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Introduction. We consider the equation

2. 2.
22+ 2% i, )
2w oy’

over the rectangle 0 <ax < a, 0<y<bh, with given boundary values
for z. Following the usual procedure (see for example Hyman [1]) we
approximate the solution by solving a set of mn simultaneous equations,
arising from the corresponding difference equation. If we write

a:(n—i— 1)../].’,17, b=(m + 1)Ayv tO:Ay/Axy a; ;= -—f(?d;l’, M’U)AZ/“’
and z,;=2(j4x, idy), the mn equations are of the form

(1) 2(1+p2)z£,]:pz(2’i,]‘+l+zz',j—1)+zi+],j+zi—1,j+a/i,j ,
p=1,+2c,m, J=1,.-+,m.

A solution of this set of equations is given by Hyman [1]. In the
case where the boundary values are zero, the solution takes the form
Z=CwD [1, p. 340] where C and D are matrices which depend on n
and m and may be written down without any calculations, and w is a
matrix depending on m, n, p and the values of f(x, ¥) at the lattice
points. The matrix « requires somewhat elaborate caleculations. To
obtain the solution with given boundary values, he adds to the matrix
CwD the value of ¥ as a matrix obtained from the solution of the
equation fu/dx*+ Luldy*=0 with the given boundary values. He ob-
tains for # the matrix value U=C¢ [1, p. 329], where C is the matrix
mentioned above and ¢ is a matrix depending on %, m, p and the boundary
values and requires to be recalculated for every set of boundary values.

In this paper the solutions of equations (1) are obtained, column
by column, in the form Z,=>,M,,B,, where the M, are matrices
depending on m, n, and p and which require somewhat elaborate
calculations, and the B, are vectors depending on m, %, p, the values
of f(z,y) at the lattice points and the boundary values and can be
written down without calculation. We may regard this solution as
giving an explicit formula for the values of z at the lattice points.

The principal work in the calculation of Z; is the calculation of the
matrices M;,. It will be shown that it is suflicient to calculate a
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1000 P. STEIN AND J. E. L. PECK

selection of columns of Z, as the method lends itself to a stepping off
process; also that all the matrices used can be written down easily
from a knowledge of their top rows. The calculation is simplest when
p=1. Further, the case when p=1 or is nearly 1 is the most accurate
[1, p. 332]. It will be shown that when [¢*~1|<(1, Z may be obtained
by successive approximations with the help of the matrices calculated
for p=1. It appears to the authors that if a not very elaborate set
of tables were to be prepared for selected values of j, m and n with
p=1, the calculation of Z would be much simplified. Further, if such
a set of tables were available, it might be of assistance in the iterative
method of the solution of these simultaneous equations when the
boundary is not a rectangle.

In §1 we develop the method of solution. In 8§82 and 3 we give
methods by which the required matrices may be evaluated. Section 4
deals with the iterative process when p is nearly 1, and this is ampli-
fied in §§ 5 and 6.

1. We write the mn equations (1) in n sets each consisting of m
equations. A typical set is

200+ %)z~ 25 =21, 551F 21, 500) F Ay 2,
—2;+ 21+ ,02)23,3‘ —z:s,j:f’z(zz,jn + Z:,j—]) + 4y ;

(2)
- zm-l, J + 2(1 + Pz)zm,j :‘P?(an,j+1 + 27)1,]‘—1) + am,j + zm-i-l,j .

We write Z; for the vector (z,;, 2., +++, 2.,), A, for the vector (a,;

Qo+ vy yy), Z; for the vector (z,,,0,0,---,0,2,,,; and M,(a) for
the m xm matrix

! o, —1: 0;
(3) -1, «, —1,
0, -1, «a,

The equations (2) then take the form

an(z+2IO2)ZJ:AD2(ZJ‘+1+Zj—l)_{‘Aj“I“Zjl ’ 921; e,
or

M, (2+20%) 2, — Z, =p~A+Z)+7Zy =B
" — Zot M2 200V — Zy= Ay + 27 —B,

- Zn—l + ‘D”ZMn(Z + 2P2)Zn, :p-—’_’(An + Zn,l) + Z77,+1:Bll .
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These equations can be solved by iteration. See for example Todd [3].

