Pacific Journal of Mathematics

THE USE OF FORMS IN VARIATIONAL CALCULATION

LOUIS AUSLANDER

Vol. 5, No. 6

THE USE OF FORMS IN VARIATIONAL CALCULATIONS

LOUIS AUSLANDER

Introduction. The purpose of this paper is to present a method of calculating the first and second variation which is suitable for spaces which have a Euclidean connection. I then use this method to calculate the first and second variations along a geodesic in a Finsler space in terms of differential invariants of the Finsler metric. In the special case of Riemannian geometry, this calculation has been carried out by Schoenberg in [4].

Indications as to how this calculation should be made are originally due to E. Cartan [1]. I wish to thank Prof. S. S. Chern for the privilege of seeing his calculations on this matter for Riemann spaces.

1. Algebraic Preliminaries. Let I = [0, 1] and $0 \le \xi_1, \xi_2 \le 1$. Let M^n be an *n*-dimensional C^{∞} manifold. Assume we have a one parameter family of mappings of I into M^n which we will denote by $f(\xi_1, \xi_2)$, where ξ_2 is taken as the parameter along I and ξ_1 parametrizes the family of mappings. Then we may define a mapping $\eta: I \times I \rightarrow M^n$ by the equation

$$\eta(\xi_1, \xi_2) = f(\xi_1, \xi_2).$$

We require that γ shall also be a C^{∞} mapping.

Let η_* denote the mapping induced by η on the tangent space to $I \times I$ into the tangent space to M^n . Let η^* denote the dual mapping induced on the cotangent spaces. Then we define two vector fields X_1 and X_2 over $\eta(I \times I)$ by

$$X_2 = \eta_*(\partial/\partial \xi_2)$$
 and $X_1 = \eta_*(\partial/\partial \xi_1)$.

Then if w is any form in M^n we may write

$$\gamma^*(w) = w_{\delta}d\xi_1 + w_dd\xi_2$$
 ,

where w_{δ} and w_{d} are defined by the equation.

LEMMA 1.1. If $\langle X, w \rangle$ denotes the value that X takes on the covector w at each point, then

$$w_{\delta} = \langle X_1, w \rangle$$

and

$$w_a = \langle X_2, w \rangle$$
.

Received February 12, 1954 and in revised form June 2, 1954.

 $w_{\delta} = \langle \partial | \partial \xi_1, \eta^*(w) \rangle = \langle \eta^*(\partial | \partial \xi_1), w \rangle = \langle X_1, w \rangle.$ Proof. The proof is analogous for w_a .

Let Ω be any two form and let X_1 and X_2 be any two vector fields. It is well known that $\Lambda^2(V)$ and $\Lambda^2(V^*)$ are dually paired. Let this pairing be denoted by

$$\langle X_1 \wedge X_2, \ \Omega
angle$$
 .

Then if Ω can be decomposed as $w_1 \wedge w_2$, where w_1 and w_2 are one forms, we have that the pairing may be defined by the following expression:

$$\langle X_1 \land X_2, w_1 \land w_2 \rangle = \langle X_1, w_1 \rangle \langle X_2, w_2 \rangle - \langle X_1, w_2 \rangle \langle X_2, w_1 \rangle.$$

THEOREM 1.1.

 $\langle X_1 \wedge X_2, w_1 \wedge w_2 \rangle = w_{18} w_{2d} - w_{1d} w_{28}$.

The proof of this theorem is straightforward. We define the symbols δw_a and dw_{δ} by the following equations:

$$\delta w_a = \partial / \partial \xi_1 \langle X_2, w
angle, \ dw_\delta = \partial / \partial \xi_2 \langle X_1, w
angle.$$

If f is any function of ξ_1 and ξ_2 , we define

$$d^r \delta^s f = rac{\partial^t f}{\partial \xi_2^r \partial \xi_1^s}$$
 ,

where t=r+s. Define $\partial^r d^s f$ similarly.

 $\langle X_1 \wedge X_2, dw \rangle = \delta w_a - dw_{\delta}$. THEOREM 1.2.

