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Introduction. We consider a system S of algeraic difference equations
with coefficients in a difference field .7 and involving also parameters
2;. Well-known results concerning systems of algebraic equations and
systems of algebraic differential equations would lead one to expect
that, if S has solutions in some extension of the difference field formed
by adjoining the parameters A, to % then the system resulting from
S by assigning special values to the 4, has solutions, provided only
that the special values are chosen so as not to annul a certain difference
polynomial. But the examples in [5, p. 510] show that this is not so.

The difficulty in these examples arises from the fact that a dif-
ference field .#~ may have incompatible extensions, that is to say, ex-
tensions which cannot both be embedded isomorphically in any one of
its extensions. In particular, it may happen that one can express in
terms of a solution of the system S an element «, independent of the
4,. Then « will be contained in the difference field formed by adjoining
to /" a solution of any system (possessing solutions) which arises by
specializing the parameters of S. It will then not be possible to find
solutions if one specializes the 1, in such a way that the extension of

./ formed by adjoining the specialized values is incompatible with
that formed by adjoining «.

The principal result of this paper is that one can restore the
expected result concerning the specialization of parameters of S by
imposing a suitable condition of compatibility. If the system S has
solutions, then, in order to assure that the system obtained from S by
specializing the parameters has solutions, it suffices to choose the
specializations from an extension of & compatible with a certain ex-
tension ©° of . and not annulling a certain difference polynomial.
In particular, if .4 is algebraically closed it has no incompatible
extensions so that it suffices to choose specializations of the parameters
not annulling a certain difference polynomial. Hence, in this case, one
has the same freedom of specialization as with systems of algebraic
equations. Even in the general case, there is considerable freedom as
the compatibility condition will evidently be satisfied if the specialized
values are chosen from © itself or any extension of <. We turn
now to a formal discussion of this theorem.

We consider a difference field & and extensions < and <z~ of
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.7, Let a set S of elements «; be selected from =~ and a set S of
elements @, from .7, where the index ¢ has the same range, finite or
infinite, in each case. We shall say that the «; constitute a specializa-
tion over ./ of the «; if there is a homomorphism of the difference

ring' .7 {S} onto the difference ring .. {S}, this homomorphism leaving
the elements of ../ fixed and carrying each «; into «;.

We wish to discuss the following question. Let f;, +-+, g 710
7, be a set of elements lying in an extension of the difference field ../~
and such that no nonzero difference polynomial in . {u, ---, %,} vani-

shes when we substitute j, for u;, i=1,---, ¢. Let f,---, 4, constitute
a specialization over ../ of /3, .-+, 8, Under what circumstances do

there exist elements 7,, -+-, 7, such that f3, «--, f3,; 71, -+, 7, constitu-
te a specialization over . of the set 3y, ---, 8,5 71, +++, 7,7 If such
elements 7; exist we shall say that the specialization of the 3; can be
extended to a specialization of the S, and 7, We have already indicat-
ed that, in order to insure the possibility of the extension, we must
impose a condition of compatibility. Our principal result is contained
in the following theorem.

THEOREM 1. Given a difference field % and an extension

K/\/=u{/r’~<ﬂ1y e Bas T vty T

of ./ which 1s such that the degree of tramsformal transcendence of
G =Py v, By over ./ is q, there exists a monzero element § in
By e, By such that any specialization By, «+ -, B, over 7 of By, +++, B,
with the properties that

@) .~ By e, B> and 7 are compatible extensions of ./,
(b) the specialization of & is mot zero,

can be extended to a specialization [, -+, g} T+, 7o OVEr 7 of
ﬁl; ct ey /?a y T1y oy T pe

It is evident that Theorem 1 may be applied to show that zeros of
a reflexive prime difference ideal may be found for all assignments of
values to its parametric indeterminates (if any) which lie in an extension
of a certain field and do not annul a certain nonzero difference poly-
nomaal in the parametric indeterminates.

The condition that 8, ---, 5, annul no nonzero difference polynomial

! For this and similar notations see [5, pp. 508 and 513]. Basic definitions will be found
in [9], (8], [1] and [5].
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with coefficients in ..# is essential in Theorem 1. Let [ be an element
transcendental over the field 9t of rational numbers, and consider
the difference field N{B3>, whose elements are their own transforms.
We may extend N(F> to N(B, r>, where r*=j3, y,=—r (subscripts now
denote transforms). Then 3 may be specialized to the square of an
element of 9. No such specialization can be extended to y. It is
evident that this implies that no element ¢ exists with the properties
prescribed in Theorem 1.

We give the proof of Theorem 1 in § 2 using preliminary lemmas
proved in §1. It is possible for a set S of elements «;, =1, -+, n,

to specialize to a set S such that ../ (S) and ../ (S)> are incompatible
extensions of .4 In §3 we give an example of such a specialization
and prove a theorem to the general effect that such specializations are
searce.

1. Proof of two lemmas.

1. 1. Absolutely vrreducible polynomials. Let there be given a set S
of elements 2;, where the index 7 ranges over a suitable set of ordinals,
and the 2, lie in an extension of a field (not a difference field) .7 of
characteristic 0. Let P be an absolutely irreducible polynomial in
F (S, ++-,a,]. We shall show that almost every specialization of the
1, specializes P into an absolutely irreducible polynomial. Specifically,
we shall prove the following result.

LEMMA 1. There is a nonzero element y in .7 [S] such that for any
specialization of the 2, over .7 for which y does mot specialize to zero,
specializations of the coefficients of P are defined, and the polynomial
P which is obtained by replacing the coefficients in P by their specializa-
tions is of the same degree as P in x, and is absolutely irreducible.

