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1. Introduction. It has been shown by Segal ([1], our definitions
follow [1] whenever possible, except for our introduction of condition
(4) into the definition of a measure space) that localizable measure spaces
form the largest class of measure spaces to which certain processes of
functional analysis may be applied. These measure spaces are character-
ized as those which are strongly equivalent to direct sums of finite
measure spaces. It has some interest to ask under what conditions
these finite measures may be obtained as subsets of the original mea-
sure space. We shall show that this is always possible provided the
‘dimension’ of the measure space is equal to or less than the power of
the continuum. If one assumes the continuum hypothesis, then every
measure space satisfying the given condition on its ‘dimension’ is locali-
zable in this stronger sense.

2. Definitions. We shall fix a measure space, that is, a triple M=
(R, R, r>, where
(1) R is a non-void family of subsets of a set R, closed under re-
lative complementation and finite union;
(2) ~ is a nonnegative finite-valued finitely additive function on R;
(3) r is countably additive in the restricted sense that, if {E,} is
a disjoint sequence of sets in R such that

Ms

r(E,)=8 <o,

1

3
Ll

then

UE,e % and »(\E,)=s.
n=1

n=1

We shall also make the following inessential restriction:
4) If EeR, rn(E)=0, ACE, then AecR.
A subset A of R is measurable resp. null if

AN EeN resp. (AN E)=0

for all E in N. Two subsets A and B of R are equivalent if A©B (&
is symmetric difference) is a null set, and almost disjoint if AN\ Bis a
null set.

The o-Boolean algebra of all measurable sets modulo null sets is
the measure ring of M. M is localizable if the measure ring of M is
complete. By the dimension of M we shall mean the smallest cardinal
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number of a maximal almost disjoint subset of . M will be said to
be strongly localizable if there exists a (strictly) disjoint subfamily S of
N such that for every set A in N, we have

r(A)=3r(ANE).
EES
3. Results.
LEMMA. If M as strongly localizable, it is localizable.

Proof. Suppose S is a disjoint subfamily of 9% of the kind required
in the definition of strong localizability. Consider the measure space
M*={R*, 0¥, r* >, where

R*= U E ’
HES
R* is the subfamily of R consisting of those A which are contained in
a countable union of sets of S, and 7* is the restriction of = to N*.
Then the measure rings of M and M™ are algebraically isomorphic.
This follows easily from the facts that every set measurable in M* is
also measurable in M, and that the complement of R* in R is a null
set in M.P

But M* is obviously a direct sum of finite measure spaces [1, De-
finition 3.1]. Application of Lemma 3.2.2 of [1] now gives the required
result.

THEOREM. A measure space M is strongly localizable if either (1) its
dimension is equal to or less than the smallest uncountable cardinal, or
(2) 4t 4s localizable and its dimension is equal to or less than the power
of the continuum.

Proof. Let S be a maximal almost disjoint subfamily of iR whose
cardinal number is the dimension of M. To show M strongly locali-
zable, it is clearly sufficient to show that each E in S can be replaced
by an E* in R such that (1) E and E™* are equivalent, and (2) if E,,
E.eS, E,5#E,, then Ef and EF are disjoint. Let a be the dimension
of M.

Assume that a < R;. The case a <R, is trivial, since then M is
o-finite, and Corollary 3.2.1 of [1] may be applied directly. Assume a=
R, and let {E,}z, be a well-ordering of S, Q being the smallest ordinal
associated with ;. For each 5 < Q, set

Ej=Ey~\) .

1 These facts clearly require for their proof Condition (4) of the definition of a mea-

sure space.
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Since each 3 < Q is countable, E* is in R. The E* are evidently dis-
joint; and, since the Ej; were almost disjoint, E; and Ej are equivalent.
By the first remark of the proof, the theorem is established for case
Q).

Assume now that M is localizable, and that a« < ¢, ¢ being the power
of the continuum. Then there is a univalent function ¢ on S to the
bounded interval [0, 1]. For each function f in L'(M), we shall define

T(f)= S H(E )Sﬂf(x)dm .

It is easily verified that 7' is a continuous linear functional on L!(M).
Since M is localizable, the Riesz representation theorem for linear func-
tionals on LY(M) holds [1, Theorem 5.1]; and we obtain a bounded mea-
surable function g such that

T( f)=SRg(x) f@)dz  for all £ in L(M).

It is evident from the definition of 7T that, if Fe S, g(x)=¢F) for
almost all « in E. The set

E*=E N {z|g(x)=¢(E)}

is therefore equivalent to E, and for E, FFe S, E4F, the disjointness
of E¥ and F* is obvious. This completes the proof of the theorem.

If the continuum hypothesis is assumed, the second alternative hy-
pothesis is of no interest. The theorem then states that all measure
spaces with dimension equal to or less than ¢ are strongly localizable.

It would be interesting to know whether the assumption about the
power of the dimension is necessary for the equivalence of localizability
and strong localizability.
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