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1. Introduction. Let X, Y be complex linear spaces, and Z a
non-void complex linear space contained in both X and Y. Let X be
a Banach space X,, Y a Banach space Y, under the norms n,, n, re-
spectively. Let Z be a Banach space Z, under the norm N defined by
N(z)=max [n(z), n(2)]. (This is equivalent to saying that if {z,} is
any sequence with z,eZ, such that z,—»2 in the topology of X, and
2,—~Yy in the topology of Y,, then x=yeZ. Our particular method of
stating this here will be useful for later purposes.) With the usual
uniform norms let 7., 7, be bounded distributive operators on X, Y,
respectively, such that Tiz=TwzeZ when zeZ. Operators satisfying
these conditions will be said to be “linked ”. If, in addition, it is as-
sumed that Z is dense in X,, T\, and 7, will be said to be “linked
densely relative to X,”’.

We are interested in relationships between the spectra of linked
operators. That there are linked, and densely linked operators with
different spectra will be shown in § 3. The main result of this paper
is the demonstration that, if 7, and 7, are linked densely relative to
X, under certain circumstances any component of the spectrum of T,
has a non-void intersection with the spectrum of 7,. Sufficient condi-
tions are that if 1 belongs to the intersection of the resolvent sets of
T, and T, and ze Z, then (4 —T,)"2=Q[-T,)"ze Z. With this result
we obtain some interesting consequences in the special case where the
Banach spaces considered are the sequence spaces [,.

2. DPreliminary definitions and notation. Supposing X to be a
complex linear space such that under a norm n,, (e X, n.(@)=|z[.), X
becomes a complex Banach space X,, we let [X,] denote the set of all
operators T that are bounded under the induced norm

| T'|o==sup |Tx|. (for all xe X,, |x),=1).

Such a T will be denoted by T, when considered as an element of the
algebra [X,]. If T,e[X,] we classify all complex numbers into two
sets :

(1) The resolvent set p(T,), consisting of all 2 such that /-7,
defines a one-to-one correspondence of X, onto X,.

(2) The spectrum o(T,), consisting of all 1 not in e (7,).

The spectrum is divided into three parts :
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(1) The point spectrum p(7,), consisting of those 4 for which
(AI-T,)* does not exist.

(2) The continuous spectrum ¢(7,), consisting of those 1 not in
o(T,) or p(T,) for which the range of AI—T, is dense in X,; and

(8) The residual spectrum »(7',), consisting of those 4 not in p(T,).
o(T,) or o(T,).

We shall also have ocecasion to refer to the so-called “approximate
point spectrum,” consisting of those 2 for which (AI—T,)~! is not bounded.
It is well known that o (7,) is closed, bounded and nonempty. It is
also well known that R,(7T.,)=(I—T,)* is analytic in p(T,) as a func-
tion with values in [X,].

3. An example of linked operators with different spectra. Con-
sider the well known sequence spaces [, and [,. Let T, and 7, be the
operation defined as elements of [/,] and [[,] respectively by the infinite
matrix (¢;;)

i s
Je-1i v
0 if i<j.

The uniform norm for the operator T defined by such a matrix, when
considered as an operator on [;, can be shown to be the supremum of
the 7, norms of the column sequences of the matrix (¢,)):

172 =sup 2 12|
([1, pp. 696-697]). From this it is easy to see that |T,|,=1. In fact

1 .1
tz = = ‘”iﬁly
ZI =i i—1i 7

the sum being independent of 7. Next, considering the powers of 7'

= (tij)n = (t%’) ’

we see that

| T3 = ==sup Z [£57] = =sup letmtwl~sup Z(thk)tkrsup Ztm-l

k=11d=1

By induction it is easy to show that i | t®|=1 for any j, and hence
i=1

|[T7]l,=1. Now it is well known that the spectral radius of T,

lo(T)|=sup |4], (for 1eo(T})),
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is given by the formula
lo(T))|=lim (| T'¢])*";

hence the spectral radius of 7', is 1.
On the other hand, by making use of an inequality due to Schur
[2, p. 6], we can estimate the norm of T as an operator on I,:

s > 1
|7 < [(sup St D(sup Si1t:,1)1°-
In this way we see that

since

oo i-1

b= L -1,

Zltul fg(rz—m :

the sum Dbeing independent of <. Since it is always true that
lo(T)|<||T, ., it is now clear that |o(T,)|<|6(T})|, whence we immedi-
ately infer that there exists a 2 such that 1e4(T)) and 1€ 4(T),).

