed, such that, in the usual notation,
By =B, (n=0,1,---,3).

The deflection of the beam at a point distant « from one end,
given by equation (2.8), is

y= ylx—i—le(BnH B,Z)H(%xn)r u(x —u)du
(3.2) 7 i

+ 2’2 (B, -—B,,)H(x-—xn)gz v(e—v)dv
since y,=2,=0 at x=0, where y=d%/dx*=0. Also y=d%/da*=0 at
x=I[, hence from equation (2.6), z,=—wl/2, and from equation (3.2),
after some reduction,

w I
- B,..—B)l+3x,)(~z,) .
Y, 24Z 722:‘0( n+l Bn)(l+3af7z)(l xn)

The integrals of equation (3.2) are easily evaluated, and after substi-
tuting for ¥, and z, rearrangement leads to the final expression for the
deflection

Y= 214 waB(+ -2+ | wa(BnH B)3E—12)I,

3‘8‘4 iﬂ(m @,)(Bys:— B,)(51 + o — 4a? — 21 I, + dal, — 81, )) (2w — 1 +1,)?

NS zﬂ(x aso21)(Buss = B,) (51 + Aoy — da* + 21 1, — dasl,, — B12) R — [ — 1, )* .

When a=I[/2 this relation reduces to the result deduced by Hetényi,
[5], using another method.
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4. The second example refers to a cantilever beam clamped
horizontally at the end =0, free at x=/{, and loaded linearly according
to the relation w—=ma, where m is a constant. The beam is subdivided
and stepped in cross-section at =, (n=1,2,.--,s—1), in such a way
that B, is constant in each section, but increases in magnitude as n
increases. A concentrated load acts at the mid-point X of the end
section ., <zx<wx,.

The equation governing the deflection of the beam reduces to

y=:§) H(x—x,)(Bus— Bn)Sw (@ —u) (2o +2u)du

Tn

+ msi H@x—x,)(B,s— Bn)sT (x—7) dvyv(v —w)udu

n=0 Ty
$—1 X
+ PH@~X)> (Byr — B“)S (— ) — X)du
7n=0 X

since yy=y.=0 at x=0, where y=dy/dax=0.
When a=wx,=(, then z=dz/dx=0, hence from equations (2.6) and
(2.1),
2l +2z,+P(l—X)+ml*6=0,
2+ P4+ml*2=0 .

Thus
2y=PX+ml[3, and z=—(P+ml*2).
The deflection at any point x of the beam then becomes

§-1
Y= 112 S He—z,)Byo—B)e—x,V{2PBX—x—2x,) + ml* 2l —x—~2x,)}
n=0

§=1
~+- m Z‘H(x_xn)(Bn+1'—Bn)(xa—_ 5mw7‘b+4w;)
120 =0

+ é’ -H(x—X)i(B,m-—Bn)(:v—X)” .

5. When a beam is constrained at various points along its length
by means of rigid supports, the reactions at these points will oceur in
the equations for the flexture of the beam. It is thus necessary to
eliminate, or at least to determine these reactions. A particular
example will suffice to indicate the procedure. It is required to deter-
mine the form of the elastica of a beam of varying section clamped
at each end, and supported at several points along its length, one of
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these supports being a distance d out of alignment with the remainder.
There are m supports, one at each of the points X,, (r=1,2, ---,
m), the beam being divided into s sections at points z,, (r=1,2, .--,
s—1). The beam is clamped horizontally at x=0 and at x=z,=X,,
and there y=dy/dz=0.
The following notation is introduced :

X, X,
a,= S (X,—u)Bdu , b =S (X, ~u)uBdu ,

IS
0 0

X, v X,
¢ = S (X.—v) deg (—uywdu, d, — S (X, —u)(u—X,)Bdu ,
Jo

0 n

the integrals being interpreted as in § 2.

If P, (n=1,2,---,m), are the reactions at the supports, then
from equations (2.8) and (2.9), at =0, y=v=0, and at z=z,=X,,
then

2ty +2by+ 0y + S Py, =0
(5.1) n=l

m
20 + 2.5+, + >\ P.d, =0,
n=1
X

where a;:( Bdu, ete., i.e. the partial derivatives of the integrals

Jo

with respect to x at z=2X; .
Solving equation (5.1) for 2, and z; we obtain

m m
zﬂ::fs'%_ZanF'ns ’ zl:gs*‘ZPanns ’
y= n=1

where

f.s' = (('sb: - C;bs)/(a;bs - asb;) ’ 9= (asC; - a.;cs)//(a;bs *asb;‘) ’
ﬁvns :(b;‘dam - bsd;ls)/(a;bs - asb;) ’ Gns = (asd;zs - a'.;d-ns)/(a-;bs - a’sb;) .

It is assumed that the supports are in line along y=0, with the
exception of the support at the point (x,, d). If d,,=1 when r=¢,
and is zero when r=t, then y,=dé,,, and from equation (2.8),

—dart —_avrfs _brgs —C,= i {arF'/zs +erns +dn7'H(n_lr)}Pn .
n=1
This equation can be written in the matrix form
(5'2) pr?LPn::qr ’ (7‘7 n———':l, 27 *t Y m)9

where
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p/l‘nrza’rFﬂs +bI‘G;IS +d717'H(W/_,r) ’
(]r: - (dart +ar.fs +brgs +C7') *

The matrix equation can be solved for P, by any of the standard
methods [2, pp. 96-155], i.e. by an iterative process, or by forming a
triangular matrix by premultiplying both sides of equation (5.2) by a
suitable matrix and solving the resulting equations either directly or
by considering the reciprocal matrix solution.

The elastica is determined by inserting the values of P, in equation
(2.8), since y,=9,=0, and 2z, and 2, are already known. The procedure
is similar for other end conditions. When the reactions at the supports
are known, it is also possible to determine the slope, the bending
moment, and the shear stress at any point of the beam. All the
integrals can be evaluated numerically, [8], or directly if the variation
of B and w is in a simple form, and a tabular process can be readily
set up.
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NOTE ON NONCOOPERATIVE CONVEX GAMES

HUKUKANE NIKAIDO AND KAazuo IsoDa

1. Introduction. Nash’s equilibrium-point theorem for many-person
games can be approached by two methods: first, the Kakutani-type
fixed-point theorem! is very useful for this game problem; second, in
case of finite-dimensional multilinear payoffs, J. Nash himself has given
an elegant procedure [7] which is directly based on Brouwer’s fixed-
point theorem. In a previous paper [10] one of us proved a general
minimax theorem in making use of a procedure analogous to that of
Nash. The present note is a continuation of this paper, and its main
purpose is to offer further improvements of Nash’s method so as to
treat noncooperative many-person games played over infinite-dimensional
convex sets, based on a generalization of von Neumann’s symmetrization
method* of game matrices. The results thus obtained contain further
weakening of (especially topological) assumptions of the equilibrium-
point theorem.

Next we shall discuss the equilibrium-point problem of some general
noncooperative games by reducing them to suitable convex games. This
will clarify the relevance of convex games to general games.

2. Definitions and notations. We mean by a convexr game [3] a
noncooperative n-person game with the following conditions:

a) The ith player’s strategy space is a compact convex set X, of
a topological linear space E..

b) The 4th player’s payoff Ky, ---, x;, +++, x,) is concave with
respect to his own strategy variable z,eX,.

¢) The sum of payoffs 7. Kz, +--, x, -+, ,) is continuous over
the cartesian product space X, QX,.®---®X,.

d) For each fixed z;,, K@, **+, @1, Liy Liv1y * *+, L) 1S & continuous

Received October 27, 1953. This work was partly sponsored by the Ministry of Edu-
cation of Japan. The writers wish to express their thanks to Professor S. Iyanaga, Tokyo
University, for his comments.

1See [6], |4], [5], or [9]. A supplementary note to [9] will be published shortly.

28ee G. W. Brown and J. von Neumann, Solutions of games by differential equations
in [1], and D. Gale, H. W. Kuhn and A. W. Tucker, On symmelric games in [1].
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function of the (n—1)-tuple [@,, -+, @1, @iur, +++, 2,]e X Q-+ - QX,_ QX ., ®
-+ ®X, respectively.

REMARK In view of the usual classification of games in terms of
total gains, ¢) may be of interest. Indeed, in case of constant-sum
games, ¢) is automatically fulfilled. If all the payoffs are continuous
over X;®---®X,, ¢) and d) are also fulfilled.

A point [&y, &, +--, £,]e X1 QX,®---QX, is said to be an equilibrium
point if the z,-function K,(&,, &o, «++, Zio1y Tiy Fys1, *++, &,) assumes its
maximum at x,=2, (1=1, 2, ---, n).

REMARK The notion of equilibrium points first appeared in the
celebrated work of Augustin Cournot (see [2]) and was investigated by
him by means of differential calculus. But the contemporary concern
about it is to see the existence of these points in the global sense by
topological methods. The equilibrium-point problem under conditions
a)~d) cannot, however, be treated by the Kakutani fixed-point theorem,
since the required upper semi-continuity is not always assured in these
cases. Thus, the proof in the following section may deserve some
general attention.

