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l Introduction, In this problem of two-dimensional viscous flow,
liquid is supposed to have a rigid boundary represented by ABODE in
Figure 1 and, apart from the disturbance caused by the presence of the
elliptical boss BCD, is assumed to be in uniform shearing motion. The
stream function is thus a biharmonic function vanishing together with
its normal derivative at all points of the boundary, and proportional to
y1 at a great distance from the boss. A series of functions is found,
each of which satisfies all the boundary conditions save one. A linear
combination of these functions will also satisfy the boundary conditions
with this one exception, and by a particular choice of the arbitrary
constants which it contains, the remaining condition can be satisfied at
as many points as desired. Special cases are discussed, and a process of
approximation is outlined which yields the most accurate results at C,
and also gives a convenient function for determining at any point of the
boundary the magnitude of the error in the unsatisfied boundary condi-
tion. A special case of this problem has previously been considered [1].

E(oo) D ° B x AW

Figure 1.

2 The stream function. We take the equation of the boundary
BCD to be x2la? + y*lb* = l, and note that the region occupied by the
fluid, for which y is never negative, is transformed into the interior of
the semi-circle of unit radius shown in Figure 2 by

The stream function ψ is biharmonic, that is to say it must satisfy
FV=0, and a satisfactory solution to the problem is

( 2 ) ψ=
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c

w-plane

provided U and V are harmonic functions which are chosen so that
U-hyV does not tends to infinity as z tends to infinity.

The boundary conditions to be satisfied are ψ=Q and 3^/3v=0 along
the boundary, where dp denotes an element of normal to the boundary.
From (2), we see that four conditions are required, namely

( 3 ) ,

(a) J7=0

(b) V-+-dUjdy=0

(c) y*-\-U+yV=0

l(d)

along AB and DE, that is when y=0,

along AB and DE, that is when y=Q,

along BCD, that is when a?2/α2 + 2/3/62 = 1,

= O along J9CD, that is when o?2/a3 + 2/2/62 = l .

Writing ιv = reιθ=u + iv, and using the tranformation (1), we see that
the boundary conditions (3) become, after a little reduction,

( 4 )

(a)

(b)

(c)

(d)

U=0,

U + b sin ΘV' = O ,

δ(α + δ) s in0=---

-°
when v=0 ,

when v=0 ,

when r = l ,

when r = l,

where y ' ^ y + b r sin θ, and c=(6 + α)/(6 —α).
We will proceed to find pairs of harmonic functions Z72w_i, Kra-ι,

such that each pair will satisfy exactly the first three of the above
boundary conditions. Any linear combination of these functions will
also satisfy exactly these three conditions, and by giving special values
to the arbitrary constants in this linear combination we can satisfy
approximately the fourth equation. Physically, this means that in the
fluid motion represented by our solution there will be a small velocity
of slip along the boss BCD, which can be calculated from the error
involved in the last boundary condition.
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If we take

(5) U= to .A-t,

where

( 6 ) ?/,„_!=.>^ i Aln~1- w2n+1-h Btn-1- w'2n~ι-h J^±- w2n

v I 2 1 2 1 23

then U is harmonic, and 4 (a) is satisfied. Moreover, the consideration
of symmetry shows that even powers of w are not required. Now we
have

and

( 8 )

provided cΛn-i — 52TZ-I + C ' 2 W _ 1 / C = O ,

f 2 A ^ ^ c o s 2 w ( 9 - 2C^n~1^ cos (2%-2) θ) ,
V 2^ 4-1 2^ — 3 /

provided - ^ - - ι - + -Bin'-1 -+ ^ ^ - = 0 .
2 + l 2 l 2 3

From (7), (8), we see that we can take

( 9 )

— a

(b-aγ
'̂ } pn

{b-ay

where the unknown pn has yet to be determined. By setting

y, = w 2C2n^r2n~2 cos (2n-2)θ _ 2A2n^ir
ιn cos 2nθ

2n~ι 2n~1 (2n-3)b

we see that 4 (c) yields

(10) W2n-ι = 0 when r=l .