Proof. Using a device due to Kronecker [11, VI, p. 129] we in-
troduce an auxiliary variable ¢ and replace each z;, in P by #»‘-!, where
m is an integer exceeding the degree of P in any «,. Then P goes
over into a polynomial P* in ¢. In the algebraic closure of . (S), P*
factors into (not necessarily distinct) linear factors

P*ZPI"'P,-.

Let S;*, ¢=1, ..., 2°—2=y, denote the products of all subsets of from
1 to »—1 of the P,. Let T,*=P¥%/S;*.

In each S;* and T,* the powers of ¢ may be replaced in a unique
way by power products of the «, which correspond to them by the
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substitution of the preceding paragraph and are of degree less than
m in each x;. Let polynomials S; and T, result from these replacements.

The absolute irreducibility of P is equivalent to its irreducibility
in the algebraic closure of .&(S) and this, in turn, is equivalent to
the statement that none of the polynomials Q,=P-—S,T,, i=1, +--, v,
is zero. Let ¢,, 1=1, ---, v, be the coefficient of a term which appears
effectively in Q;. Let ¢=¢, -+ ¢,. Let 0 be the coefficient of a
term of P which is of highest degree in «, .

There exists an element y in . [S] such that for any specializa-
tion of the 2, for which 7 does not specialize to zero:

(a) Specializations exist for all the coefficients of P,

(b) The specialization may be extended so as to define specializa-
tions for each coefficient occurring in the S; and T,

(¢) ¢0 does not specialize to zero under the extended specialization.

v has the properties claimed in the statement of Lemma 1. For the
existence of specializations of the coefficients of P is guaranteed in (a).
The equality of the degrees of P and P in x, follows from (c). It
follows from (b) that polynomials @,, S;, T;, S,* and T,* may be defin-
ed as the polynomials resulting by replacements of the coefficients of
the Q;, S;, T;, S;* and T,;* respectively by their specializations. By
Condition (¢) no @, is zero. This implies the absolute irreducibility of
P. For P*=P, ... P,, where the P, (which coincide with certain S;*)
result from the specialization of the coefficients of the P,. Since the
P, are of degree zero® or one in ¢, factors of P in any extension of its
coefficient field can be found by the method of Kronecker from the

P, of first degree. The Q; relate to the P, in the same way as the
Q, to the P,. Hence if P had a proper factorization in any field,
then some Q; would be zero. This completes the proof of Lemma 1.

1. 2. Absolutely irreducible manifolds. Let X be a prime p.i?
(polynomial ideal) in .7 (S)[u, +-+, #q; @1, -+, @,], the u, constituting a
set of parametric indeterminates for 2. Let A4, .-+, 4, be a charac-
teristic set of X with A, introducing z,, i=1,---, p. We suppose that
the manifold M of 2 is absolutely irreducible. Then the following
generalization of Lemma 1 may be proved.

LEMMA 2. There is a nonzero element y in 7 [S] such that for any
® Actually no P; is of zero degree, for this would imply that some Q:=0.

3 We use this term as in [9, Chapter IV], to designate ideals in polynomial rings as
distinguished from difference ideals.
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specialization A, of the 1, for which 1 does mot specialize to zero,
specializations of the coefficients of A,,---, A, are defined, and the
polynomials A,, -, A, which are obtained by replacing the coefficients
of Ay, -+, A,, respectively, by their specializations form a characteristic
set of a prime p.i. 3 in TSty y ove Uy Ty, eee, x,], where S de-
notes the set of 1,. The manifold of 3 is absolutely irreducible. FEach
A4, is of the same degree as A, in x,. The 2, and a generic zero of >
constitute a specialization over ./~ of the A, and a generic zero of 2.

Proof. Let
7,
'LU==>_| a‘ixi ’
i=1

the @, integers, be a resolvent unknown for 2'; let G be the correspond-
ing resolvent, Il the prime p.1i.

p
(2, w— Eaiwi) .
i=1
Then 1I contains polynomials M,xz,—N,, 4=1,---, p, where the M, and
the N, are polynomials in w and the u, of lower degree in w than G,
and the M, are nonzero.

(1) G, lelﬂle cety M}pr'_Np

is a characteristic set of Ll corresponding to the ordering u,, ---, u,;
W; &y, +-+, &, of the indeterminates, which we use throughout the
following discussion.

G is absolutely irreducible. For, by [5, p. 514], the reducibility of
G in any field would imply the reducibility of 2 in some extension of
./ Hence, by the preceding lemma, there is a nonzero element 7, of
.~ [S] such that, for all specializations of the 2, for which r, does not

vanish the coefficients of G specialize, and the polynomial G which is
obtained by replacing the coefficients of G by their specializations is
absolutely irreducible and is of the same degree as G in w.

Each coefficient of the M;, N, and A, may be written as a quotient
of elements of .~ [S]. Let 6 be the product of the denominators of
these quotients. Let 7,/0, =1, .-+, p, the 7,70, be coefficients of
terms of the M;. Let 7 be the product of the 7,.

Let I be the product of the initials of the A4,, and J the remain-
der of I with respect to (1). J is a nonzero polynomial in w and the
u, . Some coefficient of J has the form x/é', where £ %0 is in .~/ [S]
and ¢ is a positive integer.