3. Generalization of von Neumann’s symmetrization and proof of
the equilibrium-point theorem. To see the existence of equilibrium
points for a convex game, we introduce an auxiliary function. To begin
with, denote by

a:=[w1, Loy ***y wn] y Z/:[Z/n Yoy ** ?Jn]
two mutually independent variables with the same domain
X=X®X,®---8X,,

which is again compact and convex.
Next put

(1 ) @(.’E, y)__‘ ; Kf(yl! 2y 0%y Yoy Lyy Yir1y * 00y yn) .

It is noted that &(z, y) is also concave with respect to x#cX. The im-
portance of this function is clarified by :

LemmA 3. 1. A point
@:[@1, f/:’:r ctty @n]EX

is an equilibrium point for the given game, if and only if O(x, §) assumes
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s maximum at r==1.

Proof. The necessity is obvious. If, conversely,
DY, 9)=P(x, y)
for any xeX, setting

PN A N N
x:[yly 2y 0y Yi-15 Loy Yivry * Z/ﬂ]

gives

Ki(@l! ?A/Z! Sty ?A/'l—l’ ?75: ?A/L+1! Tty @71)—>—Ki(glv ctty @i-ly Ly (gt-r-ly *t %y ?A/n)

for any x,€X,.

REMARK For a zero-sum two-person game, we have
Oz, y)=K(x:, ¥.) — Ky, ) , Xy, y)=0,

where K(x;, «,) is the payoff from player 2 to player 1. This implies
the funetional form of von Neumann’s symmetrization procedure®t. We
shall later present an interpretation of this function with regard to
player’s behavior.

With this setup, we next prove:

THEOREM 3. 1. A convexr game always has at least one equilibrium
point.

Proof. By Lemma 3. 1., we have only to see the existence of a
point ¢#eX such that @y, §)=@(=, §) for any xeX. Suppose the contrary
were valid. Then, to each yeX, there exists some xeX such that

(2) 2y, )<0(x, y) .

Put G.={y; &y, y)<d(z, y)} then G, is open by conditions ¢) and
d), and

X UG,

zEX
by (2). Hence, in view of the compactness of X, we can find a finite

3]t is noted that @(x,y) does not provide a real generalization of von Neumann’s
symmetrization, since x;’s refer, in special cases, to mixed strategies. We can also con-
struct, however, the function @ in terms of pure strategies, and this will give a real
generalization of von Neumann’s method symmetrizing game matrices; instead of the
cartesian product of mixed strategy spaces we must, then, consider the mixed strategies
over the cartesian product of pure strategy spaces. But in either cases the formal pro-
cedures in constructing @ are exactly the same.
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set A={a,, a,, ++-, a;}< X such that
X G, -
j=1
This implies @(y, y)< 'max ;&(a;, y) for any ycX. Now, put

fj(y): max [(p(a'j’ :’/)_@(y’ y)! O] (.7:1, 2! ) S) .

These s functions are all continuous by conditions ¢) and d), and

satisfy f(¥)=0, 351/ (y)>0 for any yeX.
The continuous mapping

(3) y= 37w/ 37 )
J=1 Ji=1

maps X into the convex hull C(4) of A and therefore in particular
C(A) into C(A). Since C(A) is homeomorphic to a compact convex set
in a Euclidean space, there exists a fixed point by Brouwer’s fixed-
point theorem.

A

Denote by # one such point. We have then

i= 3£ )y / 3 £ (D)CATX .

But for such a j that f,(y) >0, we have, by definition, @(a;, %) > (%, 9).
Since @(x,y) is a-concave, this implies @9, §)>d(%, §), which is a
contradiction.

REMARK The foregoing proof is essentially a repetition of the
argument in [10]; the application of this argument to many-person
cases is made possible by the use of @(x,y). It should be noticed,
however, that despite the generality of Theorem 3. 1, it does not contain
the result of [10]. The main reason for this fact is : the quasi-concavity
(see [10]) of the original payoff may be lost in constructing @(z, y).
So the theorem in [10] needs separate discussion.

4. An interpretation of ?(x,y). Lemma 3. 1 can be rewritten as
follows: An n-person game has an equilibrium point if and only if
(4) min max [@(x, y) —@(y, ¥)]=0 .

yeX xe X
Now (4) may be interpreted in the following way: Suppose there are
n persons P, P,, --+, P,. We consider the cases where all the persons
P,, -.., P, except P; cooperate. Denote the coalition consisting of only
P, by Q, and that consisting of P,, Ps;, ---, P, by Q,. @; and @, play
n original games simultaneously, conforming to the following new rules:
We denote these » games by Gy, G,, -+, G,, respectively. In G, (¢=1,
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2, «++, n), Q, participates in the » simultaneous games as the ¢th player,
while @, occupies all the other positions. Then

r=|x, X +--, ¥,]eX
indicates the strategies of @,, and

y:[yly Yoy =0,y yn]EX

indicates those of Q.. If Q. chooses x and @, chooses ¥y, @, pays to @,
the amount

Ki,(ylv ety Yiey Loy Yivry *° yn)

as the outecome of G,. On the other hand, @, pays to Q. the amount

; Ki(yly 2y %y yn)

as the rent for gambling, after the game is over. Thus @(x, y)—@(y, ¥)
indicates the total gain of Q,, while @(y, y)—@(x, y) indicates that of
@Q,. With the notion of this new zero-sum two-person game, (4) gives
a criterion for the existence of equilibrium points for the original n-
person game. If the given n-person game is constant sum, (4) is reduced
to the more natural formula :

min max &z, y)=rn ,
veEX 2€ X

where = denotes the corresponding constant sum.

5. Reduction to convex games. In this section we assume E; is a
normed linear space. We further assume regarding the payoffs H(a,
2y, ++-, 2,) the following conditions :

(i) The w,-function Hyx,, ---, &, 1, &y Tisrs =+, £,) IS UPper semi-
continuous for each fixed (n—1)-tuple [y, oy **+, Tio1, Tisry =+ Tl -

(ii) The a;-set

(@,; max H(y, »-+, &y ooy @) =H @1, o, Ty, o+, T)}
x; € X;
is convex for each fixed (n—1)-tuple [x, «+-, Zi_1, Tie1, =+ *, Tl .

(ili) The family {Hy(zi, <+, a;, -+, 2,); ®,cX;} is a uniformly equi-
continuous family of functions on X,®---®X, . ®X,;,,9.---QX,.

These games are usually treated by means of Kakutani’s fixed-point
theorem. We shall next, however, prove the following :

THEOREM 5. 1. To each game of foregoing type there exists a convex
game with the same strategy spaces whose equilibrium points are exactly
those of the original game.
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As a direct application of Theorems 3.1 and 5.1 we can see the
existence of equilibrium points for games of the foregoing type without
Kakutani’s theorem.

We now proceed to prove some lemmas.

Let R and S be normed linear spaces. We denote by ||«|| the norm
of a point zeR. A continuous function f(z) over R will be called
linear if

Flax + auz)=a, f(2:) + . f(.)

for x, x.€R, a,+a,=1. We define the norm of f as usual:

LFll= sup [f(x)—r(0).
el|=1

Now, let H(z, y) be a function on X®Y, where X and Y are compact
convex sets in R and S, respectively, and suppose that the family of
functions {H(w, y); xeX} is uniformly equi-continuous.

Let further F, be the totality of linear functions f over R such
that (I) |||l and (II) f(x)=H(x,y) for any zeX.

Putting

K(z, y)= inf f(z),
fel,

we obtain an z-concave function on X®Y. We call K(z, y) the z-concave
envelope of H(x, y). We shall show the continuity of this function by
proving the following lemmas.

LEMMA 5. 1. {K(xz,y); xeX} is a uniformly equi-continuous family
of functions on Y.

Proof. Since {H(x,y); xeX} is uniformly equi-continuous, we can
find for ¢>0 a 6>0 such that ||y, —u.||=6 implies |H(x, y\)— H(x, y.)|<e
for any xeX. We shall show that, for this same 4, ||y, —u.||<{d implies
| K(z, y1)— K(z, y.)|<e for any xeX.

Indeed, if feF,, then

f(@)=H(x, y)=>=H(x, ¥.)—«

for all zeX, and |[f +¢|[=||f|l; namely, we have f +ceF, .
In the same way, we have g+eckF, for gekF, .
Hence, if ||y —9./|<5, we obtain

K(z, y;)+e= inf f(x)%—e:finf [f(x)+e]>> inf o(@)=K(z, ¢.) ,

JELy, u1 GELy,



NOTE ON NONCOOPERATIVE CONVEX GAMES 813

and similarly K(z, y.)+e=K(x, ;) for any xze X. This means that
|K(x, y,)— Kz, ¥,)|<e for y,v.€ Y, |ly.—ul|<d, and all ze X.

LEMMA 5. 2. K(z,y) is continuous on X for each fized ye'Y.

Proof. Let y be an arbitrary fixed point in Y. If ||z—&||<e, then
SeF, implies

|f (@)= F@IZNA e -2 <e .
It follows that

| inf f(x)— inf f(&)|<e,
feFy JEF,

(4

proving the desired continuity.
LEMMA 5. 8. K(x, y) is continuous on XQY.

