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JOHN W. GREEN

1 • Introduction* It is well known indeed that if U (P) is harmonic
in the plane the mean value of U taken over the perimeter or the area
of a circle with center P o equals U(P0). A related result is that of
Asgeirsson [1] which states that mean of U over the area of any
one of a family of confocal ellipses equals that over any other. The
same is true for the means over the perimeters, provided the means
are weighted by integrating with respect to the anomaly angle instead
of arc length.

It would be interesting to know if there are any other simple
families of curves over which the perimeter or area average is constant.
The simplest families to try are homothetic families, and in the follow-
ing we show that under suitable regularity assumptions, there are none
of these except circles.

2, Perimeter means* Let C be a closed simple rectifiable curve
containing 0 in its interior. We suppose that C is smooth enough that
its Green's function g (P) with pole at O is continuously differentiate
on C, as will be the case if C has a continously turning tangent line.
By Cλ we mean the curve obtained from C through the homothetic
transformation x' = λx, y/==ty. If we expect that for Λ<̂1> Cλ is inside
C, we should assume that C is star-shaped about O, although this is not
essential to what follows. A positive continuous weight function w (P)
is given, and we suppose that the mean of U with weight w over all
Cλ is constant, provided U is harmonic inside and on C.

We immediately note two things. In the first place, letting λ tend
to zero, we see that the mean value of U over Cλ must be U(O). In
the second place, from obvious continuity considerations, we see that U
need only be harmonic inside C and continuous on C for the mean over
Cλ to be constant. Since U may be given arbitrary continuous values on
C and determined inside so as to be harmonic, it follows that

for every continuous U, where W=\ w(P)ds. But also
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2πJo ' %n

and so I U{dgldn — (2πlW)w}ds=0 for continuous U.
Jo

Thus

J5g __ 2πw

that is, the weight function must be the obvious one, dgjdn. In the
case of the ordinary perimeter mean, w = l and dgjdn=constant. This
implies that C is a circle. For consider f(z)=e~( 0+ίh) which maps the
interior of C into the unit circle. On C, f\z) remains continuous and
\f(z) \ = dhlds=dgldn=consta,nt. Thus /^constant and f(z)=constant z
and the result is obvious.

3. Area means. Let the equation in polar coordinates of C be
r=f(θ). Saying that the mean of U over the interior of Cλ is constant
for all λ <I 1 amounts to saying that

ί
2τί Γ

dθ

°

λfiθ)

U{r, θ)rdr
Γ2τr Γ

\ I
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λ/(θ)

rdr

If the derivative of the right hand member with respect to λ is com-
puted for Λ=l and equated to zero, there results

U(O)=k[*U(f(θ)9 θ)Γ(θ)dθ=k\ Uf cos ψds,
Jo Jo

where ψ is the angle between radius vector and normal to C and k is
a constant. Thus the problem is reduced to one involving a perimeter
mean, and as in § 2 we see that

2πkf cos φ=dgjdn .

This equation says, among other things, that dg/dn has a lesser
value at the nearest than at the farthest points of C from O. In
the next section we show that this can be true only if C is a circle
about O.

4 A lemma. Let P and Q be a nearest and farthest point, re-
spectively, of C from 0. To complete our discussion of the area means
we shall show that (3^/3^)ρ^ 1/OQ<1/OP ^(dgjdn)P , which will cer-
tainly contradict the result obtained in the previous section unless
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OP=OQ and C is a circle. To this end we prove1 the following lemma,
which can be interpreted as a special case of Julia's theorem [2]. The
present proof is included because it avoids the use of conformal map-
ping, and also because its proof is somewhat shorter than the steps
required to derive the lemma from the usual statements of Julia's
theorem.

LEMMA. Let Dx and Dz be domains with smooth boundaries, with
O 6 DχCZD.z. Let the corresponding Green's functions be gλ and gz. If
P is on both boundaries, then dg^/dn^dg^dn.

Let the boundaries be Cλ and C2, and set h=g2 — g1. Then h is
harmonic in Du and on the boundary Cl9 h=g2^i0. Thus AI>0 in D±.
Since h=0 at P, clearly 0 <Ldhldn = dg2!dn — dg1dn, and the lemma
follows.

Returning to the matter discussed at the beginning of this section,
we see that by comparing C first with its largest inscribed circle with
center at O, and then with the smallest circumscribed circle, the stated
inequalities follow immediately.

5, Concluding remarks* These results have considerable room for
improvement in the direction of lightening the restriction on C. One
would suppose that in the perimeter case, C should only be required to
be rectifiable, and in the area case, no condition at all on C need be
put.

The lemma provides an alternate way, avoiding conformal mapping,
of completing the discussion of the perimeter means. With this in
mind, it would be quite easy to extend the whole discussion to harmonic
functions in more than two dimensions.

It is interesting to note another and quite different form in which
the area problem can be cast. If the area means of any harmonic
function over the homothetic transforms of r <±f(0) are to be constant,
this must be true for the simplest ones, U=rne±inΘ. This leads im-
mediately to the equations

^fn^φ) sin ?ιθdθ = θ

for n = l, 2, . . . . Our results show indirectly that if / is positive and
sufficiently smooth, the above orthogonality conditions imply that / =
constant. It would be interesting to obtain a direct proof of this with-
out the intervention of potential theory.

1 The proof given, which is somewhat simpler than that originally devised by the
author, is due to Professor David Gilbarg.
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