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1. Introduction* The von Neumann minimax theorem [2] for finite
games asserts that for every rxs matrix M=\\m(i, j)\\ with real elements
there exist a number v and vectors

P = ( P i , •••, Pr)f Q = { Q U •••> Qs)f Pi, Qj>β,

such that

i> 3)

for all i, j . Thus in the (two-person, zero-sum) game with matrix Λf,
player I has a strategy insuring an expected gain of at least v, and
player II has a strategy insuring an expected loss of at most v. An
alternative statement, which follows from the von Neumann theorem
and an appropriate law of large numbers is that, for any ε>0, I can,
in a long series of plays of the game with matrix M, guarantee, with
probability approaching 1 as the number of plays becomes infinite, that
his average actual gain per play exceeds v — ε and that II can similarly
restrict his average actual loss to v-he. These facts are assertions about
the extent to which each player can control the center of gravity of
the actual payoffs in a long series of plays. In this paper we investigate
the extent to which this center of gravity can be controlled by the
players for the case of matrices M whose elements m(i9 j) are points
of ΛΓ-space. Roughly, we seek to answer the following question. Given
a matrix M and a set S in iV-space, can I guarantee that the center of
gravity of the payoffs in a long series of plays is in or arbitrarily near
St with probability approaching 1 as the number of plays becomes in-
finite ? The question is formulated more precisely below, and a complete
solution is given in two cases: the case JV=1 and the case of convex S.

Let

Λf = \\m(i, j) 1, l^i^r, l^j^s

be an r x s matrix, each element of which is a probability distribution
over a closed bounded convex set X in Euclidean iV-space. By a
strategy for Player I is meant a sequence / = { / „ } , n=0, 1, 2, ••• of
functions, where fn is defined on the set of ^-tuples (xu •••, xn), xteX
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and has values in the set P of vectors p=(Pu , pr) with
1 /o is simply a point in P. A strategy g= {gn} for Player II is defined
similarly, except that the values of gn are in the set Q of vectors q=
(Qu •—, Qs) with qj^O, Σ f ^ = l . The interpretation is that I, II select
i, j according to the distributions / 0 , g0 respectively, and a point x±eX
is selected according to the distribution m(i, j). The players are told
xl9 after which they again select i, j , this time according to the distri-
butions fi(xi), gι{%ι), a point x2 is chosen according to the m(i, j) cor-
responding to their second choices, they are told x2 and select a third
i, j according to f%(xly #2), g*{xu x2), etc. Thus each pair (/, g) of
strategies, together with M, determines a sequence of (vector-valued)
random variables xu x2, .

Let S be any set in iV-space. We shall say that S is approachable
with / * in M, if for every e>0 there is an JV0 such that, for every g,

Prob {dn^>ε for some n^>NQ} <ε ,

where δn denotes the distance of the point Σϊχiln from S and xu x2,
• are the variables determined by /*, g. We shall say that S is ex-
cludable with g* in M, if there exists d>0 such that for every ε>0
there is an NQ such that, for every / ,

Prob {δ^d for all rc^

where xlf x%, ••• are the variables determined by / , g*. We shall say
that & is approachable (excludable) in M, if there exists / * (g*) such
that S is approachable with / * (excludable with g*). Approachability
and excludability are clearly the same for S and its closure, so that we
may suppose S closed.

In terms of these concepts, von Neumann's theorem has the follow-
ing analog.

For N=l, associated with every M are a number v and vectors pe P,
qeQ such that the set S= {#£>£} is approachable for t<Lv with f:fn=p
and excludable for ty>v with g : gn=q.

A slightly more complete result for N=l, characterizing all ap-
proachable and excludable sets S for a given M, is given in § 4 below.

Obviously any superset of an approachable set is approachable, any
subset of an excludable set is excludable, and no set is both approach-
able and excludable. Another obvious fact which will be useful is that
if a closed set & is approachable in the sxr matrix Λf', the transpose
of jfcf, then any closed set T not intersecting S is excludable in M with
any strategy with which S is approachable in M'. Thus any sufficient
condition for approachability yields immediately a sufficient condition for
excludability. A sufficient condition for approachability is given in § 2.

It turns out that every convex S satisfies either this condition for
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approachability or the corresponding condition for excludability, enabling
us to give in § 3 a complete solution for convex S. For non-convex S,
the problem is not solved except for 2V=1. An example of a set which
is neither approachable nor excludable in a given M is given in § 5, the
concepts of weak approachability and excludability are introduced, and
it is conjectured that every set is either weakly approachable or weakly
excludable.

2 A sufficient condition for approachability. If x9 y are distinct
points in iV-space, H is the hyperplane through y perpendicular to the
line segment xy, and z is any point on H or on the opposite side of H
from xy then all points interior to the line segment xz and sufficiently
near x are closer to y than is x. This fact is the basis for our sufficient
condition for approachability.