Proof. We have this lemma immediately by taking Lemmas 5. 1
and 5. 2 together into consideration.

LeMMA 5. 4. Suppose H(x,y) is upper semi-continuous in « for
each fived yeY, and the wx-set

I'y={x; max H(z, y)=H(x, y)}
reX

is a convex subset of X for each fixed yeY. Put

»={x; max K(x, y)=K(x, )} .
zxeX
Then we have I',=4, for each fized yeY.

Proof. Let y be any fixed point €Y, and put

w,= max H(z, y) .
rxeX

Then the linear function g(z)=w, belongs to F,. Hence we have

H(z, y)<K(a, Z/)=finf f(@)=o,

Y

for all x eX, which implies /',4,.

Conversely, by the above formula, it is obvious that if &ed, then
K(#, y)=w,. Thus, to see that 4,CI,, it suffices to show that K(&,
y<o, for k¢l
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Let % be any point not belonging to /°,. Then
dist (&, I",)=2a>0 .
Putting
M= {x; dist (z, {')<a} ,
we obtain an open convex set M and a closed convex set M (the closure

of M) in R. Moreover, it is clear that &¢M.

Let e(x) be such a linear function that e(x)—>0 on M and e(&)=—1;
its existence is a well-known fact (known as Mazur’s theorem) in the
theory of convex sets. Denote by N the complement of M within X;
N is compact and, in view of the definition of M, we have

w,— max H(z, y)=r>0; min e(x)=7<0 .
zeEN

reEN
Put
F@) =aw,+ 240
[

where 6 >0 is so small that 6<y and d||e{|=<|»;. Then ||fl|<1, f(z)=0,
on M, and

Fl@)=w,+ 5T;T)J>._.wy+% —w,—y=H(z, y)
/

for any zeN.
Hence f e F,. Moreover,

~ A N
f@)=w,+ 9e(2) =, — 0 <, ,
|71 7

which means K(&, y)<w,, proving the lemma.

The proof of Theorem 5.1. is now immediate. Indeed, let us
construet the x;-concave envelope K(xy, +++, 2, <+, ,) of

Hi(xlv"'yxi:"°yxn) ('b:]., 2,“',’)?,).

Then K(x, ., -+, x,) is clearly a;-concave, and is continuous by Lemma
5. 8. Thus, we obtain a convex game. Moreover, the set of equilibrium
points of this game coincides with that-of the original game, by Lemma
5. 4.
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ON THE CONVERGENCE OF ASYMPTOTIC SOLUTIONS
OF LINEAR DIFFERENTIAL EQUATIONS

R. M. REDHEFFER and W. WASow

1. Introduction. In the differential equation
(1) Ly, e]=y™+ 3 A, epy™P=0
j=1

let the coefficients A,(x, ¢) be analytic functions of & and e. For all
values of » and ¢ for which these coefficients are holomorphic in both
variables the differential equation admits a fundamental system of
solutions with the same property. But if some coefficients of (1) have
poles, as functions of e, for a certain value of ¢, say for ¢=0, then the
solutions of the differential equation will in general have singularities,
as funections of ¢, at e=0. The purpose of this paper is to collect
some observations on the question of when solutions holomorphic at
e=0 exist even in this case.

The theory of asymptotic integration of such differential equations
[6], [8], [3], [9], [10] teaches that in this case there exist fundamental
solutions which are asymptotically represented by generally divergent
expansions of the form

(2) o @),
v=0

where #» is a positive integer and P(z, ¢) is a polynomial in 7", Our
problem might naturally be generalized to include the question of the
convergence of any, or all, of these asymptotic series, whether P(x, ¢)
be identically zero or not. But this will not be done here.

The analogous problem for differential equations without a para-
meter, at a point where the coefficients have a singularity has been
quite thoroughly investigated (cf. [1, 486-489]). By contrast, there
seem to exist no studies of corresponding questions for the dependence
on a parameter, nor does it seem possible to transfer the results
obtained for one problem to the other by an easy analogy. In view of
this situation the results of this paper may be of some interest.

2. Necessary conditions. Let us assume that 4,x,¢) are of the
form

(3) Ay, e)=e"'kZ;Ajk(x)ek , (G=1, -+, n)

7 Reéelv;:d December 3, 1953.
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where at least one A,(x) is not identically zero and 4 is a positive
integer. The series are supposed to converge when z is in a fixed
region X of the z-plane, and for ¢ in a circle E: |e|<e, g being
independent of . The functions A,(x) are to be holomorphic in X.
In order to shorten the terminology the self-explanatory expressions
z-holomorphic and e-holomorphic will sometimes be used. A function
that is holomorphic in both variables may be called (@, ¢)-holomorphic.
The differential equation (1) can be rewritten in the from

(4) 'Ly, ¢]=¢N[y, ]+ My, €1=0 .
Here,
(4a) Nly, el=y™ + }Ea.,(:c, &)y
y=1
(4b) IM[y’ 5] = ib“(x’ E)y(m—pt) ,
w=0

and the a,(z, ¢) and b,(x, ¢) are (x, ¢)-holomorphic in the product space
of X and E. The b.(x, ¢) are polynomials in ¢ of degree less than 4.
The coeflicient by(z, 0) is not identically zero. Furthermore, 0<m<n.
By formal substitution of a power series Y. 7.,(x)e’ into (4) it is seen
that nontrivial formal power series solutions can be constructed if, and
only if,

(5) m>>0 .

If () is satisfied, then the function y,(x) may be any solution of the
“reduced ” differential equation

(6) Mly, 0]= gobu(x, 0)y™ =0,

and the functions y,(x), 7==1 can be successively calculated, in infinitely
many ways, as solutions of a sequence of nonhomogeneous differential
equations whose homogeneous part is M[y;, 0].

Let us call a solution which is e-holomorphic at «=0, a regular
solution. Unless it is important in the context, we shall not specify
the z-domain for which such a solution is regular. A set of regular
solutions will be simply called independent, if the solutions are linearly
independent at ¢=0, and hence in some neighborhood of ¢=0. From
the preceding discussion it follows that the differential equaiion (1)
cannot have more than m independent regular solutions.

It is easy to construet examples for which the number of indepen-
dent regular solutions is equal to m. Let, for instance, Yz, ¢),
(=1, ---, m) be m linearly independent functions that are (z, ¢)-holo-
morphic in the product space of X and E, and denote by M[y, ¢]=0
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the linear differential equation of order m with leading coefficient one
that is satisfied by these functions. If D designates the operation of
differentiation with respect to 2z, then

(7) &mD "My, e]+ My, ¢}=0, n_>m

is an nth order differential equation with m regular solutions. The
standard asymptotic theory (see e.g. [9]) shows that the functions
Y(x, ¢) are part of a fundamental system of (7) whose n—m remaining
solutions have asymptotic representations of the form (2) with P(z, ¢)
equal to the n—m determinations of (—1)/" "™ 'z,

In spite of this, the occurrence of any regular solution must be
regarded as exceptional. In order to show this we prove the following
lemma, which generalizes a result of Horn [2].

LEmMMA 1. Let the coefficients o, (x, ¢) of the system of differential
equations

(8) s e S (s e (=1, -+, m)
da w=1

be (@, ¢)-holomorphic for x in X and for |e|<ley. Let the solution
w,=U,(x, ¢) of (8) be characterized by the initial values

( 9 ) Uj(a’ a):pj(s) (ley ctty 71)
EISED’

at a point ¢ of X, where the functions p,(e) are holomorphic for
except possibly for a pole at e=0. Then

U, e)=U, "z, &)+ U(m 1 )
&

where U, U are x-holomorphic in X, and e-holomorphic for |e|<e,
and 1|0, respectively.
Proof. Define the functions U, (x, ¢} by the relations

pj(e)’ r=0
(10) Ufr(-’ll, )= e—nS }1_1‘ CXJ,L(t, e) Uj,r—l(t! e)dt, >0

I‘ﬂfl‘“=l
where 1", is a path connecting ¢ and = in X. By the standard argu-
ment of Picard’s iteration method it follows that for 0<le;<{le|<lep, and
for x in any closed and bounded subdomain of X,

(11) Uz, e)= % Uz, ¢),
where the series, as well as the series of its termwise derivatives

with respect to x, converge uniformly and absolutely in the indicated
domain. If % is the highest order of the poles of the functions p,(e),
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the formulas (10) show that the iterants are of the form
(12) Ui, e)=e" "0V (w, ¢)

where the V,.(z, ¢) are (z, ¢)-holomorphic for # in X and |e|<l¢y. From
(11) and (12) we conclude, by means of Weierstrass’s theorem on
interchange of summations in double series that U(x, ¢) admits a con-
vergent representation of the form

Ufa, )= 3 Fy@)e”
which is uniformly valid for « in every closed subdomain of X, and
for 0<Ze;<|e|<ey, Where ¢, is arbitrary, and the F,(x) are holomorphic
in X. This proves the lemma.