Proof. Now, in terms of a local coordinate system (x_1, \dots, x_n) ,

$$\langle X_1 \wedge X_2, dw
angle = \sum \left[rac{\partial}{\partial \xi_1} \left(a_i rac{\partial x_i}{\partial \xi_2}
ight) - rac{\partial}{\partial \xi_2} \left(a_i rac{\partial x_i}{\partial \xi_1}
ight)
ight]$$

since

$$\sum a_i rac{\partial^2 x_i}{\partial \xi_1 \partial \xi_2} = \sum a_i rac{\partial^2 x_i}{\partial \xi_2 \partial \xi_1}$$
 .

This and the definition of δw_a and dw_b prove the theorem.

2. The First Variation. Consider the integral

(2.1)
$$I = \int_{a}^{b} F(q_{1}, \dots, q_{n}; q'_{1}, \dots, q'_{n}; t) dt$$

in a space M of 2n+1 dimensions. Then in the cotangent space to the manifold M define the form w by the equation

854

(2.2)
$$w = \sum \frac{\partial F}{\partial q'_i} dq - \left(\sum q'_i \frac{\partial F}{\partial q'_i} - F\right) dt$$

Now let C be a curve in M^{2n+1} expressed by the equations

$$q_i = q_i(\xi_2)$$
, $q'_i = q'_i(\xi_2)$, $t = (b-a)\xi_2 + a$.

Assume further that $dq_i/d\xi_2 = q'_i$ for all values of ξ_2 . Let X_2 be the image of $\partial/\partial\xi_2$ under the mapping described above. Then

(2.3)
$$X_2 = \sum q'_i \frac{\partial}{\partial q_i} + \sum \frac{\partial q_i}{\partial \xi_2} \frac{\partial}{\partial q'_i} + (b-a) \frac{\partial}{\partial t},$$

and

$$w_d d\xi_2 = F(q, q', t) \frac{dt}{(b-a)}$$

Hence

(2.4)
$$I = \int_0^1 w_a d\xi_2 = \int_a^b F(q_1(t), \dots, q_n(t); q'_1(t), \dots, q'_n(t); t) dt.$$

Now consider a one parameter family of curves $f(\xi_1, \xi_2)$ each with the property described above. For each curve in the family we get a vector field which we will denote by $X_2(\xi_1)$. We may consider the variational problem for this family of curves. The crucial fact is that the requirement that $f(\xi_1, \xi_2)$ is a mapping of a *fixed* interval for each fixed value of ξ_1 enables us to treat the problem of variable end point without the necessity of differentiating limits of integration. We consider

$$I(\xi_1) = \int_0^1 \langle X_2(\xi_1), w \rangle d\xi_2$$

and

(2.5)
$$\partial I = \frac{\partial I(\xi_1)}{\partial \xi_1} = \int_0^1 \partial w_d d\xi_2 \, .$$

If we add and subtract dw_{δ} under the integral sign we get

(2.6)
$$\partial I = [w_{\delta}]_{0}^{1} + \int_{0}^{1} (\partial w_{d} - dw_{\delta}) d\xi_{2}$$

(2.7)
$$= [w_{\delta}]_{0}^{1} + \int_{0}^{1} w'(\delta, d) d\xi_{2},$$

where

(2.8)
$$w'(\delta, d) = \langle X_1 \land X_2, dw \rangle,$$

and

$$w'(d, \delta) = \langle X_2 \wedge X_1, dw \rangle.$$

It may be noted that $w'(\delta, d) = -w'(d, \delta)$. The term $[w_{\delta}]_{0}^{1}$ is called the transversality term.

THEOREM 2.1. Assume $[w_{\delta}]_{0}^{1}=0$. Then a necessary and sufficient condition for $\delta I=0$ for all variations is that dw=0 along C.

Proof. The condition is clearly sufficient. An equivalent form of the hypothesis is that

$$\int_{0}^{1} \langle X_1 \wedge X_2, \ dw
angle d\xi_2 = 0$$

for all vector fields X_1 along C. Assume dw does not equal zero along C. Then there exists an X_1 such that $\langle X_1 \wedge X_2, dw \rangle > 0$ for some open interval $a < \xi_2 < b$. Then we may choose a new vector field X_1 such that:

where ε may be chosen arbitrarily small. Then

$$\int_{0}^{1} \langle \overline{X}_1 \wedge X_2, \ dw
angle d\xi_2 = \int_{a}^{b} \langle X_1 \wedge X_2, \ dw
angle d\xi_2 + \epsilon',$$

where ϵ' depends on ϵ and $\lim_{\epsilon \to 0} \epsilon' = 0$. Hence we may choose ϵ in such a way that

 $\int_{0}^{1} \langle \overline{X}_{1} \wedge X_{2}, \ dw
angle d\xi_{2} > 0$.