For any matrix M, denote by M the matrix whose elements m{i, j)
are the mean values of the distributions m(i, j). For any peP denote
by R(p) the convex hull of the s points Σ« Pιm(i, j). The sufficient
condition for approachability is given in the following theorem.

THEOREM 1. Let S be any closed set. If for every xφS there is a
p (=p(x))e P such that the hyperplane through y, the closest point in S
to x, perpendicular to the line segment xy separates x from R{p), then
S is approachable with the strategy f:fn, where

fn-
xn) if n>0 and xn = (^

\n

^arbitrary if n=0 or xneS.

Proof. Suppose the hypotheses satisfied, let I use the specified
strategy, let II use any strategy, and let xlf x2, be the resulting
sequence of chance variables. For

let yn be the point of S closest to xn, and write un=yn — xn. Then, for

(1) E((un, xn+

where E(x\y) denotes the conditional expectation of x given y and (u, v)
denotes the inner product of the vectors u and v.

Let δn denote the squared distance from xn to S. If <5w>0, then

( 2 ) dn+1<:\xn+1-yn\
2^\xn-yn\

2 + 2(xn-ynf xn+1-xn)+ \xn+ι-xn\\
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Since xn+i—Sn=(a?n+i —5n)/(w + l), we have

/ Q \ (7γ. n, ™ ™ \ fan Vn> •^n + l^^Vn) i fan Vn* Vn ^n)
71 + 1 92 + 1

and

( 4 ) l»«+i-Sn

where c depends only on the size of the bounded set X. From (2), using
(1), (3), and (4), we obtain, replacing n by n—1,

( 5 ) E{dn\δl9 - . . , a n _ 1 ) ( 5

\ n / n2

Moreover

( 6 ) O ^ r ^ α

and

( 7 ) | 3 n - 3 » - i l ^ - .
7Z

Thus it remains only to establish the following.

LEMMA. A sequence of chance variables δlf δ2, satisfying (5),
(6), and (7) converges to zero with probability 1 at a rate depending only
on a, δ, c, that is, for every ε>0 there is an NQ depending only on ε,
α, bf c such that for auy {Sn} satisfying (5), (6), and (7), we have

Prob {δn^>e for some

Proof of Lemma. Let rc0 be any integer. There exists
depending only on nQf ε, a, c such that

Prob {<5w:>ε/2 for n^rι<snύ<e\<l.

To see this, define, for n^>n0, an=Sn if <54>O for no<Li<ln, and ^ w = 0
otherwise. Then an<Cej2 implies <5*<ε/2 for some i with no<Li<Ln. Also

and, for

so that

E ( a n \ a n o , , w ) ^ ( : ,
0 V n J n ι

n
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Thus E(ocn)->0 at a rate depending only on n0, a, c, and there is an nx

depending only on n0, ε, α, c for which E(<xni) is so small that

Prob {αW l<ε/2}>l-(ε/2).

For every n, k with n<Lk we define variables znk as follows. Un-
less ίn_i<e/2 and dn>ej2, znk=0 for all k. If δn^<εj2 and <?^ε/2 for
n<J,<Jc, then znk=δk. If <ViO/2, 3*^e/2 for n<ji<kQ and ί fco<e/2,
then zwfc4-zwfco=<5fcO

 f o r &I>feo. If δ w ^ε for some w^?ii, either <5wI>ε/2
for all w such that no<Ln<L?ι1 or znfci>ε for some ΎQ^UQ. The former
event has already been shown to have probability less than ε/2 it
remains to show that the probability of the latter event can be made
less than 6/2 by choosing n0 sufficiently large.

Fix f£>n0 and write βjc=znk—zn fc_χ, &>rc, £ n = 0 . Then, if zn fc-i^ε/2

for sufficiently large ?z0 depending on c and ε, and IβJ <*&/&. If «»»-i<C
ε/2, /5fc=0 so that, in any case

( 8 ) E{βΛβn,~-,βκ-ι)^-fhmz*(\βΛβn, •••,&-!).

We now apply the following form of the strong law of large
numbers, recently proved by the writer [1].

THEOREM 2. If zlf z2, is a sequence cf random variables such
that |3*|<y. and

E(zk\zlf ••••, ^ . O ^ -

then for all t,

Prob K + +**;>£ for some fc}^(—--Y
1

The variables zk=(nlb)βk^n+1 satisfy the hypotheses of Theorem 2,
with w=(ε/2δ), so that

/I \l/6

Prob {«„*-«„„>* for some k>

For large w0, ^ww<3ε/4, so that ^TOΛ^ε for some k implies s«*—sflfι>e/4.
Thus

Prob fefc^ε for some

where s=r ε / 4 , so that
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Prob {zn3bi>e for some ri^n0, ΛC>w}<̂

which will be less than ε/2 for n0 sufficiently large. This completes the
proof.

