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Numerous results relating the location of the zeros of a sequence
of polynomials to the form of possible limit functions of the sequence
are known. These results are due in the main to Laguerre, Lindwart,
Pélya, and Korevaar. Summaries and references are to be found in
[5] and [1]. For example, the following is a theorem of Lindwart and
Pélya [3]. Let P,(2) be a sequence of polynomials with all zeros real
and let P,(z) converge uniformly in some domain to & function no
identically zero. Then P,(z) converges, uniformly in every compact sub-
set of the plane, to an entire function of the form e~ f(2), where c is
a constant >0 and f(2) is of genus 1.

We shall show, in Theorems 2 and 3, that the state of affairs is
violently altered if instead of polynomials we consider rational functions
with real zeros and real poles. Essentially, the convergence and-or
non-convergence can be anything compatible with the fact that no
limiting funection, not identically zero, can have a non-real zero.

Various theorems of Saxer, Montel, and Obrechkoff specify the pos-
sible form of the limit of a sequence of rational functions. A résumé
and references are contained in Obrechkoff [5]. All of these results
depend on conditions on the rational funections involving either the
location of the poles relative to the zeros or the behavior of expressions
involving poles and residues.

The proof of Theorems 2 and 3 hinges on the fact that if f(z) is
holomorphic and 40 in _#2>>0, then there exists a sequence of rational
functions R,(z) with real zeros and poles such that R,(2)— f(2) uniform-
ly in every compact subset of .#2>>0. This is a special case of Theorem
1 below, which is similar to a previous result of ours for polynomials

[4].

THEOREM 1. Let I' be a rectifiable Jordan curve on the z-sphere
and let D be one of the two domains determined by I'. Let f(z) be
holomorphic and %0 in D. Then there ewists a sequence of rational
Sunctions R,(z), n=>1, such that all zeros and poles of R,(z) are on I’
and R,(2)—f(z) uniformly in every compact subset of D.

Note. 1If o ¢ I, then each R,(2) is of the form P(z)/Q(z), where P
and Q are of the same degree and have zeros only on I'. For «wel,
P and @ may have different degrees.
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Proof. If necessary, a linear transformation in z enables us to
assume that D\J/" is bounded and 0e D. As for the function f(2) we
may assume that f(z) is holomorphic and 40 in D\JI'. For let P,(z)
be a sequence of polynomials tending to log f(z) uniformly in every
compact subset of D. The sequence exp(P,(z)) approaches f(z) uniform-
ly in every compact subset of D). Finally, we assume that f(0)=1.

The proof hinges on the following integral representation.

LEMMA 1. Let f(2) be holomorphic and 40 in D\JI'. Then there
exists a real-valued function Q), defined and continuous on I', such
that

(1) log F(2)= E s, zeD.

Here log f(z) is that branch which vanishes at z=0.

The reality of @ is essential in the use we shall make of this re-
presentation. We omit the proof of this lemma; it follows from [4,
Lemma 2.3] after a simple integration by parts.

Now (1) may be written as

o mo{[f ok 05, e

where ¢ is a constant. From the definition of the integral in (2) it
follows that for each ¢>0 and each compact subset ACD there exists
a set of points on I, &, &, +++, &n=C, Drogressing around /' in the
positive sense with respect to D and such that

(3) log i)~ 33 ) ¢, -0, <, ze 4,

where £, is any point of the interval (¢._., &) of I'. Since the values
Q(&:) are real, Theorem 1 is a consequence of (3) and the following
lemma.

LEMMA 2. Let I') be any Jordan arc joining the distinct points &,
and &,. Then there exists a point & on I, with the following property.
For each real number s there exists a sequence of rational functions
R, (2), with all zeros and poles on I';, such that

(4) Ro(2)—exp S(CZ & )] 2e,
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uniformly for z—¢&|=7>0.

Proof of Lemma 2. TFor each positive integer m there exist two
distinct points &, and &, on /', such that the line through these points
is ‘parallel to the line through ¢, and ¢,, and |&,—&,|<1/m. With pro-
per labelling we may set

5;:—5;;=5m6my 0<8m<1/m1
and
CZ——Q:be” .

The points £, &, have at least one limit point on I, say &; clear-
ly we may assume that &, — & and &, > ¢ as m — oo,
Set 1,=[0s/,,] and

R.@)=(2=5)",

where [E] denotes the greatest integer not exceeding E. If w=1/(é—2),
then

et (e
6 1 (g gy + ERmEE G
Bt e o

For [z—¢|>=7%>0, w is bounded and

log R,.(2) =2n(ém—En)w + 0(2, )60 — Erl)

_SG=8) | oy, M —> oo
E—~z2

uniformly for [z—&|>=7">0. Exponentiating yields (4). This completes
the proof of Theorem 1.