We let y=r07c. For any specialization of the A, to a set S of
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elements 2, for which 7 does not specialize to zero we may define poly-
nomials .M;, N;, 4, and G which result from the M,, N,, 4, and G
respectively by the specialization of their coefficients. G is absolutely
irreducible. The M, are not zero and are reduced with respect to G
since G is of the same degree as G in w. Hence

(2) C;—; Mlxl_]—\?l, ctty M—pxp'_'l—vp

is a characteristic set of a prime p.i. 1l in 7 (S)[uy, =+, U,; w;
x, -+, x,]. Each A, is of the same degree as A, in z;, and its initial
results from the specialization of the coefficients in the initial of A,.
The A, are in II. For the A4, are in 1I and hence have zero remainders
with respect to (1). The equations which express this go over upon
specialization into equations which show that the A, have zero remain-
ders with respect to (2). In saying this we make use of the fact that
each coefficient in these equations may be written as an element of
7S] divided by a power of §.

Let 2 denote the prime p.i. consisting of those polynomials of 11
which are free of w. The 4, are in . Let B,, ---, B, be a charac-
teristic set of 2 with B, introducing ;. The product of the degrees
of the B, in the indeterminates they introduce equals the degree of
G in w. This is the degree of G in w and hence equals the product
of the degrees of the A4, in the respective x;. This product, in turn,
equals the product of the degrees of the 4, in the respective x,.
Hence the product of the degrees of the B, in their respective z; equals
the corresponding product formed for the A,. It follows that the chain
B, --+, B, cannot be lower than the chain 4, ---, 4,. The latter is
therefore a characteristic set of 2.

The absolute irreducibility of the manifold of ¥ is a consequence
of the absolute irreducibility of G since G is a resolvent for 3. It
remains only to prove the last statement of the lemma. Let P be any
polynomial of X whose coefficients are in . [S]. On specialization of
its coefficients P becomes a polynomial P. The equation which shows
that the remainder of P with respect to 4, ---, 4, is 0 goes over into
an equation showing that the remainder of P with respect to 4, ++-,
A, is 0. Hence P is in X. This is equivalent to the statement that
any algebraic relation between the 2, and a generic zero of 2 goes
over on specialization into a relation between the }Ji and a generic
zere of 3. This completes the proof of Lemma 2.
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1. 3. Adjunction of a generic zero. Our application of the preceding
emma will arise in the following situation. Let Il be a prime p.i. in
F Uy ovoy Uy Y1y o+, Yypl, the u, constituting a parametric set. Let
&7 be the field obtained by adjoining a generic zero u,=«;, i=1, ++, q;
Y;=f;, j=1,--+, p, of Il to . % The manifold M of Il is the union of
manifolds M,, ---, M, irreducible over 7 Let M, be an M, contain-
ing the generic zero named above. Then M, is absolutely irreducible.

To prove this statement we consider the field “° consisting of
those elements of 7 which are algebraic over .. Let M’ be the
least manifold over %  which contains M, and let I’ be the ideal of
M’. Evidently 1’ is prime. u,=a,, i=1,---,q; y;=B; j=1,--+, p,
is a zero of I1I’. Now II’ contains IT and hence is of at most the
dimension ¢ of II. Since the degree of transcendence of

Z)(ah *tcy aq; lgl!'..l ﬂp)z‘?:/}

with respect to < is the same as the degree of transcendence of o7~
with respect to ., and the latter is ¢, it follows that ,=«;, i=1, ---,
q; Y;=B; j=1,---, p is actually a generic zero of 11/, and that II’ is
of dimension g¢.

It suffices to prove the absolute irreducibility of 9i’. For, since
M’ is of the same dimension as M, and contains M,, its absolute ir-
reducibility would imply that it coincides with 9t,, and hence that the
latter is absolutely irreducible.

Suppose M’ is not absolutely irreducible. Then there is an element
7 algebraic over < such that I’ is reducible over < (r). Let r be
of degree d over <. Then 7 is also of degree d over 7~ because
every element of 577 algebraic over Z is in Z.* Evidently 7 is also
of degree d over % = < (ay, -+, @,). Let e be the degree of .2~ over
<], and let f be the degree of <. (y; f3, ---, 8,) with respect to <, (7).
The reducibility of M’ over < () implies that f<(e. On the other hand
the degree of <i(y; B, -+, B,) with respect to <, is given both by
de and df, so that e=f. This is a contradiction which establishes
our claim that 9, is absolutely irreducible.

2. Proof of Theorem 1.

2.1. A special case. We return to the notation in which Theorem
1 was stated. We treat first the case that p=1, and that 7;, which
we shall now denote by 7, using subscripts to denote its transforms,
is algebraic over <. Without loss of generality we may suppose that
& 1is inversive.?

* One applies Lemma 2 of |5] to the prime p.i. in @[y] whose generic zero is 7.
5 This is an easy consequence of the fact, proved in [3], that every difference field has
an inversive extension.
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Suppose first that 7 and, hence, its transforms are algebraic over
.7. Then the compatibility of the extension .7 <f,---, B> and 57
implies the existence of a field® & (B, -+, B,; 7>. We say that

By +++, B.; 7 constitutes a specialization of f,,---, f3,; 7. For, if Pis
a polynomial in . {u,, ---, u,; y} which vanishes when we replace u;
by B, ¢=1,---, ¢, and y by 7, then each coefficient of P as a poly-
nomial in the u,; is a difference polynomial of .~ {y} which has the
zero 7. If this were not the case a set of £, would be algebraically
dependent over .~ (%> and hence over .7, which is not so. It follows

that P vanishes when we replace the u, by the corresponding f; and y
by ». Hence in this case the assertion of Theorem 1 holds with §=1.