If further we take

(11) Pn=-
4(2nb + a){2(n-l)b + a}
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then condition 4 (b) gives

(12) W2n-1==uzn-'z~u"n when v=0 .

Equations (9), (11) now give

I A =(2n + l)Hb-a)
2(2nb + a) '

c = _ (2n-S)b(bfa)
2{2(n-ϊjb + a}

To find the function W ln-λ satisfying (10), (12), we consider

= ^ f e n ( w ) } , where

w

(14)

It is easy to verify that &{χΐn{w)}=Q when r = l, and that
& {χ>in(w)} =^' 2 r ι when v=0, since from Figure 2

log (w -1) - log (w -f 1) == log ?-* + i(θ, -θx).

The function W2n-X is thus given by

(15) Wm-^φ^-φ^.

Finally, we see that the required stream function ψ is given by
equation (2), where

(16)
-n 1 ( 2 Λ - 3 ) 6 (2n + l)δ

the constants Art_,, S2M_i, Cin-, being determined from (13), χln(w)
from (14). It is quite easy to verify that φ-^-y3 as z-^-oo, that is as
w->0, since the most significant terms in U and yV are respectively
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2aιCιyl(a-\-b) and axy( — 2Cιlb-\-l), the sum of these being clearly zero
from (13).

3* The fourth boundary condition* It is now necessary to consider
the boundary condition as yet unsatisfied, given by equation 4 (d), in
the form

(17) 6(α + δ) sin θ= Σ ^ - j ^ ^ M when r = l ,

where

sin θ dr dr

Theoretically, the constants a2n_1 must be chosen so that (17) is satisfied
for all values of 0 lying between 0 and π, and this would require an
infinite number of terms. Clearly, therefore, some form of approxima-
tion must be applied. Suppose that the constants α2w_L are chosen so
that

then sin ΘF(Θ) is the error involved in the boundary derivative
{dψldr)r=ι, and the actual velocity of slip on the boundary BCD in the
z-plane is

dr I
dw
dz = 1

sinθF(θ)

(62 cos'2 θ + a* sin2

This becomes infinite at #=7r/2 in the degenerate case α = 0 , unless
F(πj2) happens to be zero. Therefore we must consider a method of
approximation which gives no error at all when 0=πl2. The coefficients
α2w_! will be chosen so that the expressions on each side of (17) have
the same values and the same differential coefficients with regard to 0
when Θ=πj2, the number of differential coefficients that can be equated
depending on the value of the integer q. From (16), we see that when

. {A,n_1sin(2w + 1)0 + Bin-ι sin(2n-l)θ + C,w-1sin(2w-
sin θ

2( 2(n-l)b-a)c c o g {2n_2)θ_2i 2nb-a)A

1 (2n-3)& I l(2n + l)6)

where
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dw

ίsin(2w sin θ

+ 2ncos2n(?+ 4 ^ sin 2nθ log tan ^ - 2-csc0,
7Γ 2 7Γ

H - 2 CSC
π

It is to be noted, that although f2n(θ) is infinite at 0=0, π, the expression
f2n-v(β) — f2n(θ)> which occurs in λm-λ{θ) is finite at these points. Equation
(17) is satisfied exactly when 0=0, π, and putting 0=π/2, we have

(19) b(a + b)= Σ V 1 4 . 1 W 2 ) ,

and by differentiation we are led to

(190 »=1

Q

and so forth.
It is from this set of equations that the constants atn-\ are to be

calculated.

4 Special cases. The two special cases of the semi-circular boss
and projection will now be discussed.

(a) semi-circular boss.
Setting α = 6 = l , equation (16) yields

U= Σ -α-""1 {r2n~ι sin (2w-l)β~r2»-3 sin (2w-3)^} ,
w-i 2 ^ — 1

Q Q Off

V=-rsinθ-h Σ^«-i(φ2«-2-φ2»)- Σ ' ^n~" cos (2n-2)θ ,
n=l «=1 2 ^ — 1

and from (18), we get when r = l

2 - sin (272
1sin

As an example, let us take q=S, so that from (19) we are required to
solve the equations
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^πfr) + cU,(;r/2) ,

2 - aX (ττ/2) -f α3^' (τr/2) -f a:χ (τr/2) ,

2 = α, ̂ F(τr/2) + α3xf(τr/2) 4- <Mf (π/2) .