The class of all ordered sets of m real numbers is a vector space
over the ring of polynomials in the matrix M, (2+2p*). Interpreting
equations (4) in this way, we may obtain their solution from Cramer’s
rule in the form

where <7 is the determinant of the matrix of matrix coefficients on
the left of (4) and the ../, are cofactors of /. One may readily
prove that .~ ,=.#,; and that when j<#Z

(6) 3 =Dy M2+ 20)) D, M, (2 + 20)

where D, is the polynomial defined by the nth order determinant

D, (x)= x, —1, 0,
-1, z, -—1,
0o, -1, x,

and DJ(x)=1.
One may regard (5) as expressing z in terms of the given values

for f(xz,y) and the boundary values. In particular when j=1, we have
from (5) and (6)

(7) Z=D7(pM,(2+20) >, D, (p~* M2+ 20%)) B, .
k=1

As was pointed out by Hyman [1, p. 331] it is unnecessary to
calculate the remaining values of z by the use of (5). It is sufficient
to use (7). Knowing Z, and Z, we may ‘‘step off”’ using (4) to deter-
mine Z, and then use it again to get Z, from Z, and 7, .

2. In this section we obtain some properties of the polynomial
D, and of the matrices D,(3M,(x)).

THEOREM 1.

(8) D(z)=aD,-(x)—D,-.()

(9) D)= S~y (" e

=0
a7z+1_b71+1

(10) D (x)= Pa—b)

a=z+VF—4 , b—aw—1Ve—4
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Laf2) 1 N e
(W) D=2 (5, )y =
(12) D,a($)=Sinh. (ﬁ;lﬁl) , x=2 cosh ¢
sSin
183 D@—netLl, 2—2cos 0
sin

(14)  D,(x)= I <x— 2 cos 7,1”,,“) )
r=1 n+1

Formulae (8), (13) and (14) are known ([2] and [4]). Formula (8)
follows immediately from the definition and (9) may be proved by
induction using (8). Formula (10) also follows from (8) by induction.
Formula (11) comes from (10) on writing a=2+vy, b=xz—y. The equa-
tion x==2cosh ¢ means that a=2¢*, b=2¢"% whence (10) gives (12).
Formula (13) is preved similarly. By (13) the roots of the equation
D, (2)=0 are 2cos (rz/(n+1)), (r=1,--., n) giving (14).

COROLLARY. If M is a square matrix and I is the corresponding
identity matric : —

(15) Dy(M)=MD, (M)~ D, (M)

(16) D,(M)—= [5';0]( _1y (”; T)M

(17) D=2 3 (3 TV or —ary
(18) D,Z(M)=le11 <M— 2 cos £1 I > .

THEOREM 2. If P is any polynomial, then P(M,(«)) is an mxm
matriz which s symmetric about both diagonals.

If two matrices which commute are symmetric about both diagonals,
then so is their sum, product and any scalar multiple. This theorem
therefore proves that the matrices D,(3M,(«)) are symmetric about
both diagonals.

THEOREM 3. Let F be any polynomial and let a,; be the elements
of P(M,(«)). Then if we interpret a,;=0 whenever ¢ or j is < 1 or
>m, we have, for 1<i<<m, 1 <j<m and i+j < m+2,

(19) Qi =01 j1 T Qiajor s



ON THE NUMERICAL SOLUTION OF POISSON’S EQUATION 1003
and for 1 <<i<j<m and 1+5<m+1,

(20) Qi 5=y 4501t Oy _gajegt oo FQygajog .

Theorems 2 and 3 enable us to write down all the elements of
P(M,(«)) from a knowledge of the elements in the first row.

Proof of Theorem 3. We observe that (19) is invariant under addition
and scalar multiplication. We observe also that in the case i=1, (19)
reduces to a triviality. If j=1 it becomes a;,=a,; which is true by
symmetry about the main diagonal, and if ¢+j=m+2, it becomes
@, ;=0;-1;-1, Which is true because of symmetry about the other diagonal
(Theorem 2). Formula (19) will therefore be established if we can
show that it is true for M:(«), where + is a nonnegative integer, and
when 2<i<m, 2<j<m and ¢+5<m+1.

