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l Introduction. Let E be a normed linear space and G a solvable
group of bounded linear operators on E. If there exists a non-trivial
bounded linear functional invariant under G then there exists xoe E such
that inf ||T(^0)j|>0? TeGl9 the convex envelope of G. Assume that such
an x0 exists. If G is bounded then there exists an invariant functional
[7]. If G is unbounded, however, such a functional may or may not
exist.

For simplicity we discuss here the abelian case. In a previous work
[7] it was shown that the invariant functional exists if there is a con-
stant 1Γ>O such that to each UeGL there corresponds VeG1 where
||F||<IliΓ and ||FZ7||^ϋΓ. A consequence of this condition is that for
each xe E

(1) inf \\T(x)\\^Kmΐ\\T(x)

Now call an element y stable if (1) holds for some K=K(y) for all x of
the form U(y), UeG^ We show here that the invariant functional
exists if E is complete and if there exists an open set S in E such that
for all xeS, TeG, x and T(x) — x are stable. An analogous result is
shown to hold if G is solvable.

The problem of the existence and extension of functionals invariant
under solvable groups of operators has been considered by Agnew and
Morse and by Klee (see [3] for references). These authors use for E
any real linear space while we take E to be a Banach space in order
to utilize category arguments.

2 Notations. Let E be a Banach space and (£(E) be the set of all
bounded operators on E. Let H be a (multiplicative) semi-group in @(£?).
By HL we mean the convex envelope of H (the smallest convex subset
of &(E) which contains H). As in [7] we adopt the following notation.
By B(H) we mean the linear manifold generated by elements of the
form T(x)-x, x e E, Te H. By Z{H) we mean {x e E\inf \\T(x)\\ = 0,Te H}.

We introduce the following notation. An element xeE is stable
with respect to H if there exist positive numbers K, L such that

inf \\T{y)\\^lmf\\T{y)\\
\\T\\^K TβΞ

Ten

for all y of the form U(x), UeH.
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232 PAUL CIVIN AND BERTRAM YOOD

We use the following symbolism,

δ{y,H)=mi\T{y)\

δ(y,H,r)=mf\\T(y)\\.
\\Tl\ =g r

It is readily seen that x is stable with respect to H if and only if
there exists a constant r > 0 such that

(2) δ(y,H,r)^rδ(y,H)

for all y of the form U(x), UeH. Such an r is called a constant con-
nected with the stability of x with respect to H. If x is stable with
respect to H and if the right-hand side of (2) is zero for all y of the
form U(x), UeH, we say that x is null-stable with respect to H.

If G is a solvable group, then G(ί) will represent the ith derived
subgroup.

3 Invariant functionals for solvable groups

3.1 LEMMA. // ylf ---,yn are null-stable with respect to H then so

is 2/i+ +2/»>

Proof. It is enough to show this for 2/i + 2/2. Let M be the maxi-
mum of the constants in the definition of the null-stability of yλ and yz.
Take UeH, ε>0. There exist VteH, ||F,||^ikf, i = l , 2 such that
li^iWll<ε/(2M) and W^VMvύK^ τ h e n WtVJJiyi + vJK* with
II^Vil^M 2 . Similarly we see that y±-\ Yyn is null-stable with
constant Mn if M is the maximum of the constants connected with
the yt.

3.2 LEMMA. Let E be a Banach space and G a solvable group of
bounded linear operators on E. Then either (a) every element of E is
null-stable with respect to Gλ or (b) there exists a non-void open set of E
containing only elements not null-stable with respect to Gλ or (c) the set
of elements not stable with respect to every G[υ is dense.

Proof. Let Qn={xeE\ x is stable with respect to each (?ί° with
constant^}, w=l,2, •••,. We show that Qn is closed. Let xmeQn,
%m-*y- Then for each i and each xm we have

(1) δ{xm,G^\n)^nd{xm,G^).

We show that (1) also holds for y. If δ(y, G[ι\ n)=^0 this is clear. Other-
wise set δ=δ(yfGi°9n) and take 0<2ε<<?. Select TeG[ι\ Choose m
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so large that

(2) \\T(y-xm)\\<είn , \y-xm\<*ln

Then from (1) and (2) we obtain

( 3 ) n\\T(y)\\>n\\T(xm)\\ -e^8(xm, G?\ n)-e^:δ(y, G™, n)-2e .

Since ε > 0 is arbitrary in (3),

(4) n\\T(y)\\^>o(y, Gγ\ n) .

Since the T of (4) is arbitrary in G{1\ (1) holds for y. Since the same
argument is applicable to every V(y), VeG{Ό as well as for y and for
each i, y e Qn.