By substitution and straightforward calculation we obtain the follow-
ing table :-

Ύt=-\ n—-2 7i — 3

+ 1.45352 ' -0.72488 + 0.38385

-0.36056 +5.18309 -9.65706

-1.10423 -22.24210 -1-191.53800

which leads directly to ^=+1.21058, α3=-0.34379, α3=-0.02299.
A more accurate result can be obtained by taking more terms in

the linear expression for ψ, and it is found that the coefficients am-ι

decrease rapidly in magnitude, but the numerical work involved soon
becomes exceedingly heavy.

This choice of approximation method is seen to advantage if cal-
culating the error function

at any point by means of the Taylor expansion about Θ=πj2f several of
the significant differential coefficients being zero by definition. The
following table gives the value of F(θ) for various values of 0, and
Figure 3 shows the graph of F(θ) plotted against values of θ lying be-
tween 0 and 7r/2. The graph for πj2<θ<π will, of course, be similar,
since F(0) is symmetrical about Θ=πj2.

o τr/45 i π/15 τr/4 ! 3π/8 π/2

F(θ) i 0 I 0.05918 j 0.08225 | 0.05838 i 0.00915 0.00041

It will be noticed that the results are most accurate in the vicinity
of 0=7r/2, as might be expected from the method of approximation.
Although the value of F(θ) becomes greater than 0.08 for a certain
(small) values of θ, the velocity of slip, given by sin Θ F(Θ), is really
very small at these points.

(β) degenerate boss.

If α=0, the semi-elliptical boss degenerates to a projection into
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F(θ)

0.08

0.06

0.04

0.02

Figure 3.

the moving liquid, and the formulae (13) become

n _{2n-l)b r
X 5 1 ^ 2

(2n~S)b

These values will hold except for n=l. For this case we will follow
W. R. Dean [1], and will find a pair of solutions Ult Vλ

f which satisfy
equations 4 (a), (b), (c). The procedure outlined in § 2 is again followed,
and omitting details we are led to the two pairs of solutions

and

The final solution is thus

(20)

4n(n —

2(n —
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Again we note that Φ~^yλ as z-^cv.

5. The pressure equation. The pressure p is determined from the
equations of motion in the form

dx dy dy dx

where μ is the coefficient of viscosity. Now Φ^y^Λ-U -^yV, where U
and V are harmonic, so that F2ψ=2 + 2(dVldy)9 and hence

?* = -2μ*Y=2μ*V , ?»-2μ*Y .
dx dy1 dx1 dy dxdy

Ignoring an arbitrary constant, we have therefore

p 2 μ 2 μ & \ U 2 μ & {
dx I dz ) \dz div

where V=.^?{V(w)}. From equation (16) we see that

(2% —3)6 (2^4-1)6

and so

(21) p = 2 ^ f 2 ^ - -T<6+ Σ
( L ( 6 4 ) i ( 6 ) 2 J L ^

d ^ dw JJJ '

Equation (21) gives the pressure distribution, and on the plane boundary,
where v=0, this becomes

(22) „ { [ 4

-.4 w-4?«-iM ί""1 +2(w —l
(2» + l)δ

In particular the pressure at B exceeds that at D by

(23)
—3)6

For the special case a=b=l discussed in § 4 (a), this expression is

gμ ^ ( 4 ^ - 3 ) ^ ^ ^
w=i 2 ^ — 1
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and with the values for aL, a3f a3 substituted we obtain a difference of
4.78//.

For the degenerate case α=0, 6=1, Dean [lj obtains a difference of
approximately 5.80 μ between the pressures at B and D.
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