Pacific Journal of

Mathematics

REMARK ON THE PRECEDING PAPER. ALGEBRAIC
EQUATIONS SATISFIED BY ROOTS OF NATURAL NUMBERS

ERNST GABOR STRAUS AND OLGA TAUSSKY




REMARK ON THE PRECEDING PAPER
ALGEBRAIC EQUATIONS SATISFIED BY ROOTS OF
NATURAL NUMBERS

E. G. STRAUS AND O. TAUSSKY

In the preceding paper [1] it was shown that the polynomials in
question are factors of @,(z*/n) where @, is the cyclotomic polynomial
of order 2 and %, n are positive integers. The case k=2 was settled
in [1, Lemma 2]. It will now be shown that this is essentially the
only nontrivial case. For a different treatment of a somewhat related
question see K. T. Vahlen [2].

First let us remark that we can exclude the case n=m? where d/k,
d >>1; since we may then set y=a"?/m so that @,(y?) is either reducible
with ecyclotomic factors or equal to @,,(y). We shall refer to n and
@,(xz*/n) which satisfy the above exclusion as simplified.

THEOREM. The simplified polynomial @,(x*/n) is irreducible for all
odd k. For k=2l the polynomial is reducible if and only if @,(x*n) is
reducible. In that case we have
(1) @ (" [n)=g(@")g(—2'),
where the polynomeals on the right are irreducible.

The proof is based on the following lemma.

LEMMA. If k> 2 and n''* is simplified them n'* is not contained
. a cyclotomic field.

Proof. The Galois group of a cyclotomic field B(¢) is Abelian and
hence all subfields of R(¢) are normal. The field R(n"*) is, however,
not a normal field for %> 2.

We can now prove the Theorem. Let ¢, be a primitive Ath root
of unity. A zero o of a simplified @,(z*/n) is a zero of

(2) xf—ng,

and hence R(w) is an algebraic extension of R(f,). If the degree of
R(w) over R(¢,) were k then its degree over R would be k¢(2). Hence
@, (z*/n) is reducible if and only if (2) is reducible over R(f,). Say

(3) z* —nl,=F(2)G() F, GeR(y)[=].

Since all the roots of (2) are of the form n'*¢j, we have
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F(0)=n'*¢ e R(¢,) l=deg F
where ¢ is a root of unity. In other words
(4) nt* e R(L,, )=R({')

where ¢ is a root of unity.

According to the lemma (4) is impossible if the reduced fraction
1/k has denominator 2. For k odd this means [=0 or k and @,(z*/n)
irreducible. For k& even and 0<I<k we can have only I=Fk/2. In
this case

F0)=+n""C, GO0)=xn'C;
and since both F(0)G(0) and F(0)/G(0) are in R({,) we obtain
st+t=8—t=0 (mod k).

Hence s=t¢=0 (mod /) so that

(5) FO)=v'nly €R()-

But we noted in [1, Lemma 1] that (5) is necessary and sufficient for
the reducibility of @,(a*/n). Thus we have

@,(#*/n)=g(x)g(—z) and therefore
D (@ [n)=g(a")g(— ") |

as the complete factorization of @,(x*/n) over Rlx].
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