4. The projection corresponding to a spectral set. For the proof of
our main theorem we need the concepts of spectral set and the pro-
jection associated with a spectral set. For this purpose we introduce
the following definitions.

Suppose X is a complex Banach space, and 7' an element of [X].
A set o in the complex plane is called a spectral set of T if «Co(T)
and if - is both open and closed in the relative topology of o(T).

If 5 is a spectral set of 7, the corresponding projection is the
operator defined by

E11= ! [RaD,
2m
the integral being extended in the positive sense around the boundary
of a suitable bounded open set D such that D and the closure of D
does not intersect the rest of o(7"). It is easy to see that if A is a
closed set which does not intersect o, the set D may be chosen to
satisfy the additional requirement that its closure does not intersect A.
We now proceed to the proof of our main theorem.

5. Relations between the spectra of linked operators. Let X and
Y be complex linear spaces such that X becomes a Banach space X, and
Y becomes a Banach space Y, under the norms n, and n,, respectively.
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THEOREM. Let T, e[X,] and T,e[Y,] be linked densely relative to
X, and let ZCXNY be a complex linear space that becomes a Banach space
Zy under the norm N defined by N(z)=max[n,(z), ny2)]. Let R\(T\)z=
R\(T.)ze Z for every ze Z, provided that ie p(T)N\p(T,). Then if C s
any component of o(T.), CNo(T,) s non-void.

Proof. We shall first prove that if ¢ is any non-void spectral set
of o(T,), then sN\o(T,) is non-void.

Suppose that sN\o(T,) is void. Let E,[T.] be the projection in [X]]
associated with o, that is

Bard- - | R@a,

2y J+B(D)
where B(D) is the boundary of a bounded Cauchy domain such that
¢ D while the closure of D intersects neither o (7,) nor the rest of
o(T). We know that E,[T.]5%40 by a theorem [3, p. 210] which states
that the spectral set o is empty if and only if E,[7,]=0. Now con-
sider the operator (an element of [Y,]) ‘

j 1_5 Ry(T)d.
274 JeBD)
Since D and B(D) lie in p(T,), R\(T,) is analytic inside and on B(D);
therefore the integral defining F is the zero element of [Y,], by
Cauchy’s theorem. :
If 2ep(T)p(T,), then by hypothesis R\(T\)z=R,(T,)z for ze Z, and
from this we see that

Fz=FE [Tz for ze Z,

since the integrals defining Fz and E,[T:]z ean be regarded as limits,
in Y, and X, respectively, of the same sequence in Z. However, since
E.[T,]540 and is continuous, and Z is dense in X;, there exists a z,
ze Z, such that F [T ]2=~0. But F2=0, which is a contradiction. Thus
any non-void spectral set of (7)) has a non-void intersection with o(TY).

Let C be any component of o(T;). To show that CN\o(T,) is non-
void we will need the following theorem [4, p. 15]: If A and B are
disjoint closed subsets of a compact set K such that no component of K
intersects both A and B, there exists a separation K=K\ JK,, where K,
and K, are disjoint compact sets containing A and B respectively. Now
suppose that CN\(o(T\)N\o(T,)) is void. Then, since C and (7)) N\ o (T.)
are non-void disjoint closed subsets in (7)) and as the only component
of o(T)) intersecting C is C itself, we have o+(T\)=K,\JK,, where
K, >C, K,2o(T)Ne(Ty), and K, K, are disjoint compact sets. But K,
is closed, being compact, and also relatively open, since it is the rela-
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tive complement of the closed set K,. Thus K, is a spectral set of
o(T,), and KN\ (o(T ) N\o(T,)) is void, which is in contradiction to what
we have shown above. Thus if C is any component of (7)), then
CNo(T,) is non-void, as was to be proved.