2. 2. Conclusion of the algebraic case. We proceed to complete the
proof of the algebraic case by induction. We shall suppose that the
conclusion of Theorem 1 has be been verified for algebraic functions
of the B, i=1,---, ¢; =0, 1,--., m—1. Let 7 be algebraic over
the field formed by adjoining to .7 the B, i=1,---, ¢; 7=0,1, -+, n.

We denote by S, k=0, 1,.--, the set of f,, i=1,---, q; j=k,
«++, k+n—17; and by T, the set of B, i=1,---, q¢; j=k, -+, k+n.
Then 7 is algebraic over T(=T,). Let those elements of 7 = 2 (3>
which are algebraic over any .~ (S;) be adjoined to . There results
a difference field whose inversive extension we denote by <'’. Let %
be of degree d over = ’. Evidently there is an element o of .7,
algebraic over .7 (S), such that some transform 7, of #» is of degree d
over 7 {sy. Let Z* be the difference field formed by adjoining to
7 elements whose tth transforms are respectively - and the g, i=
1,.--, ¢. Then 7 is of degree d over < *. Let Il be the reflexive
prime difference ideal in < *{y} whose generic zero is 7. We claim
that the characteristic set of II consists of a single polynomial.

Evidently, the first polynomial of this characteristic set is of order
zero and degree d in y. To prove that it is the only polynomial of
the characteristic set we must show that, for any »>>0, the degree of
7, over < *(y, --+, 9,_,) is d. For any r>0, 7, satisfies an irreducible
algebraic equation of degree d’<<d with coefficients in < *(y, +++, 2,_)).
Since 7, is algebraic over .~ (T',) these coefficients may be chosen to be
algebraic over . (T,). The coefficients are rational combinations with
coefficients in .% of certain transforms and inverse transforms of the
B8; and o, and of 7, ---, 7,_;. The B;; involved, either directly, or

6 The field 9By, «-- , B—q; 7>, and other fields arising in similar situations, is not
necessarily determined to within isomorphisms. It is a field which contains and is

generated by subfields isomorphic to F<By, - -+, Eq> and 9<%>. Our notation is intended
to indicate that one such field is selected and held fixed throughout the discussion.
7 Sk is to denote the empty set if n=0.
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because the o, involved or 7%, ---, %,_, are algebraic functions of them,
are finite in number. We may specify a positive integer p such that
for all B, involved, we have —t<j<p.

We now specialize the f;;, —t<j<{r, to integers. This is to
be a specialization in the sense of algebra only; the operation of
transforming need not be preserved by the specialization. If the
integer values are appropriately chosen the specialization may be ex-
tended to the f,;, »<<j<<p, and to the o, involved in the coefficients and
7oy +++, 7, in such a way that these f;, remain algebraically independent
over .. It follows that the coefficients of the irreducible equation for
7,, the o, involved, k>r, and 7, itself are unaltered by the specializa-
tion. That is to say, the specializations of these elements, and of the
Bi;y 7=>r, satisfy precisely the same set of algebraic relations over .o~
as did the corresponding unspecialized elements.

The o, —t<k<r, and 7%, ---, 7._, specialize to elements algebraic
over ./ (S,). There is then an element 2, algebraic over .~ (S,) such
that these specializations lie in .2 (S,, 2). Evidently, then, 7, is of
degree at most d’ over < *(1). Hence if d’’ donotes the degree of 7.
over Z’/(1) we must certainly have d’/<d’.

Now 2 is algebraic over the field .2/ consisting of elements of </
which are algebraic over .7 (S,). Let its degree over .o be 2. Every
element of Z7/(7,) algebraic over .2 isin .27, as follows from the descrip-
tions of these fields. Hence 2 is also of degree %2 over «’(y,) in con-
sequence of Lemma 2 of [5]. Then 1 is also of degree h over <.
Hence the degree of < ’(y,, 2) with respect to <’/ must equal dz and
also 2d’’. Hence d’’=d’=d. Thus we have shown that the characteris-
tic set of IT consists of a single polynomial. We denote this polynomial
by F. We may choose F' so that its coefficients are in .~ {f, _,, -,
ng, -t G—r} .

Let # denote the initial of F. Some transform of g is algebraic
over #<B,+++, f,>. Hence there is an element 6,40 of .& {8, -+,
.} such that any specialization of the j3,; in the sense of algebra which
does not annul 4, cannot be extended to a specialization to zero of this
transform of . By the induction hypothesis, if #>>1, or by the special
case proved in 2.1 if n=0, there is a 6,40 in .~ {3, ---, f3,} such that

any specialization g, ---, f, of f,, -+, 3, such that &, does not specialize
to zero and that .#<B,-.--,f,> and Z{sy are compatible exten-
sions of .7 can be extended to a specialization B, .-+, f,; 5 of
By e, By; o over ..

Let 0=6,06,. We shall show that ¢ has the properties specified in
Theorem 1. Let f3,---, 3, be any specialization of f,---, 8, such
that ¢ does not specialize to zero and that <<f@,---, B, and &7
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are compatible extensions of ... Since + is in ., KBy, e, B
and 2'(s) are compatible extensions of _~ Hence the specialization
of the B3; to the 3, can be extended to a specialization of &+ to 5. Let
F become F when we replace o by & in its coefficients.® Because o,

does not specialize to zero F' is of the same degree as F and its initial
¢ is the specialization of x. We let 7 be any solution of the difference

equation F=0. We shall show that /4, ---, f,; 7 constitutes a
specialization over & of £, -+, B, 7.

