Pacific Journal of
Mathematics

THE NUMBER OF SOLUTIONS OF CERTAIN CUBIC
CONGRUENCE

ECKFORD COHEN




THE NUMBER OF SOLUTIONS OF CERTAIN
CUBIC CONGRUENCES

EckForRD COHEN

1. Introduction. In this paper we shall be concerned with cubie
congruences of the form

(1.1) =0+ + + * + 0T} (mod m),

where n is arbitrary, m >>1, and the a, are integers prime to m. The
number of sets of solutions (x, ---, @) of (1.1), distinet modulo m,
will be denoted by N(n, m). Our discussion of N(n, m) is limited to
the cases s=2 and s=3; however, we emphasize that the method
involved can be extended to arbitrary s.

Suppose that m has the faetorization m=plt, ---, ph as a product
of powers of distinet primes p,, ---, », . Then it follows easily that

(1.2) Nyn, m)y=N{n, pi1) - -+ N{(n, pi" ).

Thus the determination of N(n, m) reduces to the problem of deter-
mining N(n, p*) where p is a prime. We accordingly limit ourselves
to the case of a prime-power modulus p.

If we denote by ¢ the largest integer << 2 such that =0 (mod p"),
then one may write
(1.3) n=p'¢, (§ p)=1, 0<<t< .

We observe, in case 1>-¢, that & is uniquely determined (modp). Our
main goal will be to obtain exact formulas for the number of solutions
Nz(%y px, t)=N2 Of

1.4) n=ax*+ by’ (mod p*),
and the number of solutions Ny(n, p*, t)=DN; of
(1.5) n=ax®+ by’ +cz’ (mod p"),

where n is arbitrary of the form (1.8), and the following conditions
are satisfied:

(1.6) p=1 (mod 3), abe=£=0 (mod p) .

The restriction p=1 (mod 3) is natural, since other primes are special
in the case of cubic congruences.
The method of the paper is based on elementary properties of
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finite exponential sums. These are listed for the cubic case as pre-
liminary lemmas in §2. The principal formula for N, is contained in
.Theorem 1 (§3) and the corresponding result for N, in Theorem 2 (§ 4).
Both results involve the pair of integers (4, B), determined uniquely
by the relations [7],

(1.7) dp—A*+ 218, A=1 (mod 3), B> 0.

However, in the special case £ 0 (mod 3), the value of N, is given
explicity (§3, Corollary 2).

On the basis of these formulas, solvability criteria for (1.4) and
(1.5) are developed in §5. In fact, it is shown in Theorem 5 that
(1.5) is always solvable (N;>0). As for N,, the following criterion is
established : If p£7, then (1.4) is insolvable if and only if t==0 (mod
8), t< A, and a and b belong to different cubic character classes (mod p).
(For the exceptional case p=7, see the complete statement of the
criterion in Theorem 6). Approximations to N, and N, are also given
in §5 (Theorems 3 and 4, respectively).

Regarding previous research on cubic congruences, we note the
work of Gauss who evaluated N, in the case of a prime modulus p
[4]. More recently, Dickson determined N; for a prime modulus, with
a=b=c=1 [3, p. 167]. In addition, Skolem [9] and Selmer [8] have
considered such congruences in their treatment of cubic Diophantine
equations. Some of these results were deduced by the author in an
earlier note anticipating the present paper [2].

2. Notation and preliminary lemmas. The cubic Gauss sum
G(n, m) is defined by
(2'1) G(’I’L, ’)’I’L)-'—— Z e(ns! ’}’)’L) ’

p(mod m)

where the summation is over a complete residue system (mod m), and e
is defined for integral «, by

(2.2) e(a, m)y=e=in,

Expansion of Ny(n, m) into a Fourier sum [1, §5] reveals immediately
the relation between Ny(z, m) and the Gauss sum (2.1):

LEMMA 1. The number of solutions of (1.1) is given by

2.3) Nmm)=1 5 e, m) [ G(=ays, m).

m p(mod m

We next note two reduction formulas for G [6].
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LEMMA 2.
(2.4) G(nm', mn')=m’ G(n, m) .

LemMMA 3. If (v, p)=1, then

: (0¥ (k=37)
(2.5) G(v, pk)Zj p'G(v, p)  (E=3j+1),
LpHiTt (k=3+2).