Suppose, now, that the differential equation (1) admits a regular
solution Y(«, ¢) in some subdomain X* of X. If a is any point of X*,
then Y{(z, ¢) can be uniquely characterized by the values of Y“(a, ¢),
(s==0, ---, n—1), which are e-holomorphic for l¢]<le,. Since the differ-
ential equation (1) is equivalent to a system of the form (8), it follows
from the lemma just proved that

Y(.’L’, €)=¢)1((U, €)+¢2(wy 5) ’ xeX,

where ¢, ¢, are e-holomorphic in |e|<le;, and |e|>>0, respectively, and
x-holomorphic in X. But since Y{(z, ¢) is e-holomorphic for [¢[<le, and
x in X*, the uniqueness theorem for Laurent’s expansion leads to the
conclusion that ¢.(x, ¢)=0 for « in X* and all «. Being x-holomorphic
in X by Lemma 1, ¢.(z, ¢) vanishes therefore identically in the whole
domain X. This implies, in particular, that Y(z, 0) is a-holomorphic in
X. On the other hand, Y{(x, 0) is a solution of the reduced equation
My, 0]=0, and we have proved the following theorem.

TueoreM 1. If the full differential equation (4) possesses a regular
solution Y(x, e), then the corresponding solution Y(x, 0) of the reduced
equation My, 01=0 must be x-holomorphic in every domain X where the
coefficients of the full equation are w-holomorphic.

This is a rather strong restriction on the coefficients of M{y, 0]=0,
in particular on by(x). For the equation My, 0]=0 has, in general,
singularities at all zeros of b(z), and there will rarely exist a solution
of M[y, 0]=0 that is holomorphic at all the zeros of b(x) which lie in
X.

Theorem 1 sheds some light on Theorem 9.2 of [11]. That paper
was concerned with the special case in which the expression N[y, ¢]
=NJ[y] of (4) was of order four and independent of ¢, and M[y, ¢] was
of the form

Mlyl=b(@)y" +b(2)y ,
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where by(x) had a first-order zero at x=0. In Theorem 9.2 it was
proved that the full equation

(13) eN[yl+ Mly]=0

possesses In this case a solution y= V(z, ¢) that approaches, uniformly
in a full neighborhood X* of =0, the z-holomorphic solution v(x) of
Mly]=0, as «—0 along a given ray of the e-plane. It would seem
plausible to conjecture that V(w,¢) is e-holomorphic at e¢=0. But
Theorem 1 shows that this is, in general, not the case, at least, if b(x)
possesses other zeros besides a=0.

3. Some remarks on sufficient conditions for convergence. The
problem of finding sufficient conditions for the convergence of an
asymptotic series in ¢ seems to be much more difficult than the topic
discussed in the preceding section but some special classes of differen-
tial equations admitting regular solution can be constructed.

a) Constant coefficients. If the coefficients of the differential
equation (4) are independent of x it possesses a solution of the form
y=e"®* corresponding to every distinct root i(¢) of the polynomial
equation

H(, e)ss'b{xu ﬁav(e)/{"_v}-l— f;ob“(e)xm—#:
v=1 =
Let 2=2, be a root of the equation
HQ, 0)= 3b,(0)m#=0 ,
=0

then by classical implicit function theorems H(1, ¢) possesses an
e-holomorphic root for which 2(0)=24,, provided 2H/22 does not vanish
for ¢=0, 1=41,, that is, provided 2, is a simple root of H(2,0). If all
roots of H(2,0) are multiple, H({4, ¢)=0 may or may not define an
e-holomorphic function, as can be seen from the example

H(A, e)=e"P+2--21+1=0,

which possesses an e-holomorphic solution for 2=2, but not for A=1.
b) [Linear coefficients. In formulas (4a) and (4b) let

a(x, €)=ay,(e) + ar(e)x

I),L(.’L', €)=b0u(€) + bw(e)x .

(14)

For many differential equations of this type regular solutions can be
found by means of complex Laplace transformation. If we introduce
the polynomials
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AJ':AJ'(t! 5): ;ﬂa]‘w(e)t”—v H
B;=Bt, &)= > b (e)t" ™",
=0

then the differential equation (4) with coefficients of the form (14)
admits [4, 88 8, 18] solutions of the form

(16) Y, e)=§ ot )edt

c
where v(t, ¢) is a solution of the differential equation
(17) ('8 + Ay + Bo)o — gt [( A, + By)s]=0

and C a suitable contour.

If a closed contour C on the Riemann surface of w(f,¢) as a
function of ¢ can be found such that C is independent of ¢ and the
integral (16) exists for all small ¢, then the integral will be either
zero or furnish a regular solution, since C can then be chosen so as to
avoid the points where v(¢, ¢) is not e-holomorphic. It is possible, but
not very illuminating, to formulate more explicit sufficient conditions
on the coeflficients under which the preceding condition can be satisfied.
Some special differential equations of this type were treated in [12]
and [13]. The equations

eyP+ay’ +y=0
(13)
ey +a(y’ +y)=0

do possess regular solutions. The differential equation
ey’ +kxy +y=0

turns out to have a regular solution when the constant 1/k is a
negative integer. For other values of % the solution of the reduced
equation has a singular point at =0 and the sole regular solution is
y=0, in consequence of Theorem 1.

4. The differential equation ey’ + a(x)y’+b(x)y=0.

a) Polynomial initial conditions. The theorem of § 2 suggests the
conjecture that regular solutions exist if the coefficients of the
differential equation are entire functions without zeros. But the
example ey’’’ +y’' —2y’ +y=0 mentioned in the preceding section shows
that this conjecture is certainly not true in full generality. In this
section some sufficient conditions are established for regularity, atten-
tion being confined to the equation ¢y'’ +a(x)y’ +b(x)y==0. In agreement
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with the foregoing results, the conditions on a(x) and b(x) take account
of the behavior in the large. For example, a solution a-holomorphic
for |e|<ley, |@|<w, must be in fact ax-holomorphic for ¢=0, whenever
xe X, the domain of regularity of @ and b. A hypothesis ensuring
regularity must therefore ensure, at least implicitly, that the reduced
equation ay’+by=0 has a solution of the indicated type.

We consider the following statements :

STATEMENT (A). The equation ey’’ +a(x)y’ +b(x)y=0 has a solution

(19) Y@, &)= Spn(@)e=0

convergent for |e|<le, |x|<x, and satisfying .(0)=P(n), y.(0)=Q(n),
where P(r) and Q(n) are polynomials of degree <k.

STATEMENT (B). The equation admits a regular solution y(z, ¢) such
that .0, ¢)/y(0, ¢) is a rational function of ¢, whose numerator and
denominator have degree <<k.

STATEMENT (C). The equation admits a solution of the form

k

S ()60

=0

where the A’s are holomorphic near x=0.
STATEMENT (D). We have H'[f(x)]=0 for a linear function f(x)=<0,
where the operator H is defined by

x X rry
H(p)=p—l—g ap dw+§ S (b—a)pdxda, .
0 0J0

It will be shown, now, that these statements are closely related, a(z)
and b(x) being holomorphic near x=0:

THEOREM 2. Statements (A) and (C) are equivalent ; (B) is equiva-
lent to them provided a(0)=<0; and (D) implies all three.

To establish the theorem, suppose Statement (A) given, and equate
coefficients to find

(20) —yy=ay,+by,, for n=1, O=ay,+by,,

which becomes

T T x
o= Qu=1)= | (@ by )do— —ay,”+ [ 00— a')do
0 0
(21) :
T
——ay, +a(0)P(n)+S wlb—a')dz .
[}

Further integration yields

(22) Ypor— P(n—1)—2Q(n—1)— Sxleyﬂ(b—a’)dx da, — Sxay,,da:+ a(0)P(n)z .
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Let Y,=4"*y,, the (k+1)th difference. We have, by (22),
xrra xr

23) Y,7_1=§ S m(b-a’)dxdxl—g aY,dz .
0J0 0

Regularity of a and b, convergence of 3\y,¢", ensure that for |x|<lz*< Tz,
we have

\Y,|<BA", la|<M, lo'|<M, |b|<M,

where A4, B, and M are suitable positive constants (that may depend
on z*). Thus, we have by (23) in every circle |2|<o<1, with ¢<lz*,

max|Y,-|<30M(max|Y, )< (20M)"+* (max|Y,,n|), m=0,1,---

the latter relation following by iteration. Choose ¢ so small that
46M<1/A. Then

I Yn_ll<B(1/2A)m+1An+m:BAn-l/zm-H .
Letting m— oo shows that |Y,|=0, and hence
Yn=0o(2) + g1(2)n + go(X)N*+ - - - + g ()" .

It follows that w(«, ¢) has the form

_ < S
(24) Yz, &)= FZO (1; o
as we see by using factorial polynomials in place of powers of n.
Multiplying through by (1—¢)**' shows that (A) implies (C).!

To see that (C) implies (A), express the given polynomial as a new
polynomial in 1 —¢ and divide by (1—¢)**’. We are led to a solution of
the form (24), and expansion of (1—e¢)-*-' gives the initial conditions
described in (A). We have incidentally established the rather curious
fact that y.(r) and y,(x) are polynomials in n for every small fixed =,
if for the single value x=0.