Let P be any polynomial in .7 {u,, ---, #,; y} which vanishes when
we put u,=p,, 9=1,---, q; y=». When the u; are replaced by the j;,
P goes over into a polynomial P’ of <« {y}, and 7 is a zero of P'.
Hence P’ is in II. Then ¢P’, where ¢ is a product of powers of
transforms of y, is a linear combination of F and its transforms with
coefficients which are polynomials of < *{y}. By a consideration of the
process of forming the remainder we see that these coefficients are
actually in “<o_>{B1 -1, --+, B, -.; ¥y} and hence, since the transforms
of o are algebraic over %, they are in & {o_,; B -+, By -5 Y}
Hence specializations may be defined for them.

From the relation of the preceding paragraph we obtain on
specializing the f; to the 3, and & to & an expression for ¢ P’, where
¢0 is the specialization of ¢, and P’ is the polynomial obtained from
P by replacing the u; by the /3, as a linear combination of F' and its
transforms. Hence 7 is a zero of P’. This implies that P vanishes

when the u;, i=1, ---, ¢, are replaced by the corresponding /%, and ¥y
is replaced by 7. Thus Theorem 1 is proved in the algebraic case.

2. 3. Completion of the proof of Theorem 1. We now revert to the
situation in which there are no restrictions on 7y, -+-, 7,. We shall
show that, without loss of generality, we may assume that each 7, is
transformally algebraic over Z. For, if this is not so, let, say, 7.,

-, 7% constitute a basis of transformal transcendency® for the 7,. If
the theorem can be proved under the restriction just mentioned there
isa 0’40 in Z {B, -+, By 11y +++, 7} such that any specialization
of 1, =<+, By; 715 =-+, 7 for which 6’ does not specialize to zero, and
which is such that 27~ and the field formed by adjoining the specializ-
ed elements to .~ are compatible extensions of .77, can be extended
to a specialization of 74,1, -+, 7,. We write ¢’ as a polynomial in
T1s *++, 7 With coefficients in .& {f;, ---, B,}. Let 6540 be a coefficient

”‘;I;h‘e:e is no difficulty in defining any needed inverse transforms of o.

9 A basis of transformal transcendency of a set of elements (over a given difference

field) is a maximal subset of the elements not annulling any nonzero difference polynomial
with coefficients in the field.
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of this polynomial. Then ¢ has the properties specified in Theorem 1.
For, let 3, -+, B, be a specialization over .~ of f,, .-+, B, which is
such that ¢ does not specialize to 0 and that . <@, --+, B> and 5%

are compatible extensions of % We extend .7<f, ---, B by
means of successive transformally transcendental adjunctions of elements

iy **+» 7v. Then it is evident that 7, ---, B, 71, +++, 7. constitutes a
specialization of £, -+, f3,; 71, -+, 7 such that ¢’ does not specialize
to zero, and that % <f, -+, By; 71, 7o and 57  are compatible
extensions of .©%. Hence it is possible to extend this specialization to
a specialization of 7., .-+, r,. We shall deal henceforth only with the
restricted case.

Since the case that no [; exist is trivial and may be dismissed,
< contains an element, f;, which is distinct from all its transforms.
Because of this and the restriction that the y, are transformally
algebraic over <° the Theorem of [4] implies that &7  contains an
element

»
O=>" 115735 »
Jj=1

s>0 an integer, the p; in .7 {f, ---, B,}, such that 0 is of equal order
and effective order over <, and for some integer k>s, and each 7, =1,
<, D, T is In <°0>. There exist difference polynomials P;, j=1,
-, p, and Q in 2 {w} such that ¢ is not a zero of @ and that each
quotient P;/Q becomes 7, when w is replaced by 6. We may and
shall choose the P; and Q to be in .~ {8, -, f,; w}.

Let IT denote the reflexive prime difference ideal in « {w} with
generic zero 0, and let A4,, 4, --- be a characteristic sequence for 1l.
4, is of equal order and effective order. We choose an integer m such
that the order m’ of A,, is not less than the order of the last
polynomial of a characteristic set of Il and also not less than the order
of Q. Let hA=m’—m. Then A4, is of order 2. We may assume with-
out loss of generality that the coefficients of

(1) AO! Al)"'yAm

are in & {3, ---, A,}. For, if this is not the case, it can be brought
about by multiplying these polynomials by a suitable element of
FAByy -+ s B}

Let <’ denote the subfield of 57 consisting of those of its ele-
ments which are algebraic over <. By the Theorem of [6] there is
an element” r in 2"/ such that <= /= 2'{(r). Since r and its trans-

10 We see from [6] that there is a finite set of elements r; which generate &’ when
adjoined, together with their transforms, to &. Since the r; are algebraic over & it
follows that there is a linear combination of them which will serve as .
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forms are algebraic over <, T(>= T {r}.

The manifold of A4,, regarded as a manifold over </, is the union
of components of which at least one contains 6. Let II’ denote a
reflexive prime difference ideal in ©’/{w} whose manifold is this com-
ponent. TII’ contains A4, and is of order and effective order 4.

We shall construct a beginning

(2) CO; M) Cm

of a characteristic sequence of I’ in such a way that the coefficients
of each polynomial of (2) are in the ring

%=k7{ﬂ1,°", ﬂq; T}

and that each is obtained from the preceding by the procedure describ-
ed in [1, pp. 142-145], all polynomials entering the computations having
coefficients in .Z# There is no trouble about C,. We need merely start
with the first polynomial of a characteristic sequence for II and multiply
it by a suitable element of .. We specify that C, is to be irreducible.
Suppose Ci, -+, C; have already been determined. Let B,,, denote
the remainder of the transform C,; of C;, with respect to Cy, -+, C,
considered as a chain of algebraic polynomials. Then

[
B¢+1=chu - ]'2=(,] LUCJ ’

where D; is a product of powers of initials of C,, +-+, C,, and the L
are polynomials of </{w}. An examination of the remainder process
shows that the L;; and B,,, are actually in .ZZ {w}.