Closely related to G(n, p*) are the two Gauss-Kummer sums defined

by

(2.6) )= 3 7'()e(n, pY), (=1, 2),
v(mod p"l‘)
(v, p)=

where y(») and x*(») denote the two non-principal cubic characters
(mod p), the summation being over a reduced residue system (mod p*).
In order to differentiate between the two non-principal characters, we
write

(2.7) 0=} (A+3BY/=3), 0.0, (0.6,=p) ,
where A and B are defined by (1.7). Then one may define y(«), for
integers a prime to p, to be that cube root of unity satisfying

(2.8) y(a)y=a®-bP (mod 4,) .

The relation (2.8) is the cubic extension of the Euler criterion [5, p.
455]. In our discussion, the primitive cube roots of unity will be
denoted by o and «?, with o=%(—1+1/-3).

We place further,

r()=r’(n), 7,=(1), (1=1, 2).

With this notation, we state the following reduction formula for {*(n).
LEMMA 4. If E>1 and i=1 or 2, then

(2.9) )= PO (=p", (& p)=1),
Lo (otherwise)

The important relation connecting G(v, p), n(v), and z,(») is contain-
ed in the following lemma.

LEMMA 5. If (v, p)=1, then
(2.10) Gy, p)=n(v, p)+ (v, D).
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The sums 7,(v), 7.(v) have the following fundamental properties [5],

(2.11) n()=x0n, «l)=10)n, (v, p)=1,
(2.12) =D,
(2.13) i=pb,, i=pb,,

0, and 6. being defined by (2.7).
Corresponding to the principal character (mod p), we have the
familiar (Ramanujan) sum,

(2.14) Cnph)= 5 e, 1),
v(mod p*)
(v, p)=1

which has the evaluation (k> 0),

P (p—=1) (P |n,

(2.15) C(n, p")=\ —p"" (p* | », p* fm),
0 (p** hm).
Also of importance in this paper are the functions,
(2.16) TWF;QWH+NWW
(2.17) J(a):{ 4 ((a)=1),

MOR@B—4) (@)1,
where Z(a) is defined for cubic non-residues « (mod p) by
(2.18) ha)=1 or -1,

according as y(a)=w or o’

Application of (2.13) gives

LEMMA 6.
(2.19) T(a)=J(a).

The following notation will be needed.

SIS S FA T

(2.21) Q{&?] , Rz[g] , S=[ag2] ,

where [fA] indicates the largest integer <<f; and for =0, 1, 2,

1 (t=1i (mod 8), £<2),

2.22 L,(t)=
( ) ) {O (otherwise) .
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3. The number of solutions of (1.4). In this section we use the
notation,

(8.1) {=abs,
where ¢ is defined by (1.8), and
(3.2) 7=2(@)®)+ 1) (a)=2 or -1,

according as y(a)=yx(b) or y(a)%x(d).
The main result on (1.4) is contained in

THEOREM 1. The number of solutlions of (1.4) is given by

(3.3) N(n, P, O)=p {p'J(O)Lo(t) + p"'7(1 — Li(t))
+p" (1= Ly(t)) + p ' (1= Ly(t)) — (+ 1)},

where t is defined by (1.8), J by (2.17), ¢, 7, s by (2.20), the LJt) by
(2.22), and ¢, » by (3.1) and (3.2) respectively.

Proof. By Lemma 1 it follows immediately that

(8.4) N._,=1 > e(np, pNG(—ap, pYG(—bp, pY).

P (mod pA)
The residue system pg(mod p*) may be assumed to be the set p=uvp**
where k& ranges over the values 0<C%k <4, and for each %k, ¢ ranges

over a reduced residue system (mod p*). Thus (3.4) becomes, using
(2.4),

A

(3.5) P LS com 96— av, pHG(—bs, p).
=0 p™ y(mod p*)
(v, »)=1

We now break up the & summation according as k==1, 0, or 2 (mod 3),
and apply Lemma 3 to obtain

(3.6) N=U+U,+U,,

where

Q

3D U= %] e, G (—av, p)G(~by, p) ,
=0 p*¥ v(modpl‘ilﬂ)