3 The case of convex S.

THEOREM 3. Let T{q) denote the convex hull of the r points
Σ ί Qjϊniif i) A closed convex set S is approachable if and only if it
intersects every set T(q). If it fails to intersect T(q0), it is excludable
with g: gn^q0.

Proof Suppose S intersects every T(q), let xQ $ S, let y be the point

of S closest to x09 and consider the game with matrix A=\\a(i, j)\\, where

α(i, i)=(2/—a?o> ϊn(i,j)) Its value is

min max {y — xQy Σ Qjmfi* j))=mm max (y—x0, t)^>min (y—xo,s).
q i j q teTQq) sGS

Consequently there is a p e P such that

(V-Xof Σ Pim(i, i))^min (y-xOf s)
ί ses

for all j , that is,

(y-x0, r)^>(y-x0, y)

for all reR{p). Since (y—xQ, Xo)<C(y—Xo, y), the hyperplane (y—x0, x)=
(y—Xo, y) separates x0 from R(p), completing the proof.

On the other hand, any T(q0) satisfies the hypotheses of Theorem 1
in M' with f:fn=q09 and so is approachable in M' with this / . Con-
sequently, if S fails to intersect T(qQ), S is excludable in M with

9 -

COROLLARY 1. The sets Rip) are approachable with f:fn~p.

COROLLARY 2. A closed convex set S is approachable if and only if
for every vector u,

)^>min (u, s),

where viu) is the value of the game with matrix |(%, mii, j))\.

Proof of Corollary 2. If for some u0 the inequality fails, then T(q0)
is disjoint from S, where q0 is a good strategy for II in the game with
matrix \\(uOf m(i9 j))\\f and conversely if any T(q0) is disjoint from Sand
uQ is a vector with
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max (uQ, £)<Cmin (uQ, s),

then

v(uQ)< min (u0, s).
seS

4. The case JV=

THEOREM 4. .For iV=l, te£ v, t;' δe the values of the games with
matrices M, Mf. If vf<Lv, a closed set S is approachable if it inter-
sects the closed interval vfv and excludable otherwise. If v'^v, a closed
set S is approachable if it contains the closed interval vv' and excludable
otherwise.

Proof. Application of Corollary 2 to the closed interval AB, A<Cβ
with % = ± 1 yields that AB is approachable if and only if v^>A and
— v'^>—B. If v'<Lv, these are simply the conditions that AB intersect
the closed interval v'v, and if v'^>v, they are the conditions that AB
contain vvf. Thus if v'<^v every point in v'v is approachable, so that
any set S intersecting v'v contains an approachable subset and is hence
approachable, while if v'^>v, the interval vv' and hence any set con-
taining it, is approachable. The last sentence, applied to M', yields
that if v'<Lv9 the interval v'v is approachable in M\ so that any closed
set not intersecting v'v is excludable in M, and that if v'^>v, any point
in vv' is approachable in M' so that any closed set not containing vv'
is disjoint from a point approachable in M' and consequently is exclud-
able in M. This completes the proof.

5 An example. We saw in the last section that for N=l every
set is approachable or excludable. This is false for iV=2 as is shown
by the following example. Let

r = = s = 2 , m(l, l)=m(l, 2)=(0, 0), m(2, 1)=(1, 0), m(2, 2)=(1, 1),

let I1 be the set of points (J, y), 0< /̂<I~ϊ, let 72 be the set of points
(1> y)> τ^V^Xy and let S=Iι\JI2. For every n, player I has a strategy
which guarantees that x2n e S, as follows: Λ^(0, 1) for j<jn9 so that
xn=(u, 1); if u^i, Λ=(0, 1) for £>rc, and if u<h fj=(h 0) for j>n.
Then for &i>J, x2n e 72, and for u<Ci, x2n e Ix. However S is not approach-
able, since the following strategy for II does permit xn to remain near
either I1 or J2. Let xn={any δ j , if oQ>§, gn=(l, 0) if an<&, flrn=(0, 1).
Thus S is neither approachable nor excludable.

In the above example, S is weakly approachable, where a set £ is
said to be weakly approachable in M if for every ε^>0 there is an No

such that for every n^N0 there is a strategy / for I such that, for
all g,
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P r o b R > ε } < ε ,

where δn is the distance from xn to S. Similarly S is weakly excludable
in M if there is a cf>0 such that for every e>0 there is an No such
that for every n^>_N0 there is a strategy g for II such that, for all / ,

Prob{ίn<d}<e.

Clearly no S is both weakly approachable and weakly excludable , we
conjecture that every S is one or the other. In the above example, it
is not hard to show that a closed S is weakly approachable if it inter-
sects the graph of every function h defined for 0<l£<;i which satisfies

and is weakly excludable if there is such an h whose graph it fails to
intersect.
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