Suppose that some Qn contains an open sphere S. Let 2 be the
collection of elements of S which are null-stable with respect to Gλ. If
2 is dense in S we show that 2 = S . For let ym e 2, m=l, , ym-^ze S.
For each m, UeGly we have δ(U(ym)fG19n) = 0. This implies that
δ(U(z), Glf n)=0 which in turn shows that ze 2. In this case by Lemma
3.1, (a) holds since the set of elements which are null-stable with respect
to Gx forms a linear manifold with interior. If 2 is not dense in S then
erthe is an open subset Sx of S on which (b) holds.

Suppose next that no Qn contains a sphere. By a theorem of Baire,
the intersection P of the sets E—Qn is dense. If xeP, then x fails to
be stable with respect to at least one of the semi-groups G[i:>, for other-
wise xeQn for all sufficiently large n.

3.3 LEMMA. Let G be a solvable group in (£(E). If SeG[°, TeGω,
xeE then S[T(x) — x] can be expressed in the form z + TS(x) — S(x) where

Proof. Let

J - l ' J - l

For each j=l,...,m there exists U} e GCi+1) such that S}T=U}TS}. Then

S[T(x)-x]= t

(5)

Σ ljTSjiap) - TSj(a}x)J + TS(x) - S(x)

which is in the required form.

3.4 LEMMA. If SeG?, ΓeG ( ί + I ) , xeE then S[T(x)-χ]eB(G(ί+1>).
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This follows from Lemma 3.3.

3.5 LEMMA. Let H be a semi-group in ©(£?). Suppose that x is
stable with respect to H and that U(x) e Z(H) for all U e H. Then x is
null-stable with respect to H.

This follows directly from the definitions.

3.6 LEMMA. Let G be a group in @(i£), xeE where x is stable with
respect to Gλ. Then TW(x)-W(x)e Z(G1) for all TeG, WeG,.

Proof. Set F = ( J + T + + Ts-1)js. Then V[TW(x)- TF(α?)] =
[T*W(x)—W(x)~\ls. Let r be the constant connected with the stability
of x. Then since T~s e G,

δ(T8W(x), GL, r)^j'δ(TsW(x), GJ^rW W(x)\\ .

Pick UeG19 \\U\\<^r where \\UTsW(x)\\<r\\W(x)\\ +1. Then

\UV\TW(x)~ W(x)ϊ\\<(2r\\W(x)\\ + l)is .

This shows that TW(x)~W{x)eZ(G1).

3.7 LEMMA. Let G be a group in Qί(E). Let xeE where (T—I)(x)
is stable with respect to Gλ for all TeG. Then (T-I)U(x) is also stable
for all TeG, UeG.

Proof. Observe that (T-I)U(x)=U(U~ιTU-I)(x). Since (U-'TU-
I)(x) is stable with respect to Gλ it follows readily that so is (T-I)U(x).

3.8 THEOREM. Let E be a Banach space and G a solvable group of
bounded linear operators on E. Let Q be the set of elements of E stable
with respect to each Gί°. // there exists a non-void open subset © of Q
such that ( Γ - ί ) 6 C Q for each TeG then every element of B(G) is null-
stable with respect to Gλ. If also there is at least one element of E not
null-stable with respect to Gλ then there exists a non-trivial invariant
functional.

Proof. Assume the condition on the set <S. We show by induction
starting with n, where GCn)= [/}, that B(Gϋ)) consists entirely of elements
null-stable with respect to G[j), j=0, , n. This is automatic for j=n;
suppose that it holds for j=i + l, - — ,n. Let S, TeGCί\ xe&. In the
notation of Lemma 3.3, we can write S[T(x)-x~]=z + TS(x) — S(x) where
z is a linear combination of elements of the form UjTS^ — TSjix),
Uj e G(*+1), Sj 6 GCί). By hypothesis and Lemma 3.7, U0TS3{x)-TS0{x) e Q.
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For any VeG?\ VlUjTSAx)-TSjίx)]eB{G^l))(ZZ(G^)CZ{Gf) by
Lemma 3.4 and the induction hypothesis. Hence by Lemma 3.5,
UjTSj^ — TSjix) is null-stable with respect to G? and thus, by Lemma
3.1 so is z.