(v, )=

S
38) U=p> . ,Cn, p), U=p3, L om, p7).
J=0 p j=0 p-j
Applying Lemma 5 and (2.11) to (3.7), and expanding, U, may be
written
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(3'9) U1=U11+U12+U13y
where
) 2 1
U11=P)‘—2X"(ab)ff Z -
i=0 p

Q
Uu=py(ah)ss S,

= 2 Tz(3j+l)(n) ’

2} Tl(3j+1)(n) ,

O :
Um:p"”“’nfﬁ Z } ,12], C(,n’ p3]+1) .
j=t p

Application of (2.11) and Lemmas 4 and 6 to U,, and U,, gives
(3.10) Un+Up=p"""""J(C)L(?) ,

while U,; becomes, on the basis of (2.12) and (2.15),

(3.11) Us=p* "7 {p™'(1—Ly(t)) -1} .

Also, using (2.15) and summing, we get

(3.12) U=p""(1-Lyt)),  Us=p{p'(1-L(#)—-1}.

The theorem follows on combining (3.6), (8.9), (8.10), (8.11), and (3.12).

Three main cases of Theorem 1 are distinguished according as, (i)
A>t, t=0 (mod 3), (i) 1>¢, t==0 (mod 3), or (iii) 1=t (n=0). Cor-
responding to these cases, one may deduce the following corollaries
from (3.3).

COROLLARY 1. If 27> t=3e, then
(3.13) Ny(n, p*, 3e)=p* " {p'(J()+p+1)—7~—1} .

COROLLARY 2. If 2>t=£0 (mod 3), then
(3.14) Ny(n, p*, t)=p*'(""'=1)(n+1) ,

where t=3e+1 or 3e+2, according as t =1 or 2 (mod 3).

COROLLARY 3. (r=0). If 1=t=3e+j, (=0, 1, 2), then
(3.15) Nyn, p*, H=p*" {7+ 1) = 1)+ p™/* 17},
where y=0 or 1 according as t==0 or t=£=0 (mod 3).

4. The number of solutions of (1.5). The elements of the set
(@, b, ¢, &)=H may be distributed among the three cubic character

classes (mod p) in essentially four different ways. These four distribu-
tions, denoted by H,, H,, H,, and H, are defined as follows: (H,)
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Every class contains at least one element of H; (H.) One class contains
two elements of H and a second class contains the other two; (H;)
One class contains three elements of H but not all four; (H,) All four
elements lie in the same class.

Using this notation we define the function,

(4.1) 5(H)=0, 3, —3, or 6,

according as the elements of H have a distribution of type H,, H., H,
or H,.
We will also make use of the following notation :

4.2) O=abc; Th=n(a, b, e)=y(a)y*(bc)+ x(b)y*(ac)+ x(e)y’(ab) , 7.=7%,
7. denoting the complex conjugate of 7;:
(4.3) A(H)=7.0(8) +7:2°() -

On the basis of the above notation, one may deduce

LEMMA 7.

(4.4) A(H)=6(H).

We now state the main theorem for Ny(n, p*, t).

THEOREM 2. The number solutions cf (1.5) is given by
(4.5) Ny(n, p*, t)=p*{[(p—1)(¢+ 1) — Lo(1)]J(0) + po(H) Li(t)
—L(@t)—pL(t) + (p—)(pr +s+1)+p*} ,
where 0(H) is defined by (4.1), 0 by (4.2), and the rest of the notation
has the same meaning as in Theorem 1.
Proof. As in the proof of Theorem 1, we may express N, as a
Fourier sum and apply Lemmas 2 and 3 to obtain
(46) N;= V1+ Vz'{' V ’
where
Q
@D V=S LS e, pG(—a, p)G(=by, p)G(—cv, 1),
j=0 p*7 y(mod p3J+1)

(v, p)=1

Ll s
=0 p j=o p

Application of Lemma 5 and (2.11) to (4.7) yields
(4'9) V1= Vu + V1z+ Vw ’
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where
Q
Va=p"=T(0) 3, L Cln, p7,
j=o p*
. ¢ 1
Ve=p""tny, 3, -0 (n),
j=o p*

¢ 1
V=0 ri1in, >, Y] o (n) .
0

j=
Using (2.15) and Lemma 6 in case of Vi;, one obtains
(4.10) Vu=p?2J(0) {(p—1)(g+1)— L)} .

V. and V3; may be transformed by (2.11), (2.12), and Lemmas 4 and
7, to give

(411) Vi + V13=p2)‘"]5(H)L0(t) .