Suppose now that (C) is given. We may assume (24). With
s=1/(1—¢), equating powers of s in ey’ +ay +by=0 gives

Si=0
fi=L(fy)
;:L 1
(25) d () , L=y +ay’ +by,
flg,zL(f}c—l)
0 =L(fY)

and conversely, the system (25) for some f=<0 ensures a solution of

1 A simpler proof has been given by Robert Steinberg, starting with the observation
that (1—-&)*y(x, €)=, Y(x)e” has Yp(0)=Y,'(0)=0.
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the form (24), hence of the form described in Statement (C).
We have ;:H(p):L(p), and hence, when the constants of integra-
o

tion are taken as zero in (25), this system is equivalent to

Sy=0
fl—_'H(fn)
(26) f:‘:H(fx)
fth(fk—])
0=H(f:) .

Hence H*f,=0 is sufficient to ensure a solution of (25), and indeed with
F{0)=f(0)=0 for ¢==1. Thus, (D) implies (C), and hence (D) implies
(A). The converse is false; but if we define

H(p, q)f=Hf +px+q .

Statement (A) or (C) is equivalent to

(27) O H(p, q)f =0, f=ca+d=0,

for some constants p;, ¢;. Here f is the first function f; in (25) which
is not identically zero.
If (B) is given, suppose %(0, ¢) has a zero of order 2>0 at ¢=0. Then

U(0)=2(0)=+ - - =g 1(0)=0. The system (20) gives yo—¢ expl:— S:(b/a)dx]

where ¢ is constant. If a(0)=<0, it follows that y(x)=0 for small x
and hence for all z=X. Similarly, y, ---, 4,;=0 for small . Hence
the function ¢ "y(x, ¢) is e-holomorphic for ¢e=0 and small .

If y40, e)/y(0, e)=P()/Q(¢), where P and @ have degree <k, then
the function e "y(z,¢) satisfies the same condition. Combining this
observation with the preceding, we see that one may suppose y(0, 0)=<0
in Statement (B), provided a(0)=<0.

Putting ¢=1--¢, dividing numerator and denominator by ¢#*', and
relabeling coefficients, transforms the given condition into

Y0, &) _A(e)
¥(0,¢)  B(e)

where
A(E):zdz)(1-5)~1 —1'-(11(1—5)—'-‘_%_ e +a}\_(1_€)_;.-_1 ,

and similarly for B(¢). The function
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_yY(x, ¢
Y(x, ¢)= (0, »e—)—B(e)

is regular near ¢=0; it satisfies the given differential equation; and
also Y(0, ¢)==B(¢), Y0, e)=A(c). Hence Y{(x,¢) satisfies the require-
ments of Statement (A).

Finally, it is clear that (B) follows from (C) if %(0,¢)=<0 in (C).
If y(0, e)=0, however, we have y,(0)=0 in (20), which implies y,(x)=0
for a(0)><0 as above. Hence y(, ¢)=0 contrary to the assumption in
Statement (C).

The condition on the operator H admits a simple interpretation.
If I is the identity operator, then formally

(I-Ho)'p= S¢Hp, H=I.

Now, when Hi(cx+d)=0 for ¢k, as in Statement (D), then the above
expression is a polynomial in z for p=cax+d. Suppose, more generally,
that

(I—-Hz) (cx+d)=¢(z, x) ,

a function holomorphic in z at z=1. Then cax+d=(I—Hz)¢ or, by
differentiating,

0=(1—2)p"" —za¢’ —zbe .
With e=1-1/z this yields
e’/ +ag’ +bp=0

where ¢ is e-holomorphic near ¢=0.
The above treatment is purely formal. If

lim|H*p|"*<{A<1

for p=cx+d and |x|< 9, however, then the formal equalities become
true equalities. We define (I—Hz)"! by the foregoing series, which
converges uniformly in x near z=1. The function H*p being analytic
for each %k, we may differentiate the series to find that ¢(z, ) is in
fact a solution holomorphic in 2z for |z|<1/6. The corresponding domain
of e is [1—¢|>>0. Hence a sufficient condition that the equation have
a solution (e, @)-holomorphic for |1—e¢|>>6 and |x|<0 is that lim|H*p|'*
<0 for p=cx+d=0. An extension can be given after the manner of
27).

b) FExamples and discussion. The preceding result enables us to
construct equations admitting regular solutions. If the polynomials in
Statement (A) are constant, so that k=0, P(n)=p, Q(n)=q, then
Statement (C) yields y(x, ¢)=h(x). The differential equation shows that
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M) is linear, whence A(x)=p+qx by the initial conditions. Such a
function is a solution if and only if aq-+bd(p+qx)=0. The differential
equation then takes the form

(28) ey’ +b(@)(c—2)y +y]=0

where ¢ is constant. For every choice of b(x) there is obviously a
regular solution ; namely, y=x—c.

The case k=0 just considered can be regarded in a different light.
Let a(x) and b(x) be integrable and satisfy |a|<<M, |b|<<M for a domain
of the (possibly complex) variable . The Picard iteration procedure
shows then that

ey’ +ay’ +by=0

has a unique solution y(z, ¢) subjeet to (0, e)=c¢, ¥'(0, ¢)=d, where ¢
and d are indepenent of . Moreover, this solution is an entire function
in 1/e, of exponential type M at most. If we require a solution
Y(, ¢) e-holomorphic near e=0 and satisfying the same initial condition, it
is necessary that y=Y. This shows that both y and Y are e-holomorphiec
in the extended e-plane, hence independent of ¢. Thus we are led to
the situation found otherwise above. This discussion resembles that
used previously for the more general equation (4).
Turning now to the case k=1 in Statement (A), we find

o
(29) fi'=afs +bf,
L 0=f"+afi+bfs

by (25). Adding the three equations, or considering y(x, 0), we see
that s=f,+f, satisfies the reduced equation as’+bs=0. Hence, with ¢,
constant,

(30) fotfi=eR(x) , R(x)=e" S:(bla)da:

where R must be regular since f, and f; are. If ¢,=0 one easily shows
that the problem reduces to the case k=0 just considered. Without
loss of generality, therefore, we may take ¢,=1. In terms of R, the
original differential equation is

(31) '’ + Ra(x)(y/R)' =0

and the system (29) is equivalent to the three conditions (30), f,=ca+d
with ¢, d constant, and

(32) R'=[(cx+d)/R|'aR .

The differential equation, then, is
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e B (BY o
&9 ! +[(0m+d)/R]’(R> !

and the solution is given by Statement (C) as
(34) y(x, e)=R—(cx+d)e .

That (34) is in fact a solution is easily verified by actual substitution.
In summary, there is a regular solution, with y,(0) and y,(0) linear
functions of », if and only if the equation can be put in the form
(33) ; and the sole such solution is then a constant multiple of (34),
divided by (1—e¢).

The case k=2 is more complicated. It is found that a(x) must
satisfy a certain first-order nonlinear differential equation, R being
given, and the case corresponding to ¢,=0 in (80) reduces to the case
k=1. It would be desirable to find an explicit form of the equation
for k.>2, but we have not been able to do this.

Although the foregoing considerations restrict the behavior of a
and b in the large (by virtue of analytic continuation) the analyticity
of @ and b plays no very essential role. Indeed a corresponding real-
variable result might be given, with hypothesis on the local behavior
only. It seems difficult to give criteria in which the complex-variable
character of the problem is more fully used. This difficulty is
illustrated by the following two examples.

Let a=b, in the discussion leading to (33) and (34), so that R=e~".
If ¢=0, d=1 the differential equation is

(35) ey’ +y'e " +ye =0

with solution y=e"—e. It is seen that R, a, b, and 1l/a are entire
functions of exponential type, as is the solution y.
Consider, next, the equation

(36) ey +y'e*+ye =0 .

Despite the resemblance to (85), there is no regular solution, as we
now show; and thus the conditions just described, stringent though
they be, are yet insufficient.

Suppose there is a regular solution of (36). Since a(0)=1 we may
assume (0, 0)=<0, as in the above discussion. The function y(x, €)/%(0, ¢)
therefore is regular and has w%(0)=1, ¥,0)=0, (#>>1) in the series
representation. The system (20) gives

Yn=e""{Ca T}, Yo—€""

where the ¢, are constants. By induction we see that
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Y,=nle """ 4 (p+ ) ce™ +(n—2) e+ oot e, —c e
and, in view of the initial conditions, that ¢,>>0. We have therefore

ey (@) =e"y, (@) =y, (0)=n! (e =1)+---,  (n=1),

where the terms not written are of the same sign as the leading term,
for real , since ¢, drops out. Thus it is that |y.()>n!e "|e " —1|,
and the series diverges for wx=<0.

¢) Related partial differential equations. Consider the following
problems, with regular a, b:

Problem (A). To find a solution y(x, ¢)2<0 of ey’ +ay’ +by=0 which
is holomorphic in ¢ for |e|<r, in a given set S of x values.