This contradiction proves the theorem.

Remark: This is essentially the usual argument for the derivation of Euler's equation.

3. Application to Finsler Geometry. If we assume that our integral is of the Finsler type then we may proceed to calculate the second variation. For treating this special case we assume that the reader has a familiarity with Euclidean connections and we will use the Euclidean connection for a Finsler space as calculated by E. Cartan in [2] and Chern [3].

Let M be an *n*-dimensional differentiable manifold and let G be the principal bundle over M with fiber and group the *n*-dimensional orthogonal groups, $O_{(n)}$. Then in G, we have forms w_i , w_{ij} , where $w_{ij}+w_{ji}=0$ and $i, j=1, \dots, n$. The equations of structure are

856

$$(3.1) dw_i = w_j \wedge w_{ji} + \gamma_{jia} w_j \wedge w_{an}$$

$$(3.2) dw_{ij} = w_{ik} \wedge w_{kj} + \Omega_{ij},$$

where $\alpha = 1, \dots, n-1$. (Henceforth we will assume that Greek indices run from 1 to n-1 and Latin indices run from 1 to n.) The γ_{ijx} are symmetric in all indices and zero if any index is n. Also

(3.3)
$$\Omega_{ij} = \frac{1}{2} \sum_{\alpha,\beta} Q_{ij\alpha\beta} w_{\alpha n} \wedge w_{\beta n} + \sum_{l,\alpha} P_{ijl\alpha} w_l \wedge w_{\alpha n} + \frac{1}{2} \sum_{l,k} R_{ijlk} w_l \wedge w_k.$$

Let C be any path in M^n . Choose any path in G with the property that if e_1, \dots, e_n represents a righthanded frame, that is, an element of $O_{(n)}$, then e_n is in the tangent direction to C. Then arc length along a path C is

$$I = \int_0^1 (w_n)_a d\xi_2 \, .$$

This follows from equation (2.4) and the definition of w_n (see [3]).

Now $X_2 = e_n$ and $X_1 = \sum k_i e_i$. Therefore $(w_n)_{\delta} = \langle X_1, w_n \rangle = k_n$. Hence if X_1 is perpendicular to the curve C, then the transversality term is zero. From equation (3.1), we have

$$dw_n = \sum w_a \wedge w_{an}$$
.

Hence

(3.4)
$$\partial I = [\delta(w_n)]_0^1 + \int_0^1 \sum \{(w_\alpha)_\delta(w_{\alpha n})_d - (w_\alpha)_d(w_{\alpha n})_\delta\} d\xi_2,$$

where

$$(w_{\alpha})_{a} = \langle w_{\alpha}, e_{n} \rangle = 0$$
.

It is clear from the last equation that the symbols δ and d and our indices make the notation awkward. Hence a w_d will be written as w and a w_δ will be written as ϕ . In this notation equation (3.4) becomes

(3.5)
$$I = [\phi_n]_0^1 + \int_0^1 \sum \phi_a w_{an} d\xi_2,$$

since $w_{\alpha}=0$ along the path C.

From Theorem 2.1 we have the following theorem.

THEOREM 3.1. The differential equations of a geodesic in Finsler geometry are

$$w_{\alpha}=0$$
, $w_{\alpha n}=0$, $\alpha=1, \dots, n-1$.