Now C,;,, is either equal to B,,;, so that

3
( 3 ) Ci+1=DiCil _jgol LiJ‘CJ ’
or there is a relation
%
(4) E|TB;.,—CiH]= 2(4) M;,C;,
=

where E; is a product of powers of initials of C,, ---, C;, the M;; are
in /{w}, H, is in <’{w} and is of order ~A+i+1, T; is in Z"{w}
and is of order 2+1, and C,,; and T; are reduced with respect to
Cy, -++, C,, while H, is a product of polynomials reduced with respect
to this chain. We see that by multiplying the polynomials defined by
(4) by suitable elements of &2 {w} it is possible to obtain a relation of
the form of (4) in which all polynomials present are in 2 {w}. We
assume this to be done. Then C,, ---, C, as defined by relations (3)
or (4) have the stated properties.
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We now treat the w,; as a set of indeterminates in the sense of
algebra, and the difference fields as fields. The polynomials of !T which
are of order not exceeding m’ form a prime p.i. U, in < {w,, -+, w,],
while the polynomials of II’ of order not exceeding m’ form a prime
p., I, in </ {wy, -+, w,y}. Both I, and II;, have dimension 7.
Ay, --+, A, is a characteristic set for 1I,, and C, ---, C, 1is a
characteristic set for IT,,.

We say that the manifold of 1I,, is absolutely irreducible. For,
by the definition of rz, every element of ~<7/(6,, -+, 0,.,) not in < is
transcendental over ~’. Hence C,, ---, C,, is the characteristic set of
a prime p.i. I, in Z7(0,, -+, O,)[w,, ++-, w, ] whose manifold is that
of II,.,* But 6,, ---, 0, is a generic zero of II, and a zero of II,,
since it annuls C,, ---, C,, but net the initials of these polynomials.
By the remark after the proof of Lemma 2 above it follows that the
manifold of II,, is absolutely irreducible.

Lemma 2 now shows that .2 contains an element ¢, such that for
any specialization in the sense of algebra of the §;; and the transforms
of r for which 8, does not vanish, (2) specializes to a characteristic set
Cy, +++,C, of a prime p.i. over the field formed by adjoining to .~ the
specializations of the [5,; and the transforms of r. Now C, is absolute-
ly irreducible. For it follows from the absolute irreducibility of the
manifold of 1T,, that C, has no factors other than itself which involve
w,, whatever extension of </ is used as the ccefficient field; while
the irreducibility of C, in %/ shows that in no field does it have fac-
tors other than field elements which are free of w,. Hence, by Lemma
1, there is a ¢, in .%7 such that for any specialization of the 3; and
the transforms of r for which ¢, does not vanish, C, specializes to an
absolutely irreducible polynomial.

Since 0,0, is algebraic over & {8, ---, B,}, this ring contains a
6, such that any specialization in the sense of algebra of the f, for
which 0, does not specialize to 0 cannot be extended to a specialization
of 0,0, in which this product specializes to 0.

By the special case of Theorem 1 proved in 2.2 there is a ¢, in
7 {Byy +++, B} such that any specialization of the f;, over .7 to ele-
ments f;, -+, B, such that .7 {f, --+, B> and /=B, +-- fy; o
are compatible extensions of .7, and that d, does not specialize to 0,
can be extended to a specialization of the j, and .

The polynomials of II” which are in < {w}form a reflexive prime

11 To prove the identity of the manifolds we consider a generic zero of a component of
the manifold of IT;,: which is irreducible over &’ (6, -+, 6m.). This generic zero must
annul the C;. Because the dimension of the component equals the dimension of II,, the
generic zero cannot annul the initial of any C;. Hence it annuls the polynomials of II,,.,
Hence the component is contained in the manifold of II,,. Our statement follows readily
from this.
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difference ideal of dimension % with zero 6. Evidently this must be
I1. Hence @ and the product J of the initials of the polynomials of
(1), which are not in II, are not in II’. Let S be the product of the
T, and the initials of the H; of (4). Then S is not in II’. The remain-
der R of JQS with respect to the chain (2) is therefore not 0. Let
0,70 be a coefficient of R. Then ¢,is in the ring < and there is a
0y in F{p,, -+, B} such that any specialization of 3, ---, B8, for which
ds does not vanish cannot be extended to a specialization of 8, to zero.

We let 6=0,0,05. We shall show that ¢ has the properties specified
in the statement of Theorem 1.

Let B, «++, B, be a specialization of f;, --+, B, over % which is
such that F<g,, ---, P;> and 57 are compatible extensions of &
and that ¢ does not vanish under the specialization. Then .73, +++, B>
and ¥’/ are compatible extensions of &, and 0; does not vanish
under the specialization. Hence there is a 7 such that B, .-+, B3 7
constitutes a specialization over &% of f,, ---, B,; =. Let the poly-
nomials of (2) become C,, ---, C, when their coefficients are subjected
to this specialization. The non-vanishing of 8, shows that C,, -+, C,
is a characteristic set of a prime p.i. over the field . 7<@,, ---, B ),
with w,, -+, w,_, constituting a set of parametric indeterminates, and
that C, is irreducible. The initials of the C, specialize to the initials
of the C,.