We note that if in the hypotheses of the theorem we only require
T, to be a closed distributive operator on Y,, such that o(7.,) is non-
void, the conclusion and proof of the theorem will be unaltered. Also,
if we replace the hypotheses that T, e[X|] and T,e[Y.] by “T, and T,
are closed distributive operators on X, and Y, respectively, such that o(T.,)
%8 monvoid’’, and retain the remaining hypotheses, we can conclude,
using the same reasoning as before, that any non-void bounded spectral
set of o(T,) has a non-void intersection with (7).

A very special case of our theorem, but one of considerable
practical importance, is given in the following corollary.

COROLLARY 1. In addition to the hypotheses of the preceding
theorem let Z be dense in Y,, and let o(T,) and o(T.) be such that all of
their components are single points. Then o(T,)=ao(T,).

In the special case where XY, the operators T, e[X|], T.e[Y.]
are linked, and X plays the role of Z, we have the following two
corollaries.

COROLLARY 2. If C is any component of o(T,), then CN\o(T.) 18
non-void.

Proof. This follows from the theorem, since if 2ep(T)N\p(T.),
then R, (T)x=R\(T,)x for x e X.

COROLLARY 3. If T, and T, are linked densely relative to Y, and
C is any component of o(T,), then CN\o(T)) is non-void.

This should be clear from the proof of the theorem in view of the
remark following the statement of Corollary 2.

DEFINITION. If A, B, C are sets such thot any component of C has
a non-void intersection with both A and B we shall say that A and B
are “linked by C’. If in addition every component of A has a non-void
intersection with C we shall say that A is “‘totally linked to B by C .

Now suppose that neither X nor Y is necessarily contained in the
other and let T'e[Z,] be the operator defined by T2=Tz for ze Z.
Then we have the following results for T, e[X,] and T,e[Y.].
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COROLLARY 4. If T, and T, are linked (not mecessarily densely
linked), then o(T)) and o(T,) are linked by o(T).

This follows immediately from Corollary 2.

COROLLARY 5. If T, and T, are linked densely relative to X,, then
o(T) s totally linked to o(T,) by o(T).
This follows from Corollary 3.

COROLLARY 6. If T, and T, are linked, then
o(T)— (o (T1)\Jo(T))

s contained in that portion of the residual spectrum of T for which
(AI[—-T)"* 4s bounded.

Proof. Clearly p(T) is contained in both »(7)) and »(T.). If 2
belongs to the approximate point spectrum of T then there exists a
sequence {z,}, 2,€ Z, such that

lim [( — T)z,| »=0 and |z,]~=1.

But either 1°: - Infinitely many 2, are such that |2,[, =1, or 2°: In-
finitely many #, are such that [z,]|,,=1. If 1° holds there exists a
subsequence {x,} of {z,} such that

lim (A —T),[.,=0 and |,[. =1,

and thus 2 belongs to the approximate point spectrum of 7,. If 2°
holds similar reasoning shows that 1 belongs to the approximate point
spectrum of T,. From these results it follows that the only possibility
for an element 2, 1€4(T), to be such that 1¢ «(T.)\Jo(T,) is for 2 to
be an element of the residual spectrum of 7 with (A/—T7)-! bounded.

The following is a corollary concerning the sequence spaces [,,
which we considered earlier.

COROLLARY 7. Suppose that 11r<s, and suppose that the infinite
matric (t;,) defines operators T, and T on [, and [, respectively, such
that T,e[l,] and T,e(l;]. Then CNo(T,) is non-void for any component
C of o(T,). Moreover, CNo(T,) is non-void for any component C of
a(T)).