We will now compute the second variation along a geodesic. We have

$$\delta I = \int_0^1 \delta w_n d\xi_2$$
 ,

and $\delta^2 I$ is the second variation. Hence we have to compute $\delta^2(w_n)$ along a geodesic. Now

(3.6)
$$\delta^2(w_n) = \delta d(\phi_n) + \phi_a \delta(w_{an})$$

since $w_{\alpha n} = 0$ along the geodesic. We have

(3.7)
$$\delta(w_{\alpha n}) - d(\phi_{\alpha n}) = \langle X_1 \wedge X_2, dw_{\alpha n} \rangle$$

From equation (3.2) we obtain

$$\langle X_1 \wedge X_2, dw_{\alpha n} \rangle = \langle X_1 \wedge X_2, w_{\alpha \beta} \wedge w_{\beta n} \rangle + \langle X_1 \wedge X_2, \Omega_{\alpha n} \rangle.$$

By Theorem 1.1 and since C is a geodesic, we have

(3.8)
$$\delta w_{\alpha n} = d\phi_{\alpha n} - w_{\alpha \beta} \phi_{\beta n} + \langle \Omega_{\alpha n}, X_1 \wedge X_2 \rangle.$$

Now by equation (3.2) and the facts that

$$R_{ijkl} \!=\! -R_{jikl}$$
 , $R_{ij,kl} \!=\! R_{kl,ij}$

we have

(3.9)
$$\langle X_1 \wedge X_2, \Omega_{\alpha n} \rangle = \sum P_{n \alpha n \beta} w_n \phi_{\beta n} + \sum R_{n \alpha n \beta} \phi_{\beta} w_n$$

Therefore, from equations (3.6), (3.8) and (3.9), we obtain

(3.10)
$$\delta^2(w_n) = \delta d\phi_n + \sum \phi_{\alpha} [d\phi_{\alpha n} - \phi_{\beta n} w_{\alpha \beta} + P_{n \alpha n \beta} w_n \phi_{\beta n} + R_{n \alpha n \beta} \phi_{\beta} w_n].$$

Now,

$$\delta d\phi_n = d\delta \phi_n$$
 and $d(\phi_{\alpha}\phi_{\alpha n}) = \phi_{\alpha n}(d\phi_{\alpha}) + \phi_{\alpha}(d\phi_{\alpha n})$

Hence

(3.11)
$$\delta^{2}(w_{n}) = d[\delta\phi_{n} + \phi_{\alpha}\phi_{\alpha n}] - \phi_{\alpha n}d\phi_{\alpha} + [-\phi_{\alpha}\phi_{\beta n}w_{\alpha\beta} + P_{n\alpha n\beta}\phi_{\alpha}\phi_{\beta n} + R_{n\alpha n\beta}\phi_{\alpha}\phi_{\beta}]w_{n}.$$

But from equation (3.1) we have

$$(3.12) d\phi_{\alpha} = \delta w_{\alpha} + w_{j}\phi_{j\alpha} - \phi_{j}w_{j\alpha}$$

since

$$\gamma_{j\alpha\beta}[\phi_j w_{\beta n} - w_j \phi_{\beta n}] = 0$$

along the geodesic. Also $\delta w_{\alpha} = 0$ along the geodesic, since $w_{\alpha} \ge 0$ and equals zero along the geodesic and hence w_{α} must attain a minimum along a geodesic.

858

Hence

$$(3.13) \qquad \partial^2 w_n = d[\delta \phi_n + \sum \phi_{\alpha} \phi_{\alpha n}] + \sum (\phi_{\alpha n} \phi_{\alpha n} + P_{n \alpha n \beta} \phi_{\alpha} \phi_{\beta n} + R_{n \alpha n \beta} \phi_{\alpha} \phi_{\beta}) w_n \,.$$

Hence the integral form of the second variation becomes

$$\delta^2 I = [\delta \phi_n + \sum \phi_{\alpha} \alpha_{\alpha n}]_0^1 + \int_0^1 \sum (\phi_{\alpha n} \phi_{\alpha n} + P_{n \alpha n \beta} \phi_{\alpha} \phi_{\beta n} + R_{n \alpha n \beta} \phi_{\alpha} \phi_{\beta}) w_n d\xi_2.$$

For Riemannian geometry we have $P_{ijkl}=0$ and $\sum \phi_{\alpha}\phi_{\alpha n}$ represents the second fundamental form of the geodesic surface perpendicular to the geodesic at the point.