As for V, and Vs, application of (2.15) gives
(4.12) Vi=p*{p’+pr(p—1)— L)},
(4.13) Vi=p**{(p—1)(s+1)—L(t)} .

Combination of the results in (4.6) and formulas (4.10) through (4.13)
leads to the theorem.

Corresponding to the corollaries of Theorem 1, we may deduce the
following results as special cases of Theorem 2.

COROLLARY 1. If 1>t=3e, then
(4.14)  Ny(n, p*, 3e)=p"*{(pe—e—1)J(0) +e(p’— 1) + p*+ pi(H)} .

COROLLARY 2. If 2 >t£0 (mod 3), then
(4.15) Ny(n, p*, )=p"*(p—1)(e+1)(J(6) +p+1),
where t=3e+1 or 3e+2.
COROLLARY 3 (n=0). If 1=t, then
(4.16) Ny(n, p*, H=p**{(p—D0J(O)(e+ ) +e(p+1) +m]+ '},
where py=p,=0 4f t=8¢ >0; =1, p,=0 of t=3e+1, and uyy=p,=1 of
t=3e+2.

5. Solvability criteria, First we establish some bounds for N; and
N;. To do this, note by Definition (1.7) that [A|<21/p, and by a
simple process of maximalization, that [92(a)B—A|< 4V p, (M(a)= £1).
Thus we have
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LEMMA 8.
(6.1) V(a)<<2v p .

By means of this Lemma and Corollary 1 of §3, we get the fol-
lowing estimate for Ny(n, p*, 3e).

THEOREM 3. If 1>>t=3e, then

(5.2) p@(p+1—21/5)—v~1<»;ff%<pe(p+1+2wp>—v~1.

Similarly, we may deduce bounds for N, on the basis of Corollaries
1 and 2 of §4.

THEOREM 4. If 1>>t, then in case t=3e,
(5.3) pte(p'—1)—2(pe—e—1)y/ p + po(H) < p*“*~PN;
<L p*+e(p’—1)+2(pe—e—1) p +po(H),
and in case t=3¢+1 or 3e+2,
2(1->\)N
(5.4) prl-2y p< P50 Zpilt2yy .
P> (p-1)(e+1) b

We are now in a position to establish precise criteria for the
solvability of (1.4) and (1.5).

THEOREM b. The congruence (1.5) has a solution for every integer n.

Proof. To prove this theorem it suffices to show that the lower
bounds in (5.3) and (5.4) are positive. This follows immediately in the
case of (5.4). Rewriting the lower bound in (5.3) in the form,

ep(V B —2) + eV p = 1)+ p(p+2p " +),

and remembering that the minimal values of p, 6(H), and e are p="7,
0=—38, and e¢=0, we see that N; >0 also in the case 2 >¢=0 (mod 3).

THEOREM 6. The congruence (1.4) has no solution if and only if
either t==0 (mod 3), t <2, and y(a)Zx(®d), or if p="T, t=0, y(a)=x(b)
and {=abt= +3 (mod 7).

Proof. If A>t=£0 (mod 3), it follows directly from Corollary 2 of
§3, that N,=0 if and only if 7= —1(x(a) 7 x(b)). In the remainder of
the proof we suppose, therefore, that 2>>¢t=0 (mod 3). Now the
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lower bound in (5.2) is positive in case 7=—1 and also in case =2,
¢ >0. In the remaining case (7=2, e=0), the lower bound is p—2—
2)/ p, which is positive if p>7. But if p=T, ¢=0, =2, then substi-
tution in (8.13) shows that N,=0 if and only if y({)=w«”, which implies
that £ =+3 (mod 7).

As a corollary of Theorem 6, we have the following result [8], [9]:

COROLLARY (Skolem-Selmer). If pf abe, then the congruence
(5.5) ax®+ by’ +c2*=0 (mod p*)

always has a non-trivial solution (x, y, z not all=0 (mod p)).

Proof. With z=1, ¢=—n, Theorem 6 shows that (5.5) has a non-
trivial solution (X, Y, 1) unless p=7, y(a)=yx(b). In the latter case,
however, there exists a solution (X, 1, 0), because an integer « is a
cubic residue (mod p*) if and only if it is a residue (mod p).
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