Proof. These are special cases of Corollaries 2 and 8, for it is well
known that, for the classes /, and /;, we have [,C[;; that |z|,<]|z],
for xel,; and that /. is dense in [;.
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Corollary 7 is true even if s=ow. (We recall that /.. is the set of
all sequences x={&;} such that sup |§/|<c, and such that if zel.,

|zfl.=sup |§;].) For, although in this case it is not true that [, is dense

in [.,, the following s true: if an element of [[.] is defined by an in-
finite matrix, and if the operator is 0 when restricted to [,, then it is
the zero operator on /.. The reasoning of the main theorem now
applies with only slight modifications for the case in which X, =I.,
Y,=1,(1<r<c0), Z=I, and T, and T, are defined by the same matrix.

Before stating the final corollary we recall the following facts.

If 1<p<o and 1/p+1/p'=1 (with p'=1if p= ), we can identify
the conjugate space (/,,)* with [,. If (f,;) is an infinite matrix defining
a bounded linear operator T on [,, we can identify the adjoint operator
T* with the bounded linear operator 7 defined on [, by the transposed
matrix (¢{;), where ti,=¢,,. Since o(T)=0(T*), as is well known [5, pp.
304 and 306], we have o(T,)=0(T"), where the subscripts serve to re-
mind us on what space the operator is defined.

COROLLARY 8. Suppose the matriz (¢;;) defines T,el[l,] and
T,¢ell,], where 1<p<>. Then CN\o(T") is non-void for any com-
ponent C of o(T,), and CN\o(T,) is non-void for any component C of
a(T%).

Proof. This follows from Corollary 7 and the foregoing remarks,
by taking p and p” to be » and s or s and », depending on whether
p=<2 or 2<p.

6. Further comments. The referee made some suggestions con-
cerning the condition which was imposed in the main theorem of § 5,
namely that

(R) R(T)e=R,(T.)ze Z if ze Z and e p(T)N\p(T,).

We shall refer to this as Condition (R). We add some discussion of
this condition, guided in part by the suggestions of the referee.

As in §5, let us denote by 7 the member of [Z,] defined by
Tz=Tz=T,2 when ze Z. It is then easy to see that R{(T):=R\(T.)ze Z
if zeZ and Ae p(TYN\p(T), k=1, 2. Consequently R, (T))z=R,(T,)zeZ
if ze o(MNP(TH)NPp(T:). The intersection of these three resolvent sets
certainly contains all sufficiently large values of A. Now let D be the
set of those 1€ p(THN\p(T,) for which R\(T)z=R\(T,)ze Z if ze Z. This
set is evidently closed relative to p(T\)N\p(T.) (by the continuity of the
resolvents and the way in which the norm of Z is defined). It is also
open relative to p(T))N\p(T.), as we may see by using the expansion
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B3 (=2 B

for the resolvent of an operator in the neighborhood of a point z in
the resolvent set. Consequently D contains all of any particular com-
ponent of p(T)N\p(T,) if it contains any point of that component. In
particular D contains all of the unbounded component of o (7)) N p(T.).
This shows that we can omit the Condition (R) if o(7:)N\e(T,) has only
one component. In particular this will be true if (7)) and o(T,) are
totally disconnected. From what was said previously it is clear that
p(THINP(T)—D lies in o(T)—(o(T))\J o(T,)), and hence, by Corollary 6,
in that part of o(7") for which (\I—T7)-! exists and is bounded. It is
not very difficult to prove that a point of this latter kind is not in the
closure of p(T). (The argument uses the functional equation of the re-
solvent, R,~R,=(¢—2)R,\R,, to show that if ae p(T) then hm R, exists
and is necessarily R,.) Consequently we see that D contalns the set

o(T)YNP(THNP(T,). This shows, for example, that Condition (R) is super-
fluous if p(T') is everywhere dense in the plane.
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