References

1. E. Cartan, Leçons sur les invarients integraux, Paris, Hermann, (1922).

2. ____, Les Espaces de Finsler, Actualités Scientifiques et Industrielles, no. 79, Paris, Hermann, (1934).

3. S. S. Chern, On the Euclidean connections in a Finsler space, Proc. Nat. Acad. Sci., **29** (1943), 33-37.

4. I. J. Schoenberg, Some applications of the calculus of variations to Riemannian geometry, Ann. of Math., **33** (1932), 485–495.

YALE UNIVERSITY

../../FrontMatter/paper.pdf

Pacific Journal of Mathematics Vol. 5, No. 6 , 1955

Louis Auslander, The use of forms in variational calculation Paul Civin, Abstract Riemann sum Paul Civin, Some ergodic theorems involving two operator Paul Civin, Some ergodic theorems involving two operator Eckford Cohen, The number of solutions of certain cubic congruence Paul Civin, Some ergodic theorems involving two operator Richard M. Cohn, Specializations over difference field Paul Civin, Abstract Riemann sum Jean Dieudonné, Pseudo-discriminant and Dickson invarian Paul Civin, A comparison theorem for eigenvalues of normal matrice Richard P. Gosselin, On the convergence behaviour of trigonometric interpolating polynomial Peter K. Henrici, On generating functions of the Jacobi polynomial Meyer Jerison, An algebra associated with a compact grou Wilhelm Magnus, Infinite determinants associated with Hill's equatio G. Power and D. L. Scott-Hutton, The slow steady motion of liquid past a semi-elliptical bos Paul Civin ring Lyle E. Pursell, An algebraic characterization of fixed ideals in certain function ring Paul Civin ring C. T. Rajagopal, Additional note on some Tauberian theorems of O. Szás Paul Civin ring Shigeo Sasaki and Kentaro Yano, Pseudo-analytic vectors on pseudo-Kählerian manifold Paul Civin ring Morgan Ward, The mappings of the positive integers into themselves which preserve divisio Paul Civin ring	Nesmith Cornett Ankeny and Theodore Joseph Rivlin, <i>On a theorem of S.</i> <i>Bernstei</i>	8
 Paul Civin, Abstract Riemann sum		8
 Paul Civin, Some ergodic theorems involving two operator		8
 Eckford Cohen, <i>The number of solutions of certain cubic congruence</i> Richard M. Cohn, <i>Specializations over difference field</i>		8
 Richard M. Cohn, Specializations over difference field		8
Ky Fan, A comparison theorem for eigenvalues of normal matrice Image: State Stat	Richard M. Cohn, Specializations over difference field	8
 Richard P. Gosselin, On the convergence behaviour of trigonometric interpolating polynomial	Jean Dieudonné, Pseudo-discriminant and Dickson invarian	9
 interpolating polynomial	Ky Fan, A comparison theorem for eigenvalues of normal matrice	9
 Peter K. Henrici, On generating functions of the Jacobi polynomial Meyer Jerison, An algebra associated with a compact grou Wilhelm Magnus, Infinite determinants associated with Hill's equatio G. Power and D. L. Scott-Hutton, The slow steady motion of liquid past a semi-elliptical bos	Richard P. Gosselin, On the convergence behaviour of trigonometric	
 Meyer Jerison, An algebra associated with a compact grou	interpolating polynomial	9
 Wilhelm Magnus, Infinite determinants associated with Hill's equatio	Peter K. Henrici, On generating functions of the Jacobi polynomial	9
 G. Power and D. L. Scott-Hutton, <i>The slow steady motion of liquid past a semi-elliptical bos</i>. Lyle E. Pursell, <i>An algebraic characterization of fixed ideals in certain function ring</i>. C. T. Rajagopal, <i>Additional note on some Tauberian theorems of O. Szás</i>. Louis Baker Rall, <i>Error bounds for iterative solutions of Fredholm integral equation</i>. Shigeo Sasaki and Kentaro Yano, <i>Pseudo-analytic vectors on pseudo-Kählerian manifold</i>. Eugene Schenkman, <i>On the tower theorem for finite group</i>. P. Stein and John E. L. Peck, <i>On the numerical solution of Poisson's equation over a rectangl</i>. Morgan Ward, <i>The mappings of the positive integers into themselves which preserve divisio</i>. 	Meyer Jerison, An algebra associated with a compact grou	ç
