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1. Let w,(x), n=1,2, ---, 0<2x<1, be an orthonormal set of
functions which are uniformly bounded,

(1) ]wn(x)[éM (?’L=1,2,"', Oéxgl)-

If i]anl<oo, and if Sllg(m)ldx<oo we may define
1 0

(2) f@=Sa0@,  b=| s@oeds.

The following inequalities were established by R. E. A. C. Paley [1]:
@i "< aa] Stenln= " @<q< )
S bt < 4 | lo@1edz (1<p<2y

( 3 ) : 1 1 p o 1/p
1@ ierda " < 4] Elaulr] A<p=2)
Shai| "= A | lo@rerda | 2<g< ).

In the present paper we shall establish some related results which are
however a great deal simpler. We shall prove that

/2

(0 [[1r@rea " <A@ Siae]" 0<a<i;

1/2

@) (St 2@ [ w@rerde|T  0<a<i).

As Paley pointed out, the inequalities (3) include the inequalities of
F. Riesz which assert that

| ir@ras "< Bw)| S1ar]”,
(5)
(b0 <] [ b@ra]”  a<p<e yprig=.

=1
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(The best values of the constants B(p) cannot be obtained by this argu-
ment however). The inequalities (4’) and (4’/) also include (5) (again
not with the best values for B(p)). The demonstration of Riesz’s theo-
rem which one obtains in this way is unusually simple.

2. We now proceed to the demonstration of the inequalities 1(4). We
assert that 4,(a)=A,(«) and thus that either of the inequalities implies
the other. Suppose that the inequality 1(4’) holds. We define

F (@)= 3ibin" 0 (@)
n=1
By assumption
[ IFs@ e de < ax@ 3 b=l = A3 b,

We have

n=1

S bl o7 = | Pu@o@ae <[ [ 1Fu@r ovda |1 o) poda ]
<[ 4@ S n || 1o rada |,

[S =] < 4] | @ e=az]”

Allowing N to increase without limit we see that A, (a) << A4,(«). Sup-
pose now that 1(4’/) holds. Set

- jj F @)z, (z)de .

By assumption
o - 1 1
510 b S K@) | Faje fordo—Ax@)| | (@) Paoeda.
We have

[, tr@ra do={] S0 a5 0, F@)r @)z

l

I _ <
Sab <] Sl |
n=1 n=1

oo /2
S5 bl |
n=1

<[4 1r@rada] TS 0]

[ r@re=ds]" < ae] Slaree ]

and thus 4,(a) < 4,(a). Since A(a)=A,(x) we may write A(«a) for 4,(«a)
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and 4,(«a).
It is evidently sufficient to prove either 1(4’) or 1(4’/). We shall

prove 1(4’). There are four cases: (i) a=0, (ii) 0 <<a<1/4, (ili) a=
1/4 and (iv) 1/4 <a<1/2.

Case (i). The desired conclusion follows from Bessel’s inequality.

To demonstrate the remaining cases we set
o —1 o -1 .
Qﬂ(w)z Z a’n")n(x) ’ WM:Z lanlznw ’
oH=1 P

IWL:SO [ (2)Q, ()| &~ **da .
We further define
15:3:58 (@) ()| 7~z I§f}=51 [2.(2)0(2)| 2~ *da .
0 4

We begin by proving two inequalities we shall use repeatedly:

oM 1
Lub. |Q.@)| <M 'S |a,]
osz=1 i1
2t-1 1/o["2#~1 12
(1) <u’s IanlW“:l [zn]
o1 41

< AW gt

[, 10@rda]" [ Far]"

(2)
< AW

Here and later A will be any constant depending only on M and «.

Case (ii). Suppose that v=>p. We have

Isifg[l.u.b. !Q“(m)l]ﬁz x~4adx]“2[gz 10,(@)* dx]llz

0=sx=se

g A€1/2~2wWL/2 W§/22——CW.-—DW+M/2 ,

and

12=[1ud o [ 1o@ras | ] 10.@rae ]

fsz=l

;<: Ae—-‘zw W,ﬁ/zWL’ZT“"‘“" .
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Setting e=2"" we find that (for all  and »)
1, < AWIEWYR2-ot-w

Since f(z)=37,Q.(xr) we have

Ymmmwmgiug
0 M, V=0

H/\

Az

We have

A S Wi Wyrg-e-e
W v=0

v=0

iz—wlv—mgA

=1

from which it follows that

[ lr@rado <A S jafne.