Consider the constant r connected with the null-stability of z with
respect to Gγ\ Take ε>0. Since xe&, by Lemma 3.6 there exists
WeG? such that \\W[TS(x)-S(x)]\\<εj(2r). Furthermore there exists
ReGP, \\R\\^r such that \\RW{z)\\<εl2. Therefore \RW\ST(x)-S{x)\\<e
which shows that S\T{x)-x]eZ{G^) for all SeGγ\ Since T(x)-xeQ
it follows from Lemma 3.5 that T(x) — x is null-stable with respect to
G?\ Let P={xeE\ T(x)-x is null-stable with respect to Giί}}. By
Lemma 3.1, P is a linear manifold. But &C.P. Therefore P=E. In
view of Lemma 3.1, every element of B{G(ί)) is null-stable with respect
to G[ι\ This completes the induction.

Suppose also that some element of E is not null-stable wτith respect
to (?lβ Then (a) and (c) of Lemma 3.2 are ruled out. Thus there exists
a sphere in E given by Lemma 3.2 which by the above is disjoint with
B(G). Hence, by the Hahn-Banach theorem there exists a bounded linear
functional = 0̂ which vanishes on B(G). This is an invariant functional.

4 Positive invariant functional^. We point out next that the
arguments used above and in [7] for B(G)CZ(Gι) have wider applicability
than is apparent on the surface and in particular contain implicitly results
obtained by Krein and Rutman [5].

In the terminology of [5] by a linear semi-group $ in a real normed
linear space E is meant a (proper) subset of E where ctx + βyeSi if x,
ye® and α^O, /2>0 are scalars. We say that x<Ly (y2>x) if y-xe SS,
xyyeE. Suppose that & is given with Int(ί£) non-void.

Let G be a multiplicative semi-group of linear operators on E. Fol-
lowing [6] we call G left-solvable if there exists a finite sequence of
sub-semi-groups G=G ( 0 OG ( 1 ) D . O G W = {/} such that given Γ, UeGCi),
i=0, •••, 92-1 there exists VeG(ί+ι) with TU=VUT.

The following is an extension of [5, Theorem 3.1].

4.1 THEOREM. Let G be a left solvable semi-group of linear operators
on E such that A($t)CZSt, AeG. Suppose that velnt(®) and

(a) for some ^ > 0 , A(v)^>σv, AeG, and
(b) for some r > 0 , given UeG^ there exists TeG[Ό such that

(1) T(v)<Lrv, TU(v)<Lrv

i=0, * ,n — l. Then there exists a bounded linear functional x% on Ey

invariant with respect to G and x*(x)>0, a
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Let v 6 Int ($). As in [5] we define for each x e E, \x\Ώ=mit, where
t^>0 and satisfies — tv<Lx<Ltv. \x\υ is a semi-norm1 for E. Let A be
a linear operator on E, Λ(^)C^. Since v e Int(β), if α > 0 is sufficiently
large, then

(2) -av<LO<LA(v)<Lav

It is easy to see that \A(v)\v=inf a, α > 0 satisfying (1). If —tv<Lx<Ltv
then for a satisfying (1),

-tav<L-tA(v)<LA(x)<LtA(v)<Ltav

from which we see that ^(αOL^il^CzOLMtj Since |v| t,=l we see that
A is bounded with respect to the semi-norm and

(3) \A\υ=\A(v)\υ .

We define Z(G(P) in terms of the semi-norm \x\υ. By the formulas
(1), (2) and (3) it is seen that for TeG[» there exists VeG[ι\ | F | β < >
where \VT\υ<Lr. The arguments of [6, Theorem 3] are unaffected by
the use of the semi-norm rather than a true norm. As noted by Robison
[6, Theorem 6.8] in this situation we then obtain B(G)CZ(G1).

Let #elnt($) . There exists α > 0 such x^>av. For each AeG19

by (a), A{x)^aβv. Moreover if A(x)^βσv, 0</?<α, then βov<L<χav
which is impossible by [5, p. 11]. Hence \A(x)\υ^ctσ. This shows that
Int(β)f\^(Gίi)=Φ By t h e above, B(G)Γ\Iτιt(R)=φ. An application of
[4, Corollary 1.2] gives the existence of the desired functional.

As a consequence of Theorem 4.1 we obtain the following.

4.2. COROLLARY. Let G be a left solvable semi-group of operators
on E satisfying the requirements of Theorem 4.1, and let v e Int(β). Then
for any w e Int (R), TΛ e G, j=l, 2, •••,%,

( 4 ) Σ PjTjiw) e Si implies that
.7 =

When R is the positive cone in a space E of bounded functions on
a set S, and G is a semi-group of linear operations on E induced by a
semi-group Γ of one-to-one transformations of S onto S, Hadwiger and
Nef [2] have shown that the statement (4) is fundamental in the theory
of integration systems.

1 We mean |αα[= |α||ce|, x6E, a real, and \x+y\^\x\ + \y\} x,yeE. (See [1], p."93).
In particular \x\^0 for all x.
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