 semi-elliptical bos Lyle E. Pursell, An algebraic characterization of fixed ideals in certain function ring C. T. Rajagopal, Additional note on some Tauberian theorems of O. Szás Louis Baker Rall, Error bounds for iterative solutions of Fredholm integral equation Shigeo Sasaki and Kentaro Yano, Pseudo-analytic vectors on pseudo-Kählerian manifold Eugene Schenkman, On the tower theorem for finite group P. Stein and John E. L. Peck, On the numerical solution of Poisson's equation over a rectangl Morgan Ward, The mappings of the positive integers into themselves which preserve divisio Seth Warner, Weak locally multiplicatively-convex algebra 	Wilhelm Magnus, Infinite determinants associated with Hill's equatio	ç
Lyle E. Pursell, An algebraic characterization of fixed ideals in certain function ring International construction of fixed ideals in certain C. T. Rajagopal, Additional note on some Tauberian theorems of O. Szás International construction Louis Baker Rall, Error bounds for iterative solutions of Fredholm integral equation International construction Shigeo Sasaki and Kentaro Yano, Pseudo-analytic vectors pseudo-Kählerian manifold International construction Eugene Schenkman, On the tower theorem for finite group International construction of Poisson's equation over a rectangl Morgan Ward, The mappings of the positive integers into themselves which preserve divisio International construction Seth Warner, Weak locally multiplicatively-convex algebra International construction	G. Power and D. L. Scott-Hutton, <i>The slow steady motion of liquid past a semi-elliptical bos</i>	ç
 C. T. Rajagopal, Additional note on some Tauberian theorems of O. Szás Louis Baker Rall, Error bounds for iterative solutions of Fredholm integral equation Shigeo Sasaki and Kentaro Yano, Pseudo-analytic vectors on pseudo-Kählerian manifold Eugene Schenkman, On the tower theorem for finite group P. Stein and John E. L. Peck, On the numerical solution of Poisson's equation over a rectangl Morgan Ward, The mappings of the positive integers into themselves which preserve divisio	Lyle E. Pursell, An algebraic characterization of fixed ideals in certain function ring	ç
Louis Baker Rall, Error bounds for iterative solutions of Fredholm integral equation Shigeo Sasaki and Kentaro Yano, Pseudo-analytic vectors on pseudo-Kählerian manifold Eugene Schenkman, On the tower theorem for finite group P. Stein and John E. L. Peck, On the numerical solution of Poisson's equation over a rectangl Morgan Ward, The mappings of the positive integers into themselves which preserve divisio 10 Seth Warner, Weak locally multiplicatively-convex algebra		ç
equation	Louis Baker Rall, Error bounds for iterative solutions of Fredholm integral	
pseudo-Kählerian manifold P. Eugene Schenkman, On the tower theorem for finite group P. P. Stein and John E. L. Peck, On the numerical solution of Poisson's equation over a rectangl P. Morgan Ward, The mappings of the positive integers into themselves which preserve divisio P. Seth Warner, Weak locally multiplicatively-convex algebra P.	equation	9
Eugene Schenkman, On the tower theorem for finite group 9 P. Stein and John E. L. Peck, On the numerical solution of Poisson's equation over a rectangl 9 Morgan Ward, The mappings of the positive integers into themselves which preserve divisio 10 Seth Warner, Weak locally multiplicatively-convex algebra 10	Shigeo Sasaki and Kentaro Yano, <i>Pseudo-analytic vectors</i> on pseudo-Kählerian manifold	ç
 P. Stein and John E. L. Peck, On the numerical solution of Poisson's equation over a rectangl		ç
Morgan Ward, The mappings of the positive integers into themselves which preserve divisio 10 Seth Warner, Weak locally multiplicatively-convex algebra 10	P. Stein and John E. L. Peck, On the numerical solution of Poisson's	Ç
preserve divisio 10 Seth Warner, Weak locally multiplicatively-convex algebra 10	• •	
Seth Warner, Weak locally multiplicatively-convex algebra		10
, , , , , , , , , , , , , , , , , , ,	•	
		10