Case (iii): «a=1/4, Suppose that v > px. We have

13 <[ Lub. 10,6 | Lub. [0,@) [[ a7 do
Oszse o=r=e o

S: Aé:l/? W}IL/'Z WL/22(M+V)/4 ;

<[ 1o@rde]”

(e 0@rd]”

2

- Ul e o 12
Seme [ S w S |

<[] o T ]

_8<w 1

éU (@) dx:] T L.u.b. IQM(x)]] U: mf*(m)lzdx]HU:

ese=sl

S —-1/4W1[2W1/z2

Choosing e=2-*-»* we obtain (for all ¢ and »)

Ivu < AWL/ZW;/QZ-W—MHZ ,

and the proof may be completed as before.

Case (iv): 1/4<a<(1/2. We again suppose v > p¢.

I3 < | Lub. 10,@)| |

Isxs

Lu. b IQV(-?U)I]S x~*dx

gA 1— Z(tW}LIZW;/ZZ—N;L—IX«V+}L/2+V/2;

i ([1 w.b. |2,(2)|

esx=sl

/4
w‘zdx]

We have

H xdx:'lH 10.(2) l2dx:]m
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gAellz—m W}LI2 Wé/zz—-wp.-wv-i-p/z .
Choosing ¢=2"" we find that (for all ¢ and »)
L, < AW PWp20r-or-r

The proof of the inequality 1(4) is now complete.

It is evident that 1(4’) remains valid if the condition 37 |a,| <
is abandoned, provided that f(x) is interpreted as limit in the mean.

Let a,, a,, --- be a sequence of complex constants which approach
0 as n approaches o. We denote by af, af, --- the sequence |a,]|,
|a,[, -+ arranged in non-increasing order. Let f(x) be a complex
valued measurable function defined on [0,1]. We denote by f*(x) the
function equimeasurable with |f(x)| and non-increasing. A simple and
well-known argument, see [2; pp. 207-211], enables us to restate our
inequalities in the stronger form,

(3) [ L @Tads < A3, o 0 <a<1/2)

oo

(3") [t < A@| [ @Pade.  (0<a<12).

1
n= 0

3. We now deduce the first of Riesz’s inequalities. Let b, b, «--
be given such that B=(§] [0,/7)? is finite where 1< p<2. We may
1 .
write B?= 3> 7[b}]".

Since b} is non-increasing n[b}]* < B® or b} <n~"?B. It follows that
i[b;’;]%z(?—mlp g B-? i [b;!;]p.___Bz .
n=1 n=1

By 2(3’) we have, if f(x)= “Z,bnwn(w) ,

[ @reerias < [ 225,

Let F=Hl | f(x) l“dw]uq where p~'+¢~'=1. We have F“=Sl[f*($)]"dx-

Since f*(x) is non-increasing [ f*(x)]* << F'? or f*(x) <z YA, It
follows that

Pr=p-o| [r@)pde < || L @Te-eida.

Since (¢—2)/¢g=(2—Dp)/p we obtain
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| 1r@ae " < Bo) S|

where B(p) may be taken as [A<7272fl) ﬂ A similar argument serves
p
to establish the other Riesz inequality.

4. Tt is natural to conjecture the existence of a general inequality
which includes Paley’s inequalities 1(3) and the inequalities 1(4). We
shall prove that

(1) {r@rerde<aie, )

oo

@ @< <o, 0y <17,
1

n=

(2) Slaln <4/ of f@rerds @srde, 0<r <1,

(3) S: lf(x)l1 gy dng;’(r, ”,g lan[rnrv (1<Tg2, Oé r < 1__‘1/7‘) )

=3

(4) SBlafw=r < 40,0 | IF@lerds (@ <r<2,0<r <1-1/).

n=1

Let us prove (1). Choose ¢, 2<r<g. We have

2

e |” < a@] 3],

[ @Iz [ < @) £ jafn=] "
We write (formally)
lg@@)"M(@)=1f(@)"z~, |g@)|"M(x)=]|S(@)|*.
These relations suggest that we define g(x) and M(x) by
o(@)=f @)@, M(z)=a=eae.
Similarly from the (formal) relations
[ba"m(n) = |, ['r**,  [b,|*m(n)=a,]*n"—*,
we are lead to the definitions
b,=a,n' "D gp(p)=npn2e-0rDi@-2