By inspection it is true when »=0, 1. Let «], denote the ¢, jth
element of M, («). Then af,=—a;;! +aa;;'—aj;i, for 1 <{i<m, 1<j
<m. If we assume that it is true for r—1 we have for 2<{i<{m,
2<<j<m, i+7<<m+1, that

- -1 1 -1
i y=— Q2| s o+ QAT — Q[T
S N
a{llj_,+aa1,+]1 Ty =Wy s AT 50

which completes the proof of (19).
Formula (20) follows from a repeated use of (19).

THEOREM 4. If we denote the 1, jth element of D, (BM.,.(x)) by a* then
(21) ayy=aly’, 1<j<k, n<k<m.

From (15) we have
(22) a’injn”* . ﬁam Mm—=1 + aﬂam ;=1 ‘Qagrf,}7i—11 —_— a/qliz}n—-ﬂ

where a?y*=a??7'=0 and 1 <{j<<m. From (22) we have by induction
on % that ay"=0 if j§>>n+2, which means that ay;'=0. Since we
must write a7y '=aly'=ali; =0, this allows the following induction on 7

M ___ myn—1 m,n—1 71,001 n,n—2
al‘__ﬂau‘ 1 +a9a ,@a 1,7+1 a/lj

= —fBatit+afaiit — Batin —al T =aly

However the theorem is true for n=1 and n=2.

Formula (21) shows that the top row of the matrix D,(M,(«)) is
essentially the same for all useful values of %, while (22) gives a re-
cursive method of computing this top row. Theorem 3 and the remark
after Theorem 2 show how the remainder of the matrix can be filled
in from the top row. Thus the computation of the matrices D,(SM,.(x))
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for n<<m 1is simplified, and the matrices lend themselves to easy
tabulation.

3. In this section we give some results which are useful in the
calculation of D;'(AM,(x))=[D.(SM,(x))]".

Since the inverse of any matrix is a polynomial in that matrix,
we have D;'(3M,(«)) a polynomial in D,(3M,(a)) and therefore a poly-
nomial in M,(x). Theorems 2 and 3 therefore apply. It is thus
sufficient to compute only its first row. From the first row we may
obtain its elements a;; for 1 <<7<{j<{m and 7+j <m-+1 by (19) or (20)
and then the other elements can be filled in by symmetry.

THEOREM 5. If the element in the ith row and jth column of
M, («) is a,; and if a=2 cosh¢, then

(23) ai‘]:vs_inh 1P sinhk(im +1—-9)p i<

sinh ¢ sinh (m + 1)

For proof we have first that

(24) ai,j:@—_l(%)%z).j(a) , i<

The result then follows from (12).

THEOREM 6. If

a,=a ——72~ cos rm ,
B n+1
then
(25) D (BM, () —=F-" 11 M;(a,) .
r=1

From (18) we have
Dn(‘BMm(a)): ln[ </’9Mm(6¥)“2008 rT I >
o n+1

(26) — g I M7,1<a—g cos T )
r=1 & n+1

="M, ().
r=1

The result follows immediately.

A result which may be easier from the computational point of view
is to express D;'(3M,(«)) as a sum of matrices. This is done in the
following theorem.
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THEOREM 7. If

2 rT
o= — — €COS ,
/A n+1
then
27 D; (M, ()= migint 7T M@, .
(27 (M, (@)= (+1)>“( 1y ol («,)

From (26) we have that
D,(3M () =11 FM (ct)
Therefore
D (EM (@)= ¥ e, (EM ()}

where the ¢.’s are suitably chosen scalars.
It f@)=0p., (x—7,), 1,77, when r=£s, then

f2)'= Zf(n) (@—7)".

