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The following interesting theorem was recently obtained by H.
Wielandt (Oral communication, see also J. Todd [3]):

Let M, N be two normal matrices of order n, and let r denote the
rank of M—N. Let D be an arbitrary closed circular disk in the com-
plex plane, If D contains exactly p eigenvalues of M, and exactly q
eigenvalues of N, then |p—q|<r.

It is then natural to raise the following question: Without con-
sidering the rank of M—N, is it possible to compare the eigenvalues
of M and N in a manner similar to that of Wielandt’s theorem ? The
purpose of this Note is to present such a rank-free comparison theorem
which includes Wielandt’s theorem stated above.

THEOREM. Let M, N be two normal matrices' of order n and let
r be an integer such that 0<<r<m. Let ¢=>0 be such that & 1is not less
than the (r+1)th eigenvalue of (M — N)*(M— N), when the eigenvalues of
(M—NY*(M—N) are arranged in descending order.” If a closed circular
disk

|2 —2| <p
contains p eigenvalues of M, then the concentric disk
lz—z|<p+e

contains at least p—1r eigenvalues of N.

While Wielandt’s proof of his theorem uses geometric arguments
involving convexity, the proof of our theorem will be based on an in-
equality (.emma below). This difference in methods explains why our
result is of more quantitative character than Wielandt’s theorem.

LEMMA. Let A, B be any two matrices® of order n. If {a;}, {8},
{r.} are the eigenvalues of A*A, B*B and (A+B)*(A+ B) respectively,
each arranged in descending order
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1The elements of all matrices considered here are real or complex numbers.

2 As usual, the adjoint of a matrix 4 is denoted hy A*,

3Here A, B need not be normal.
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=y, Pi=Pis TiZ=Tian (1<i<n-—-1)
then the inequality
Vi<V VB,
holds for any two nonnegative integers 4, .7 such that i+j+1<n.
A more general form of this lemma (valid for completely continuous
linear operators in a Hilbert space) has been given in [2], and is a

generalization of a classical inequality of H. Weyl [4, p. 445] concerning
eigenvalues of sum of two symmetric kernels of linear integral equations.

Proof of the theorem. Let {p}, {v} denote the eigenvalues of M,
N respectively and so arranged that

l/‘z_zn‘2|,“i+1—‘zn1y ‘Vi—zolz‘yi+l”‘zgly (lgzgn~1)
Let
A=M—zI , B=N-M.

Then A+B=N-z2J. Let {«a;}, {#}, {r:} denote the eigenvalues of
A*A, B*B and (A+B)*(A+ B), each arranged in descending order. As
M, N are both normal, we have

ay=|p,—2? 7i=|vi— 2% (1<i<n).
By the above Lemma, we have
i r =2l <l pts =20l +V B 5 A<i<n—7).
Using our hypothesis f§,.,<(e*>, we obtain
(1) P ARSI AL (I<i<n—r).

Let p denote the number of eigenvalues p, of M contained in the disk
lz—7,|<<p, and ¢ the number of eigenvalues v, of N contained in the
concentric disk |z—z|<{p+e. We shall prove that

(2) g=>p—r.

If n—q—r<1, then ¢>n—r>p—r. Thus we may assume 1<n—
q—r. By (1),

iun—q—znlgllun—q-r —Zn| +e.
But, according to the definition of ¢, we have

an—q—zol>f)+€ .
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Therefore

Iﬂrz—q--r—zi\!>p ’
which implies n—g—r<n—p or (2). Our theorem is thus proved.
COROLLARY. Let M, N be two normal matrices of order n and let
r be an integer such that 0<r<nm. Let x,, @, +++, @,_, be n—r ortho-

normal vectors in the unitary n-space. If a closed circular disk |z—z,|<p
contains p eigenvalues of M, then the concentric disk

b
2 >2

(3) o=zl <p+( X1 (M- Nz,
contains at least p—1r eigenvalues of N.

Proof. By a minimum property of eigenvalues of Hermitian matrices
[1, Theorem 1], the expression

SNy =S (M= N* (=N, )

is not less than the sum of the last n—r eigenvalues of (M —N)*(M — N),
and censequently not less than the (r+1)th eigenvalue of (M—N)*(M
—N). Thus the corollary follows directly from the theorem.

In case r is the rank of M— N, we can choose n—r orthonormal
vectors x,, @, -+, @,_, such that

(M—N)x;=0 ai<n-r).

Then the disk (3) becomes |z—z,|<p and the corollary reduces to
Wielandt’s theorem.
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