Problem (B). To find a solution Y(w,¢)=0 of Y, +aY, +bY,=0
which is an entire function of type 1/r in ¢ for a given set S of x
values, and satisfies

Y(x, 0)=e- Sz@"‘)““

or Y(z, 0)=0.
It will be shown, now, that these problems are completely equiva-
lent. If

Y@, )= Sy (@)

is a solution of Problem (A) then

Y@, )= Sy, (@)e/n!

satisfies the differential equation Y,,+aY,.+0Y.=0. This can be
verified by termwise differentiation, insertion into the partial differential
equation and use of equations (20). Since Y(x, 0)=y(«), the first
equation in (20) shows that the initial condition of Problem (B) is also
statisfied. Finally, it is easy to prove and doubtless well known that
Y is an entire function of ¢ of type 1/r, if and only if y(x,e) is
e-holomorphic for |e|<[r.

To show, conversely, that a solution Y(z, ¢)=>.2,(x)s" of Problem
(B), leads to a solution of (A) we observe that, by virtue of the state-
ment in the last sentence, the series

Y@, &)= 2,(®)n! "

converges. The functions y,(x)=z,(x)n! are then seen to satisfy the
recursion formulas (20) for »>>1. That they also hold for n=0 follows
from the initial condition imposed on y(z, ¢). This completes the proof.

We remark in passing that y and Y are transforms of each other:
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S“e-mY(x, )de=y(z, p) .
0
The change of variable
§=¢e— Sma(x)dx , t=¢
0

is suggested by the characteristics, and reduces the partial differential
equation to canonical form
Ugy= b_a Us+ b;u;
a? o
where wu(s, t)=Y(x,¢) and the coefficients are evaluated at x. The
initial condition is
u(—ra(w)dx, O>=e's:""“>"” .
0

With z=e "—1 this becomes u(z, 0)=2z+1 when a=b=e¢""; but u(z, 0)
=1/(1—2) when a=b=¢". Thus the initial values have a pole at #=0,
in the second case. We have seen already that the solution is regular
in the first case but not in the second.

A related partial differential equation arises in another way if we

seek a solution y(x, ¢) which is an entire function of type % and such
that

S“’ y(@, io)do<oo .
Such functions are equivalent with those representable in the form

sa, o= et nat, | e orae<e .

k
—k
One obtains, formally,
SL (ef et af,+0f)e dt=0.
~k

Integration by parts yields

S " (B, —al, ~bF)dt + ¢! [aF (x, k) +bF(x, )]=0 ,

where

Fla, t)— S f@, t)dt .
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Letting ¢—0 shows that the integrated part vanishes. Hence the
original problem leads to a two-point boundary-value problem

F,.,—aF, +bF
ﬁxx,kyzcexp(—g?bﬁwdx),
0

F(x, —k)=0 .

Conversely, from such an F we can construct, at least formally, a solu-
tion to the question first proposed.

Many of the foregoing considerations apply with only slight change
to the equation

37) ey’ +a(@)y’ +b(x)y=c(x) .

The condition f;'=0 in (26) is replaced by f;'=c(x), and we are led to
consider H*p with p=f,. Similarly, the condition O=ay,+by, in (20)
becomes

h(x) =ay, +by,

with corresponding change in the boundary condition for the associated
partial differential equation. (The equation itself does not change.)

That there is always a solution regular in ¢ for some c(x), is
evident when we take y=1, ¢=b(x). Actually, one can find a c(x)
such that the regular solution depends on e¢. For example, let f
satisfy

f//+af/+bf=0y fﬁoy
and let ¢(x)=—f"'(#). Then y=f(x)/(1—¢) is a solution of (37).

5. A hydrodynamic application. Differential equations of the type
(4) with

(38) My, el=aM*[y, ]

where the leading coefficient b,*(z, 0) of M*[y, 0] does not vanish at
=0 occur in the theory of hydrodynamic stability. This application
will be explained below. We shall be concerned here with necessary
conditions on a differential equation (4), for which (38) is satisfied, in
order that it possess a full contingent of m solutions that converge to
solutions of M*[y, 0]=0, as ¢—0, uniformly in a full neighborhood of
=0,

Before stating our theorem concerning this case we recall ([4], p.
126) that for linear differential expressions there exists division algo-
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rithm involving only rational operations and differentiations, by means
of which N[y, €] can be represented in a unique fashion in the form

(39) Ny, e]l=QIM*[y, ¢, e]+ Ely, €] .

Here Q[u, <] and R[y, ¢] are linear differential expressions with (z, ¢)-

holomorphic coefficients. The order of Ry, e] is at most m—1. Let

us call Ry, ¢] the remainder of N[y, ¢] with respect to M*[y, ¢].
THEOREM 8. Assume that the differential equation

(40) eNly, e]+aM*[y, €]=0

possesses m solutions of the form

(41) Y@, )=ya)+evz ¢ , (=1, +--, m)
where the y,(x) form a fundamental system of the reduced equation
(42) My, 0]=0

and the vz, ¢) are bounded, together with their first n derivatives with
respect to x, at x=0, and for ¢ in some point set E* having ¢=0 as an
accumulation point. Then the remainder R[y,¢] of Nly, ] with respect
to M*|y, €] vanishes for x=c=0, identically for all y(x).

The conditions on Y,(x, ¢) in this theorem are much weaker than
regularity. The meaning of Theorem 3 is essentially that even these
weaker conditions will only exceptionally be satisfied, since for arbitrary
Ny, €] and M*[y, <] the remainder will, in general, not vanish identically
in y, for x=e=0.

Proof of Theorem 3. Without loss of generality we may assume
that

(43) Y5 P(0) =0y, (G, k=1, «++, m)
If (39) is inserted in (40) and ¥ is replaced by Y,(x,¢), then use of (41)
leads to a relation of the form

(44) e""qu(w, 5) "If_sxsbj(x’ €)+€R[yj0y 0]:() ’ (.7=17 fty m)

where ¢,0,¢) and ¢,0,¢) remain bounded as e—0 in E*. Setting
x=0 and letting ¢—0 in E*, this yields

Rly,, 0]=0, for =0 (G=1, +++, m).

Because of (43) we conclude that every coefficient of R[y, 0] vanishes
at x=0. This proves the theorem.

Application. By a simple change of variables the Orr-Sommerfeld
equation in the theory of hydrodynamie stability, [5],
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i,, gt_(l). — Zdz(l) + __ dz‘ll’ — 2 ! .
aR[ dz! 2 dz +a¢]+(w(z) C)<_d-z2 a¢) w(2)gp=0

can be written in the form
(45) ey’ =2y’ + y) + b)Yy —a’y)—=by (x)y=0

with 5,(0)=0. (The dependence of b(x) on the complex parameter c is
not set in evidence in our notation. The letter a denotes a positive
constant.) The special case that b;(x) also vanishes at =0 is of some
interest in hydrodynamics. If ¢ is real, for instance, and b;(0)=0, one
has the case of a periodic disturbance of the flow such that the critical
layer where the disturbance and the main flow travel with equal
velocities, coincides with an inflection point of the main flow profile
w(z), [7]. In the present case

b(x)=PBx+Pa*+ B at+ -+,

and the remainder Ry, <] in Theorem 3 is independent of e. A straight-
forward calculation, not reproduced here, shows that this remainder
vanishes for a=0, if and only if

(46) ﬂ4=0 ’ 318%—5;85:81:0 .

Since the coefficients (3, depend on ¢ these conditions can be satisfied
for very exceptional profiles and very special disturbances only. Now,
it is known, [14], that corresponding to every solution of the reduced
equation there exist solutions of the full equation (45) having the
form (41), with v, ¢) and its derivatives bounded in some region
S of the a-plane. As we have just seen, S will not include the origin,
at least not for all such solutions, unless very exceptional conditions
are satisfied. From this it can easily be deduced that S cannot be
a doubly connected domain surrounding the origin completely, i.e.,
some solutions which converge in certain regions to a solution of the
reduced equation, must diverge in certain other regions. It follows
from this fact (ef. [14], [5]) that the damped disturbances of the
corresponding hydrodynamic flow possess a so-called “inner friction
layer,” i.e., a layer in which the effects of viscosity cannot be neglected
no matter how small the viscosity coefficient.

Thus Theorem 3 leads to the result that even if w(z)—c and w'’(2)
vanish at the same point for a certain damped disturbance, an inner
friction layer will be present unless the disturbance and the wvelocity
profile are of an extremely exceptional type.

It can be shown that the vanishing of R[y,e¢] at x=¢=0 is only
one of infinitely many conditions necessary for the existence of m
regular solutions. It is therefore very likely, but not yet proved,
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that b(a)==2 (Couette flow) is the only flow for which inner friction
layers are ever absent. In the Couette case the remainder Ry, ] is,
of course, identically zero for all x and ¢, and every solution of the
reduced equation is trivially a regular solution of the full equation.
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ON A THEOREM OF L. LICHTENSTEIN

S. E. WARSCHAWSKI

1. Introduction. The object of this note is the proof of the
following :

TarorREM. Let C be a closed Jordan curve in the z-plane which
possesses « corner of openming w, 0< a=2 at z=0. Suppose that this
corner is formed by two regular analytic arcs y, and 7,:

Toi 2=AM)= Sat’; 7.0 2=Bt)= S\bt*, 0=t=1, am=<0, b=<0.
v=1 V=1

If C=f(z) maps the interior 4 of C conformally onto the half-plane
A0 s0 that f(0)=0, then, for every integer n,

(1) lim e SO Lo (L) (1 —n+1),

20 dz" a\a «

for unrestricted approach, where c=lim{ f(z)z~*].
z-4

This theorem was stated by L. Lichtenstein [2] and [3], but proved
only for the case that « is srrational. He remarks, however, that it
is most likely true for all «, 0< a<2, but that his proof does not
yield this result. In the following a simple proof based on a different
approach is given for the complete theorem'.