THEOREM 2. Let D be a simply-connected domain contained in
F2>0 and let D* be the reflection of D in Fz=0. Let f(z) be an
arbitrary holomorphic function in D, f=£0 in D. Let f*()=fR); f*(2)
18 holomorphic and =0 in D*. Then there exists a sequence of rational
Sunctions R,(z) such that

1°  All the zeros and poles of R,.(z) are real.

2° RJz)— f(z) uniformly in every compact subset of D and R.(z)—

ef *(2) uniformly in every compact subset of D*, where ¢ is
constant of modulus 1.

8° The sequence R.(2) is non-normal at every point of the comple-

ment of D\JD*.
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Proof. By use of Runge’s theorem it is easy to show, by ap-
proximating simultaneously to two different functions, that there exists
a sequence of polynomials P,(z) with the properties:

(a) P,(z)—logf(z) uniformly in every compact subset of D.

(b) For any z,¢ D and any >0 there exists %, such that for »>
n, the values assumed by w=P,(z) for |z—z,|<r include points of
Fw<—n as well as points of Fw >n.

By Theorem 1 there exists a sequence of rational functions R,(z)
with real zeros and poles such that

(5) 1Rn<z)—-ef’ﬂfz>l<;; . ze {lRI<n} N {F2=1/n} .

The first part of 2° follows from (5) and (a). From (5) and (b) it fol-
lows that the sequence R,(2) is non-normal at every point of {_#2>0} —
D. '

Since R,(z) has real zeros and poles we have

Rn(é) = em"—n(g) ’

where «, is a sequence of real constants. The remaining conclusions
of Theorem 2 follow provided we pick a subsequence of the R, such
that «,—a.

It is possible to replace the f(z) of Theorem 2 by the constant zero.
Namely, if R,(z) is the sequence obtained from Theorem 2 when f(z)=
1, then R,(2)/n will tend to zero in D\JD* and the specifications of (b)
are strong enough so that this new sequence is still non-normal outside
of D\)D*.

THEOREM 3. Let D be a simply-connected domain in the z-plane,
symmetric with respect to the real awxis and containing no points of the
interval x<0 of the real axis. Let f(z) be holomorphic and 40 in D,
and let f(x) be real on the single interval y common to D and the real
axis. Then there exists a sequence of rational functions R,(2) such that

1°  All zeros and poles of R,(z) are real and megative.

2°  R,(2)—f() uniformly in every compact subset of D.

8° The sequence R,(2) is non-normal at every point of the comple-

ment of D.

Proof. Since it is permissible to change the signs of f(2) and R,(2),
we may assume that f(#)>>0 on 7. Now ¢=£&+4y=2"7 maps the z-
plane, cut along the negative real axis onto £>0 and maps D onto A,
a domain symmetric with respect to =0 and containing a single in-
terval I" of »=0. Set f(z)=F(0).
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By using Runge’s theorem again it is easily seen that there exists
a sequence of entire functions g,(¢)=exp P,(£) such that:

(6a) ¢.(8)=40, ¢.(&) is real and positive.
(6b) 9.(0)—~>F(¢) uniformly in every compact subset of A.

(6c) The sequence g¢,(¢) is non-normal at every point of the comple-

ment of A.
Set
R Q) =(g.(EN"* . (£)>0.
By virtue of (6a), %,(¢) is entire. Also
(7) 9O =R ) =Ra(E)2n(C) -

Let A, denote the compact set {éz>1/n} N {|¢|<n} and let
M,=1+ sup |20 .
te4,

By Theorem 1 there exists a sequence of rational functions »,(¢) with
all zeros and poles on £=0 such that

[7(8) =R (O)1<1/3nM, , ted,.
Then [r,(&)—A,(Z)] has the same bound in 4, and it follows that
(8) [()7(Q) — 2 OO <1, Ced,.

Combining (6), (7), and (8) it is clear that the function R,(z) defined by

R, (2)=7r,()r,(?) has the properties 2° and 3° of Theorem 3. Finally,
each 7(¢) is of the form

r(O)=en(C~ia) [ ~iy),
with «; and f, real, and hence each R(z) is of the form

RG)=lof Ue+a) [ 11G+ 2

Thus R,(z) also satisfies 1° and the proof is complete.
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