Because ¢; does not vanish the specialization carries R into a non-
zero polynomial R reduced with respect to C,, ---, C,.. Hence J, Q
and S are carried by the specialization of their coefficients into poly-
nomials J, Q and S respectively which are annulled by no regular zero
of the chain C,, ---, C,. Hence the T, and the initials of the H, do
not vanish when their coefficients are specialized, so that the relations
(3) and (4) are carried by the specialization into relations of the same

type. It follows that C,, ---, C, is the beginning of a characteristic
sequence of one or more reflexive prime difference ideals whose mani-

folds are components of the general solution of C,. Let Il be one of
these ideals, and 6 a generic zero of 1I. Evidently 7 and @ do not
have 6 as a zero.

Let the P, i=1,---, p, be carried into polynomials P, by the
specialization of their coefficients. We define 74, i=1,-+-, p, to be
the result obtained by replacing w by 0 in P,/Q.

We say that fi, -+, By} T =+, I constitutes a specialization
over Z of By, +++, Bys 71 *** » Tus- For let F' be a polynomial of
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F AUy, o, Uy Yiy e, Y, Which is free of y;;, j<7s, and which
vanishes when we replace each u;, 7=1, .-+, ¢, by 3, and each y,,
j=1, -+, »; k=s, s+1,---, by 74 Let the u, in F' be replaced by
the B, the y, by P,/Q, and their transforms by transforms of these
expressions. After multiplication by a suitable product of powers of
transforms of @ there results a polynomial G in &% {f, -+, By w}.
Evidently G is in I1.

Let G denote the polynomial obtained from G by specializing its

coefficients, and let 4, ---, A, denote the polynomials so obtained from
the polynomials of (1). The A; have 0 remainder with respect to (2)
considered as a chain of polynomials in the indeterminates wy, *++ , Wyrm.

By specialization we see that the A; have 0 remainder with respect to

the chain C,, -+, C,, and hence have the zero ¢. Similarly G has
zero remainder with respect to the chain A, ---, A,. By specializa-

tion we see that J G has the zero 0. Hence G has the zero 6. If we
replace the %, in F by the f; and the y, and their transforms by the
P,/Q and their transforms we shall also obtain G. Hence F has zero

w=F,, Yx=T k=>s. This proves our statement concerning the y,. If
we define 7, j=1, ---, p, as an element whose sth transform is 7, we

see that By, +++, f,; 71, *++, 7, is a specialization of B, -+« , f,; 11, **+,
7,» The proof of Theorem 1 is now complete.

2. 4. Corollaries to Theorem 1.

Corollary 1. The specialization of 7, +++, 1, whose existence s
proved in Theorem 1 may be made in such o way that if a basis of
transformal transcendency for r,, -+, 7, %8 selected in advance, then its
elements specialize into a basts of tramnsformal transcendency for 7., ++-,
70 Furthermore the effective order of 7y, +-+, v, with respect to the
pre-assigned basis equals the effective order of 1., --+, T, with respect to
the basis obtained by specialization.

Proof. Let 7, +--, 7, be the pre-assigned basis of transformal
transcendency. The first statement follows immediately from the con-
struction used in the proof of Theorem 1, since 7., -+, 7. are so
chosen as to annul no nonzero difference polynomial with coefficients in

FLByy +++, B>. The second statement follows from the fact that 1I
and 11’ are of equal effective order.”

12 No such statement holds for orders. For let & be an inversive difference field con-
taining an aperiodic element. Let uw=p, y=7 be a generic zero of the ideal {y1—u} of
F{u, y}. Then F<B, 1> is of first order over I<B>, but if B is specialized to an
element of &, y specializes to an element of &#. The specialization of 8 can be chosen
so as not to annul any pre-assigned nonzero element of F{g}.
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Corollary 2. Let 1520 be an element of .7 {F1, =+, Pui Tis *** s 7o}
For an appropriate choice of 6 of Theorem 1 the specialization of 7.,
+, 7p Whose existence is proved in Theorem 1 may be made in such a
way that p dies mot specialize to 0 and that the requirements of Corol-
lary 1 are satisfied.

Proof. Let A be a polynomial of .7 {u,, «--, w,; 1, -+, ¥,} which
goes into p# when the u;, i=1, ---, ¢, are replaced by the 3, and the
Y5, j=1, -+, p, by the r;. Suppose first that each® r;is transformally
algebraic over . If we replace the u, in 4 by the 5, and the y; by
the P;/Q, and multiply the result by a suitable product of powers of
transforms of @, we obtain a polynomial 7" of < {w} which is not in
II. We redefine R as the remainder of JQST with respect to the
chain (2), and redefine 6, and ¢§; correspondingly. Evidently 6=20,0:05
has the desired properties.

To complete the proof of the corollary we proceed, as in the proof
of Theorem 1, to obtain a ¢’. In consequence of what has just been
proved ¢’ may be so chosen that any specialization of fi, <+, B, 71
<+, 7, for which ¢’ does not vanish, and which satisfies the usual
compatibility requirement, can be extended to a specialization of the
remaining 7; in such a way that g does not specialize to 0. We form
o from ¢’ as in the proof of Theorem 1.

3. Proof of a partial converse.

3. 1. A counterexample. It is not necessarily the case that the
extensions of a ground field ../~ generated by a set of elements and by
one of its specializations over . are compatible. To show this we
take for the ground field the field N of rational numbers and consider
polynomials in RN{y}. Let A be the polynomial 1+* and let F be
A*+ A%, Then y,—y is a factor of F,—F. Hence F, y,—y is a charac-
teristic set of a reflexive prime difference ideal* II in i {y}. Let » be
a generic zero of 1I.