2. Lemmas. In the proof of theorem we shall make use of the
following two lemmas.

LeMMA 1. Suppose ' is a closed Jordan curve with a corner at
2=0 of opening na, 0<a<2, and that each of the two arcs forming the
corner has bounded curvature in the neighborhood of z=0. If w=g(?)
maps the interior D of I' conformally onto the angle 0< arg w<za, so
that ¢g(0)=0, then for non-tangential approach,

(2) lim 9 _ p exists and  p=<0 .

z-0 VA

This is just a weaker statement of a well known result [4, 5]; (2)
holds under more general assumptions on the arcs which form the corner

Received July 29, 1954. Prepared under contract Nonr 396 (00) (NR 044 004) between
the Office of Naval Research and the University of Minnesota.

! This note is the result of an inquiry from Dr. George Forsythe of the Institute of
Numerical Analysis regarding the validity of Lichtenstein’s theorem for all «. Dr. Forsythe
applies this result in his preceding paper on “ Asymptotic lower bounds {for the funda-
mental frequency of convex membranes ”.
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and for unrestricted approach [5, p. 427]. However, for the sake of

completeness we give an elementary proof of this lemma in 8§ 4.
LEMMA 2. Suppose that F(w) is analytic in an angle A: o<

arg w< B, B—a<2m, and that in every sub-angle B of A with the vertex

at w=0, lim F (w)=/z. Then for any integer n=>1, as w—0 in any sub-
w-0 0w
angle B of A
. , . hen n=1
3 hm wa—lFJz) w ={f’ w
(3) «M[ ()] 0 when n>1 .

Proof. Let B be the angle a+d6<7arg w<f—¢, 0<726<f—a. About
we B we describe a circle ¢ of radius » which is contained in and

tangent to a side of the angle a+ g.garg w= arg — g Clearly,

" >sin 6.
2

e We set G(w)=F(w)—pw. Then
w

WG ()= n! S G(t)w“—lde n! S G(t) tw"!

2mi Je (b—w)™ 2mi Jo ¢ (t—w)

Since |t|<|t—w|+|w| and |t—w|=r for t on ¢, we have

|
-Gl =2 |

L c

GO | -+l g
t

i+l

=m! ., ,2 ~ max
sin®(9/2) ree

G(t)I
t
and the last expression approaches 0 as w—0 in B. This proves (3).

3. Proof of the theorem. (i) We may and shall assume in the
following that C consists of two regular analytic arcs 0?1 and O@ and
a circular arc y about O through A and B. (The size of the radius
of this arc will be restricted below). For, if D is a subregion of 4
bounded by the just described curves, and if fi(z) maps D onto the
upper half plane such that f1(0)=0, then f(z)=A[fi(z)] for ze D, where
k(%) is an analytic function in a neighborhood of ¢=0 and A’(0)=<0.
The result (1) on f™(z) follows then from that on f{™(z).

The theorem will be proved by the following statement : if w=g(z)
maps 4 onto the angle 0<_arg w<za such that 2=0 corresponds to w=0,
then, for unrestricted approach,

(4) linél 9’ (2)=2, 0<{|2|< o, and lim[z"-'g"(2)]=0, for n>1.
2 z-0

The result (1) of the theorem is then obtained from (4) by use of the
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fact that f(z)=[g(2)]"'®
For the proof of (4) we may presuppose that 0<Za<1l; for if
1-w=-2 we apply first the auxiliary transformation z’'=2z"', For |{|=5,
N ~\
where 6 -0 is sufficiently small, OA and OB are transformed into regular

analytic arcs in r=¢tY%, We assume » so small that 6;1 and O,% are
obtained for values of the parameter ¢=26.

We now impose a further restriction on & and thus on ». There
exists a p>-0 such that z=A(¢) and 2=B(¢) have analytic and univalent
inverse functions t=a(z) and t=5b(2) in |2]<p. We take ¢ so small that
()/:\4 and 6}3 are contained in [z|<p. Thus, »<lp.

(ii)) Consider the maps of 4 by means of t=a(2): 6?1 is transformed
into a segment 0/11\41 of the real ¢-axis and (52’ into an arc 0/1%’1 which
makes an angle of opening ~«a with 0,4;. The circular are 7: A% is
mapped onto an arc A/j?l. If » is sufficiently small, the arcs 0:}?1 and
A:%‘l will lie in the upper half of the #-plane*. We assume that » has
been so chosen (third and final restriction on 7). Let 4, denote the
image of 4 in the ¢-plane.

Suppose that w=d¢(t) maps 4, onto the angle 0< arg w<za such
that ¢=0 corresponds to w=0 and A4, to w=co. The segment 0,4, is
then transformed into the positive real axis of the w-plane. We reflect
the arc OB A, with respect to the positive real axis and denote the
image of B, by B,. By Schwarz’s reflection principle the function
w=q¢(t) maps the region bounded by the Jordan curve I': 0,B,A4.B;0,
conformally onto the angle —ra<arg w<lza.

We apply now Lemma 1 to the curve /', which has a corner of
opemng 2arr, 0<2a< 2, at t=0, formed by the regular analytic arcs

OIB1 and OlB Hence, for non-tangential approach,
lim e(0) _1
t—0 t /,t

exists and O0<|p|<w. Next, observing that the mapping w=a¢(¢)
preserves angles at t=0 and applying Lemma 2 to the inverse F(w)
of ¢(t) we find that in any angle —ra+e<arg w<lma—e (0<e<zax):

im F'(w)=p, lim[w" ' F" 2(w)]=0, for n>1.
W0

w-0

Hence, in any sector |argi¢|=nf, [t|=%, where 0<g<a and 7 is
sufficiently small,

(5) lim ¢'(t)= 1, Lm[E"-1¢™()]=0, for n>>1.
0 /l t—0

*We assume here that O,4,B follow in counter-clockwise order along C.
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Since pla(z)]=g(2), it follows from (5) that, for 1=%(0 _ 1
I o

(6) limg’(z)=2 and, lim{z"-g®P(z)]=0, for n>>1,
20 z—0
N
wn any curvilinear angle in C+4 formed by OA and any Jordan arc j in

or
4 which has a tangent at O making the angle =3 with the tangent to OA
at O.

(iii) By applying the same argument in which the are Ofﬁ takes
[ )
the role of OA we find that (6) holds in any curvilinear angle formed

by OB and any Jordan arc j in 4 which has a tangent at O making
an angle 73 with the tangent to OB at O. Since ;7 may be taken so
that the two curvilinear angles overlap, we obtain (4), and this
completes the proof.

4. Proof of Lemma 1. We can construct a Jordan curve [,
contained in D-+ /" and one [, exterior to D, each consisting of two
circular arcs intersecting at the angle za at z=0 (and at another
point). The interion I(I";) of I', is in D, and we may assume that the
exterior E(I',) contains D. If A,(2) and %.(z) are the bilinear transfor-
mations which map I({’;,) and FE(I',), respectively, onto the angle
0<arg w<za, such that A,(0)=~%,0)=0, then clearly

lim P& —2, and 1im*®) =,

20 2 20 zZ

exist for unrestricted approach, 0<(|2;|, |4.|< . The function {=h)"(2)
maps E(I",) onto ./ [{]>>0, /" and /'; onto closed curves /™ and I'*,
respectively, which lie in .7 [{]>0 and are tangent to the real axis at
¢=0. Let ¢(&) and ¢,(&) map the interiors of 1™ and /';*, respectively,
onto the upper half plane, so that ¢(0)=¢,(0)=0 and, for a point ¢,
interior to I"*, ¢(C,)=¢(&,). An application of the Wolff-Carathéodory-
Landau-Valiron lemma [1, 5] shows that

lim f”éQ:z , 0=l <eo,

exists for non-tangential approach. Since
b O)=n*Th: )]
where A;' denotes the inverse of 4, it follows that

@é:) _ ff}’;[li(acl()ﬁ?w] { h;é(w@ }um_+ { ; }1

for unrestricted approach. Hence, [={1,47*}¥*>0.

as £—0
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Finally, we note that

9(2)={¢[h:"(2)]}*

and hence

lim 9®) _ja),

z-0 pa

for non-tangential approach. This proves the lemma®.
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THE STRICT DETERMINATENESS OF CERTAIN
INFINITE GAMES

PHiLiP WOLFE

1. Introduction. Gale and Stewart [1] have discussed an infinite
two-person game in extensive form which is the generalization of a game
as defined by Kuhn [3] obtained by deleting the requirement of finite-
ness of the game tree and regarding as plays all unicursal paths of
maximal length originating in the distinguished vertex z,. In a win-
lose game the set S of all plays is divided into two sets S; and S;; such
that player I wins the play s if seS; and player II wins it if seS,,;.
Gale and Stewart have shown that a two-person infinite win-lose game
of perfect information with no chance moves (called a GS game here)
is strictly determined if S; belongs to the smallest Boolean algebra
containing the open sets of a certain topology for S. Here we answer
affirmatively the question posed by them: Is a GS game strictly deter-
mined if S, is a G; (or, equivalently, an F',)? The notation and results
of [1] are used throughout, as well as the partial ordering of X given
by: a>y if f“(a)=y for some n_>1.