To obtain the values of the scalars ¢,, we put f=D,. From (13) we
have

D,/(2 cos )= (n+1) cos (n+1)0 sin ¢ —sin (n+1)0 cos § ( -1 ) .

sin*0 2sin 0
This gives
D,,’(z cos T”i > = (= 1)"'*,1(??;—% n
e 2sin 7
n+1

and therefore

=(—1)y*12(n+1)"sin* 7"
e,=(=1)*"'2(n+1)"sin P

With the help of (23) we can obtain a more explicit result.
COROLLARY. If a;; is the ¢, jth element of DM, (x)) and
2 rT
2 cosh¢p,=a— ° cos - ,
‘8 9Z+1

then a,,—a,, for all © and j, and for i <_j
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a8 , 27z \ sinhd¢, sinh (m +1—7)¢,
28 =[Am+1)]! — 1)+t A ) R R SN T S T
(28) a.,=Lpn+1)] rzgl (=1 < e n41 ) sinh ¢, sinh (m + 1)¢,

In the case i=1, this reduces to

(29) a,y=[f(n+1)]"" Z( 1)’*‘(1 cos- 2171>'S{%72(lm%1~;)2¢'

4. In the formulae of the twec previous sections, if p=dy/de=1
we have a=4, =1 and there is some simplification in the resulting
calculations. It is pointed out by Hyman [1, p. 322] that the case p=
1 is the one which gives the most accurate results. Hence it is sug-
gested that in arranging the lattice points of a rectangle, one should
attempt to have p approximately one. We now give a method of find-
ing a correction, when p is approximately one, to the solution obtained
by assuming p=1. It is found that in this way we can make use of
tables prepared for the case p=1.

We write p*=1+48. The equations (1) then become

(30) (4+20)z;, ;= (14 0)(1, 501+ 21,5-1) + (113 + 2im1,,) + Wy 5 -
Let

Az, ;=2 ;— L g1 Ly j-1

L@ =42, ;= @11 ) = @1y T s — Ty oy -
Then (30) may be written
(31) Lz y=—0dz;+a,;.
We suppress the first term on the right of (31) and find %{; so that
(32) [luiy=a,;

and u{)=z, ;, on the boundaries. Let Z denote the values of z,, at the
lattice points, with similar notation for U and V¢ with »>1. Let
Z=U®+V®, then U™ is an approximation to the values of Z with

error V@ for which an equation is obtained by subtracting (32) from
(31). Thus

o= —ddz, ;= — 00— bAush

and V% is zero on the boundary.
We now find U® such that

[ty — dus

and U® is zero on the boundary. Writing V®@=U®+ TV we obtain, by
subtraction,
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[(Jvi5=—odvf; .
Proceeding in this manner we obtain for r>1

V(T)Z V(r+1) + U(r+1)
(33) [Juir b= — o du”)
(34) (w87 = —odvi;

where V¢ and U™, r >2 are zero on the boundary. A formal solution
of equations (30) is thus

(35) Z=SU® .

We observe that equations (32) and (33) to determine UY are the
equations (1) where p=1 and where different sets of values are suc-
cessively used in place of the «;;,. The formal solution (35) will be the
solution provided V' tends to 0 as » tends to o. This will certainly
be the case if, given any arbitrary X° we can show that the iteration

[P =—d4af

leads to the result X”—0 as #—> . In the next two sections we

obtain the condition on & that this should be the case, and we obtain
an estimate of the error if we take Z=3:_, U,

5. We proceed to the solution of (33) (and (34)) when r >2. The
equation may be written
— U AU —uf I =ugn ) — 6 (= uf .+ 2u) —u )

If U is the vector (u§?, uf?,---, ufy) then since all boundary values
are zero, these n equations can be written

(36) MU =U P+ U = oMu(2)U" .
If now _# is the m xm matrix of matrices defined by
M,4), -1, 0,
= -1, M,4), -1,
0, —-I, M,4),

_#* i3 the m xm matrix of matrices defined by
M,(2), 0, 0,

A * = 0, M2, 0,
O ’ O ’ Mn(z) ’
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and U is the vector (U ,.--, US), then since all boundary values
are zero the m equations (36) can be written

L//Z'U(T'H): _ av //:kU(T)
and so
(87) UCtO=—6_ 7 /U,
In the case r=1, we must take into account some boundary values.