To N we adjoin an element ¢ such that *=—1, and define the
transform of ¢ to be itself. Then <) and N{y) are incompatible. For
147’540, since 7, as a generic zero of 1I, satisfies no zero order
difference equation. Hence 9i{7)> contains an element

A=14+7)/1+7).
Since
1 +7)y+ 1 +7)=0

13 We aré here using the symbolism of the proof of Theorem 1.
1]t is easy to establish the irreducibility of #. Then one applies Theorem 3 of [1].
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we see that *=—1. From 7,=7 we readily derive the relation i14,=1.
These imply 4,=—2. Hence®, N2> is incompatible with NG, Evi-
dently this implies that N<{»)> is incompatible with RG>, But ¢ is a
specialization of 7 over M. For the substitution y=+< annuls #' and y,—y,
but does not annul their initials. Hence it annuls every polynomial
of 1I.

3. 2. Compatibility of ‘“ most’’ specializations. Let F <y, +++, 7>
be an extension of the difference field . The following theorem
provides a restriction on the specializations of 7, ---, 7, over ./ which
generate extensions of & incompatible with F# <y, ---, 7.

THEOREM 2. There is an element 740 in 7 {p, -+, 7.} such that
W iy cee, Y 1S a specialization over 7 of py, -+, 7, and the cor-
responding specialization of 7 is not 0, them 7y, +++, 7,0 and
FLyy, oo, Doy are compatible extensions of 7.

Proof. Let 11 be the reflexive prime difference ideal in .7 {y,, - -+,
Y.} with generic zero %, ---, 7,. Theorem 2 is equivalent to the
statement that there is a polynomial @ in & {y, --+, 9.}, but not in
11, such that if A, ---, 1, is a zero of 11 but not of @, then .71,
eeey, A and F <y, -+, p,> are compatible extensions of Z We shall
prove this statement

We denote by < the subfield of <y, ---, 7,> consisting of
those of its elements which are algebraic over .~ By [6] there is a
finite set of elements of < which generate <° when adjoined, with
their transforms, to .4 Since these elements are algebraic over & it
follows that there is an element 6 such that < =.7<8>. There
exist polynomials P, @ in % {y, -+, #.}, @ not in 11, such that ¢ is
obtained by replacing the y; in P/Q by the corresponding »,, We shall
show that @ has the properties claimed in the preceding paragraph.

Let X be the reflexive prime difference ideal in ./ {w} with
generic zero 6. Let By, B, ---, B, be a characteristic set for 2.
When the w,, =0, 1, ---, are replaced by P,/Q; in the polynomials
By, +++, B, and the resulting expressions are multiplied by an appro-
priate product of powers of transforms of @, there results a set,
Cy, +--, C,, of polynomials of II.

For a zero 4, ---, 2, of 1I which is not a zero of @ we define the
element ¢’ to be the result of replacing the y, in P/Q by the corres-
ponding 4;. Since the 4, annul C,, ---, C, it is easy to see that ¢’ is
a zero of B, ---, B,. Because B, is of zero order, any zero of B, is

15 The incompatibility of these extensions of % is discussed in Ritt [10].
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the generic zero of a prime ideal whose manifold is an ordinary mani-
fold of B,. Hence ¢’ is the generic zero of an ideal 2’ of this descrip-
tion. But 2’ must be 2. For no other such ideal contains every B,,
=0, «-+, 7.

It follows that < and #<{¢’> are isomorphic under a mapping
which leaves fixed the elements of % Let ©°’ denote the field con-
sisting of those elements of #<, ---, A,> which are algebraic over
< Evidently <7 is an extension of <¢’>. It follows from the
definition of compatibility and from the preceding statement that £
and £’ are compatible extensions of . By results obtained in proving
Theorem 1 of [5] this implies that <4, ---, 2,> and F{p, +++, 9
are compatible extensions of 4 This proves Theorem 2.

3. 8. Alternate proof of Theorem 2. We give another proof of
Theorem 2 in the case that II has dimension n—1. This proof has the
advantage of furnishing a polynomial @ explicitly.

Let %, ++, ¥o-1 be a parametric set of indeterminates for II.
With the ordering ¥, +++, ¥, of the indeterminates, let £ be the first
polynomial of a characteristic set of II. Then the y,-separant of F
may be used as Q.

Proof. Let S denote this separant and % the effective order of F
in y,. Let A, ---, 2, be a zero of 1I which is not a zero of S.

In the field ¥, ++-, 4,> the manifold of F has a component
M containing A, +--, 4,. Let 2 be the reflexive prime difference ideal
in Fy oo, Wp{¥h, +++, ¥} whose manifold is M. Let a;, -+ a,
be a generic zero of 2. Since 4, +--, A, is not a zero of S, y, +--,
Y.-1 constitute a parametric set for 3, and 2 is of effective order %
in y,. We denote by 2’ the reflexive prime difference ideal 2N
j{yl, M) yn}-

Since 3/ contains F' its manifold is either a component of F or is
properly contained in a component of F. The latter case is impossible
because 2’ contains no nonzero polynomial of effective order less than 2
in ¥, or free of y,. Sinece A, -+, 2, is a zero of both 1I and ', but
not a zero of S, it follows from [7] that 1T and 2 are identical. Hence
&, -+, a, is a zero of II, and evidently a generic zero. Then
FLay, -, a,y and F{p, -+, 7,» are isomorphic under a mapping
which leaves fixed the elements of .# and carries «, into 7;, ¢=1, -,
n. Since Fy, v+, dy; A e+, a,» is defined this implies that
Gy v+, Ay and F<p, -+, 7,» are compatible extensions of F
This completes the proof.
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