2. Alternative description of S;. Let I' be the game (x,, X;, X,
X, 7, S, S, Si), where

l_ [\E7z ’

n=1

E>DE,>-.-, and E, is open. Following [3], let the rank rk(x), for
zeX, be the unique % such that f*(x)=x,. As in [1], N(x) is the set
of all plays passing through « (the topology for S is that in which U(x)
is a neighborhood of each play in it). Then for each n,

E,=\U{l(y) : Wy)SE.]
and since for any yeX we have

UWy)=U{l(=): f(&)=y} ,
with

rk(z)=1+7rk(y) ,

Received October 3, 1953. The work in this paper was done during the author’s tenure
of an Atomic Energy Commission Predoctoral Fellowship.
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there exists for each n a subset Y, of X such that 7k(y)>n for all
yeY, and

Enr=U {u(y) IS Yn} .

Furthermore, since of any two neighborhoods having a non-void inter-
section, one is contained in the other, each Y, may be chosen so that
U(y), W(y') are disjoint for different y, ¥’ in Y,.

Since seS, if and only if seE, for an infinite number of values of
n, we have: seS, if and only if for infinitely many = there exists ¢
(dependent on n) such that s(i)eY,. Thus, since on the one hand
1=rk(s(?))>n, and on the other for any = there is at most one ¢ such
that s(¢)eY,, letting

Y=\ 7,

=1
we have: seS; if and only if s(2)eY for infinitely many <.

3. Lemmas.

LEMMA 1. If I" is a GS game with

Sr(lM)=4
and
T=8-\J{W(): S5(l)=4} ,
then
I'y=(w0, XF, X5, X7, f7, T, SF, SE)

is a subgame of I,

ST (Lr)2=<A
implies

(<A,
and S((L77)a)=4

Sfor all xeX".

Proof. Since T is a closed nonempty subset of S, /', is a subgame
of I" by Theorem 5 of [1]. The second statement follows from assertion
B [1, p. 260]. Finally suppose that

(L r)e)=4
for some xeX”. Letting, in assertion A [1, p. 260],

F=wW(x)N\T,
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and noting that F' is closed and nonempty and that

(I'T).T‘z(['.'t)l“ ’
we have

S )=d

which is impossible in view of the construction of 7.

843

We assume hereafter that /7 is a GS game with S, described in

terms of YC X as in §2, and that
()= 4,
whence

2h()=4

by Lemma 1. The strict determinateness of I’ will follow from Lemma

1 and the fact that
SV p)2<d ,

proved in §4.
LEMMA 2. For xeX”, we have

seSie
iof and only if
seS™ and s(@)eY

for infinitely many 1.
LEMMA 3. For xeX” there exists

0,€ Z]((FT)E)

such that for any

€ 3,((1"2).)

we have
(o0 TH(P)EY

Jor some i>rk(x).
Proof. Let Y, be the set of all

yeYNX*

such that y>a2 and no members of Y fall between = and y. Let I’ ’

be the game
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(w0, X7, X777, X7, f77, 8%, 81, St)
where
Si=8"NU{(y) : yeY,}
and
S;=8"-8;

(that is, the game in which I wins if the play passes through any
member of Y following ). Noting that

=S,
we have
1 ST
and hence
>Sul)=4.

But S; is open in S™ and so /" is strictly determined by Corollary 10
of [1], whence there exists

a2 (1),

which satisfies the conclusion of the lemma.

4. Winning /';. Let
Y'=(YNX)U i@}

For each xeY’ let 5, be as given by Lemma 3, and let 4, be the re-
striction of o, to the set of all z in X” such that a<(z and that there
exists no y in Y’ with o {y<2. We show that the domains of the o,
cover X” and are disjoint: First, if xeX/, then x, belongs to the
domain of ¢,. For

ze X7 —{a}
let
r=max{z :2'eY & 2/ <z} .

Then xeY’ and z belongs to the domain of s,; thus the domains of the
s, cover X”. Now suppose that z,, ,€Y”’, x><x,, and that there exists
x; common to the domains of o, and o, ; then z,<Za; and a,<lx;, so that
either @< x,.<x, or x,<x,<x;, which is impossible in view of the re-
striction imposed upon o, in obtaining o,.

Since the domains of the 4, cover X[ and are disjoint, they have
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a common extension »*, which necessarily maps the elements of X7? on
their immediate successors, and thus belongs to 3%,(/7;).
We show that o* wins /7,. Let

> (1) .

For this r and any « in Y’, let ¢(x) be the least ¢ such that <{s,, o (7)Y,
whose existence is given by Lemma 3. Define {w,} inductively by

Ty =<o", (1(x,)) n=0, 1,
(z, is the distinguished vertex). Since
/"k(wn+l):?:(wn)>lrk(xn) y

and «,, T,,. are on a common path, we have z,,, >z, for all n, and so
if x,€Y’ then

2=, (Ux,))= 0oy, T p(U(x,))EY",
where
Tay € ZII(( r ’/’)Jr;,)

is the restriction of = to X/*. Thus by induction «,€Y’ for all n, and
hence

o*, o(1)eY
for infinitely many values of 4, so that
{o*, ToeS! .
Since ¢ is arbitrary,
e3> (I'y)
so that by Lemma 1, we have
Syt
As this is the consequence of the sole fact that
SH()=41
I is strictly determined.
Reversing the roles of the players in the above gives the result that
a GS game is strictly determined if S, is an F,.
The strict determinateness of a two-person zero-sum game with G

payoff having chance moves can be shown. The proof is more compli-
cated, but uses the same ideas [4].

5. An application. Let
I'=(zy, X;, X;1, X, f, S, 9)



846 P. WOLFE

be a zero-sum two-person infinite game of perfect information with no
chance moves having payoff @ such that there exists a real function %
on X (|A(x)|[< K<) with

@(s)=lim sup A(s(¢)) for all seS.

I" is the result of an attempt to reduce the following situation to
a game: The tree K of a GS game and a function %2 as above are
given; the two players make choices in K in the belief that every play
will terminate in some unknown, but distant, vertex «, at which time
player I will receive the amount A(x) from player II. A payoff function
@ is sought such that @(s) (—@(s)) expresses the utility to player I (II)
of a play s in K.

The payoff @ defined above arises from ascription to players I and
II respectively of “optimistic” and “ pessimistic ” behaviors in this way :
Player I assumes that the play s will terminate in some “ distant” vertex
s(¢) at which 2 assumes nearly its supremum on all “distant” vertices
of s; he thus makes his choices so as to maximize the expression

lim sup A(s(¢))=2(s) ;

and player II supposes that s will terminate in some “distant” vertex at
which his gain —A(s(¢)) assumes nearly its infimum for all such vertices,
and thus seeks to maximize

lixin inf —2(s(2))=—a@(s) ,

that is, to minimize @. The derived game is thus zero-sum. Ascription,
however, of such “optimistic” or “pessimistic” payoffs to both players
yields, in general, a non-zero sum game.

We show now that the game [’ of this section is strictly deter-
mined, using the method of Theorem 15 of [1] which asserts the strict
determinateness of [° for the more special case of continuous @.
(Gillette [2] has shown the strict determinateness of an infinite game
of perfect information with chance moves which consists in repeated
play from a finite set of finite games and has payoff

lim sup 1 3 0.(5)
N—rco n =1
where g,(s) is the gain from the nth game played.)

First, as a converse to the equivalence of §2, let Y X, and denote

by Y, the set of all members of Y having rank greater than n. Then
{s:s(?)eY for infinitely many i} =/\{s:s(9)eY, for some ¢}

n

= f\ U{W(y);yeY,} ,
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whieh is a G.
Now in 77, for ¢ real, letl
t={s:A(s(¢))>t for infinitely many 4} ,
and S, =S-S% Then S! is a G;, and thus the GS game
I'=(x, X,, X,,, X, 1,5, 8, S;))
is strictly determined. Let
v=sup {¢t: 7 (L ,)==A} .
Since S¥=A4, S;¥=S, and S! is a decreasing function of ¢, we have
—K<v<lK, 37 ")==A it t<wv,
and
SV )2eA if t>v.
Given ¢>0, choose
a7 (o) and e fi(L) .
Then for any
o), €3I,
we have
Moy, (1)) >v—e for infinitely many ¢
and do not have
(<o, td(2)) >v+¢ for infinitely many ¢ ;
so that
D((oy, H)2v—¢  and  O({a, 1)) <v+2¢ .
Hence

v—e< sup inf @(<o, r3)<inf sup @(¢s, oH)<v+2¢ ;

thus 77 is strictly determined, and has value v.
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