The mapping T'{b,}7=g(x) is a linear transformation, and we have

|| 19 M) do < Ae) 5 b, Fm0)

|, lo@) "M@ < 4@ 5210, 17t
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By the Riesz interpolation theorem,

(5) ([ v@rm@ds]" < c@, v, of & ormn |
Now

[, lo@1 @) do= | 17 @rwera-ng=seno-nda,
U 0

- b I"m(n)= 3 Q. T n oDy 0@ -a+Di(g-2)
S, [b,rm(m)= X la|

If 7 is defined by the equation

__ 2a(r—q)
(6) r= g—2

then (5) can be rewritten as
Sx lf(iv)["a;—ry dxéC(a, r, Q)i lanlrnr_ury .
0 =1

It is evident from (6) that, by properly choosing « and ¢, y can assume
any value in the range 0<7y<1l/r. Thus we have established (1).
The relations (2), (8) and (4) can be dealt with similarly. For the
special case of Fourier series these 1nequaht1es have been established
by H. R. Pitt [3].

The “x”’ forms of these inequalities are also true.

5. In the present section we shall prove a result which is a slight
variant of the Riesz-Thorin convexity theorem. While this is probably
known I have not been able to find a reference for it.

Let [T,,] ¢=1, +++, m;5=1, ---, n) be a complex matrix, and let

a;= S T,b, (i=1, +--, m).

Let 4, o, be positive for i=1, ---, m and v, r, be positive for j=1,
cey,me For 1<p, gL o let

(1) Afe, py=1ub.| Sladrpro ],

where the least upper bound is extended over all sets (b, -+, b,) such
that

(2) [z Ib, 228 T,] ~1.

We assert that log A(a, f) is convex for — co<la, f< oo ; that is, if
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(3) a=(1-0a,+0a,, A=(1-0)p+08, (0<6<1),
then
(4) Ala, B) < Alay, B1)' P A, B)°.

To prove this let (b, ---, b,) be fixed, such that (2) is satisfied and let
(e, +++, ¢,) be such that

m 1/p”
(5) | Sledrmrea | =1, 1p+1jp'=1.
i=1
Consider
f(w):i{:i Tijb,l/?—ﬁfrw(Bl_BZ)]Ci/ti—w“Lw +w( % +w77d .
=1l j=1

The function f(w) is entire and is bounded in every vertical strip. Let
us set

bj(w)=bju?"ﬁl+w(ﬁl_32), ¢, (w) e, [u—w+zx +w( o)+, ),

@) =3 T b w),

so that
)= 3 a(w)e(w)e
We have
[ S| =1,
and thus
[Sa@lrn]” < A, p);
further

[z ;ci(z‘v)ip',l;p'%oi]””'ﬂ .
Applying Holder’s inequality we obtain
| f(iv) | < A(e, £) -
We may similarly show that
| f(1+iv) | < A, By) -

By the three lines theorem
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IO < Ay, Br) Ay, B2)°

which is equivalent to the inequality

m
> WG,

i=1

gA(all /91)1~9A(a27 482)0‘
Since this holds for all (e, ¢, ---, ¢,) satisfying (5) this implies that
(St | < A, B4, 5oy,

thus verifying our assertion. We have tacitly assumed above that p,
g < oo. The case where p or ¢ or both are o« cae be dealt with by
passing to the limit.

We shall now apply this to show that if A(«) is defined as in §2
then log A(a) is convex. Let

in
T, =SJ wi(x)dx (i=1, +++, m;j=1, ---, n)
(G~Din

and let f(x) be a step function taking the value b, for (j—1)/n <z <
jm. If aizgl f(@)w;(x)dx then

a,=>.T,b;.
j=1
Let

A, (a)=lu.b. [i la‘;i?i'?ar]”z
i=1

the least upper bound being taken over all b, ---, b, such that
7 1/2
| Sl ] =1

For every m and =n, A,,, is a logarithmically convex function of «.
We have

lim 4, ()= A(«x)

m, n—>oco

and from this if follows that A(«) is logarithmically convex.
Because of this fact it is sufficient in §2 to deal only with cases
(i) and (iv), since (ii) and (iii) then follow by interpolation.
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