Thus let Z'=(Z/, Z/,---, Z,’) where Z/ (i=1,.--., m) is the vector
(Zi9s 0,5+, 0, 2;,.1)- Then the solution of (33) for r=1 is

(38) UP=—6_7" (.7 UP=2").
Returning to (37) we have
UM =(—0. .2t 2%y-2U® .,

Hence U™ and V tend to zero as r tends to o provided that a cir-
cle of radius 0|7 and center the origin contains the spectrum of
AT,

The spectrum of _~-'_~* is found most easily by considering the
matrix .2 *_»~. Writing M=M,(2), we have

A
(M7, 0, 0, o\ M2, -, 0,
0, M-, 0, - ~I, M+2I, —I,
1 o, o, M, -| 0, —I, M+2I,
\
(LM, M 0,
—M-, I+2M-,  —M-,
- 0, —M"', I+2M-,

If {p,, 7=1,-+-, n} is the spectrum of M, we may use a theorem
of Williamson [5, Theorem 1] to find that the spectrum of _~z*-'_ .«
consists of the spectra of the n m xm matrices

14+2p7, =pit, 0,

— 1 -1 —pt
ut, 142p0t, e =y M, (¢, +2).

0, =t 127,

By (14) this is the set /1,71<,u,‘+2+260$ S’li>,7-:1,...,n;s=1,...,m_

m—+
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However by (14) also u#,=24-2cos Tl , r=1, -+, n. Thus the spec-
n

trum of _# ' ~Z* is

rT
24+ 2cos —-—

* n+1 . 1 )
o e e T T r= y vy N
4+2cos T 2cos- 7 sinz .57 |

n+1 m+l . 20m+l) §=1, «--, m.

N
2(n+1)

This spectrum therefore lies in the open interval (0, 1). Z=>':,U"
is thus a solution of (1) if

) T

R TR U

sin. "7
2(n+1)
and certainly if |0]<T1.

6. We shall now estimate the error if we take Z=3S3_ U™, We
suppose that || < 1, and consider first the case s>2. Since the
spectrum of _~ -'_~* lies in the open interval (—1, 1), using (37) we
have

4= 3,U00= S U= S (=02 " ¥y U
(39) R S

oA O R

Now the spectrum of the matrix (I+d.7z-'.zZ*)"! is

’
sy rr

2(n+1)

If 6> 0 this lies within a circle of radius one, while if 6<0 it lies
within a circle of radius (1+0)*'=(1—16))"*. Therefore we obtain from
(39)

@) |z- 32U
i r=1

<loL=la) T, when <0,
< Bl |U@y, when 40
1The norm |7'f of a matrix is sup ||7T%|/||«|, where |z| is the square root of the sum

of the squares of the coordinates of the vector «. Jf T is symmetric it is known that
IT||=|4] where 4 is the characteristic root of 7 of maximum modulus.
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Consider now the case »=1. By (37) and (38) we have

o0

Z—UP= S\ (=07 ¥ (=62 ). 2 *UP =2

(41) =

gk

(-(i //’[L,//*)]'(UO) — //*—1Z/)

r=1

=—0. AL+ YOV — %17

fl

We wish now to obtain a formula corresponding te (40). We observe
that

M;42), 0, 0,
/%—1: 0’ Mgl(z) ’ O’
0, 0, M;2),

and the ¢, jth element ¢;; of M;'(2) is given by (24) and (8) as

D:(2)D,_2) _i(n—j+1)

CLTCT @) nil

’ (]

A

By direct multiplication ..2*-'Z" is thus a vector P=(L, ., ---, P.),
where

Pi:‘Mrzl(z)Zi/ :(’Yl + 1)_l(nzi,u + 2041 (?’L—- 1)zb,u +221,n+1’ D) zz,u+nzi,7z+l) .

Now
|Pl= 3 | Pl
— z>ij‘1 ]}; (n4+1)*((n—75+ 1)z, s+ 521 ner)’
=(n+1)"* 321 (P ZoF +1Za s [P) +25(n — 5 +1)(Z0, Z,11)}
— 6@”13 [@r+1)(| 2o+ Znss ) + @0+ 4020y Ziis)]
< %((ffjg) 12041 Lo 4 20y Ziri)}
< (2412l
Thus

| 27 |=|P| < / 2; (iZol+ 1 Znsal) -

2(Zy, Zy+1) is the inner product 3L, 2i0 2i w1, and (Zo, Zp o)== 20| 1 20411l -
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From (41) using the same arguments as for (40) we obtain
2= < I [T+ 2 Zl 4120 | when 00,

gwm—lao-l{a|Uﬂ>u+/l?§ (1Z)+1Zua} when 6<0.
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