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DIFFERENTIABLE POINTS OF ARCS

IN CONFORMAL n-SPACE

N. D. LANE

Introduction* This paper is a generalization to n dimensions of the
classification of the differentiable points in the conformal plane [2], and
in conformal 3-space [3]. In the present paper, this classification de-
pends on the intersection and support properties of certain families of
tangent (n — l)-spheres, and on the nature of the osculating m-spheres
at such a point (m = l, 2, •••, n — 1).

The discussion is also related to the classification [4] of the dif-
ferentiable points of arcs in projective (w-hl)-space, since conformal n~
space can be represented on the surface of an ^-sphere in projective

l)-space.

1. Pencils of m^spheres p, t, P, Pl9 , will denote points of con-
formal Ή-space and S(m) will denote an m-sphere. When there is no
ambiguity, the superscript (n —1) will be omitted in the case of S{71-1};
thus an (n — l)-sphere S(n~1} will usually be denoted by S alone. Such
an (n — l)-sphere S decomposes the w-space into two open regions, its

interior S, and its exterior S. If P ς£ S, the interior of S may be de-
fined as the set of all points which do not lie on S and which are not
separated from P by S the exterior of S is then defined as the set
of all points which are separated from P by S. An m-sphere through
an (m-l)-sphere S(m-1} and a point P ςt S ( m " υ will be denoted by S(m)[P;
S ( w-1 }]. The m-sphere through (m-f 2)-points Po, Pl9 -, Pm+ι, not all
lying on the same (m — l)-sphere, will occasionally be denoted by S(m)(P0,
Pl9 ••• , Pm+i). Such a set of points is said to be independent. Most of
the following discussion will involve the use of pencils π{m) of m-spheres
determined by certain incidence and tangency conditions. An (m —1)-
sphere which is common to all the m-spheres of a pencil π(m) is called
fundamental (m —1)-sphere of π{m). In the pencil π{m) through a funda-
mental (m —l)-sphere S(m~υ there is one and only one m-sphere S(m)(P, π(m))
of 7r(m) through each point P which does not lie on S ( m- υ . Similarly,
in the pencil π ( m ) of all the m-spheres which touch a given m-sphere at
a given point Q, there is one and only one m-sphere S (m)(P, π{m)) through
each point P ΦQ. The fundamental point Q is regarded as a point
m-sphere belonging to π{m).
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2. Convergence. We call a sequence of points Ply P 2, , con-
vergent to P if to every (n — l)-sphere S with PCZS, there corresponds
a positive integer N=N(S) such that PKCS if Λ>JV. We define the
convergence of m-spheres to a point in a similar fasion.

We call a sequence of (n — l)-spheres *SΊ, S.2, , convergent to *S if

to every pair of points P CZ S and QC2S there corresponds a positive

integer N=N(P, Q) such that P C £ λ and Q C S λ for every Λ>iV.

Finally, a sequence of m-spheres Sf

1

CTO), S2

Cm), , will be called con-
vergent to an m-sphere S(m) if to every S(n-m-1} which links [ 5 ; §77]
with S(m) there exists a positive integer N=N(S(n-m-1)) such that Sc

λ

m)

links with S -̂™-1) whenever Λ>JV, (m = l, 2, , rc —2).

3. Arcs* An arc A is the continuous image of a real interval.
The images of distinct points of this parameter interval are considered
to be different points of A even though they may coincide in space.
The notation tφp will indicate that the points t and p do not coincide.
If a sequence of points of the parameter interval converges to a point
p, we define the corresponding sequence of image points on the arc A
to be convergent to the image of p. We shall use the same small
italics p, t, , to denote both the points of the parameter interval
and their image points on A. The end- (interior) points of A are the
images of the end- (interior) points of the parameter interval. A
neighbourhood of p on A is the image of a neighbourhood of the para-
meter on the parameter interval. If p is an interior point of A, this
neighbourhood is decomposed by p into two (open) one-sided neighbour-
hoods.

4 Differentiability. Let p be a fixed point of an arc A, and let
έ be a variable point of A. Let l<Lm<^n. If p, Plf , Pm+1 do not
lie on the same (m — l)-sphere, then there exists a unique m-sphere S{m)

(Plf ••• , PTO+i, p) through these points. It is convenient to denote this
m-sphere by the symbol Scom)=S(m)(Ply ••• , Pm+1 r0); here r0 indicates
that this m-sphere passes through p. In the following, the m-sphere
<S(m)(Pi, ••• , Pm+1-r; τr) is defined inductively by means of the conditions
Γc

r

m) given below (the τr in the symbol S(m)(Plf ••• ,Pm+ι-r)τr) indicates
that this sphere is a tangent sphere of the arc A at the point p meet-
ing A (r-h l)-times at p). We call A (m + l)-times differentiable at p if
the following sequence of conditions is satisfied.

Γ^m)[r=l, 2, , m + 1]: If the parameter t is sufficiently close to,
but different from, the parameter p, then the m-sphere S(m)(Ply f

P m + 1 _ r , t rr_i) is uniquely defined. It converges if t tends to p. Thus
its limit sphere, which will be denoted by



DIFFERENTIABLE POINTS OF ARCS 303

. ..

lf

m+ι-r , τr),

will be independent of the way t converges to p [condition Γ^Λ reads:

S(m)(t; τm) exists and converges to S?Λ-S ( m ) (r m + 1 )].

It is convenient to use the symbols SΌ(0) to denote pairs of points

P, p, and S{0) to denote the point pair p, p (or the point p).

We call A once differentiable at p if / l υ is satisfied. The point p

is called a differentiable point of A if A is n-times differentiable at p.

Let r£m) denote the family of all the S?

(m)'s. Thus τΆ consists only

of S^u the osculating m-sphere of i at p.

5 The structure of the families τ£m) of m-spheres Sc

r

m) through p.

THEOREM 1. Suppose A satisfies condition Γ[m) at p. Let S(m~Ό be

any (m — l)-sphere. Then there is a neighbourhood N of p on A such

thatifteN, tφp9 then tς£S{m~ι\ ( m = l , 2, ••-, n-1).

Proof. The assertion is evidently true if pςtS(m~υ. Suppose

pCZS^-'K Choose points P19 , Pm on S ( m ~ υ such t h a t p,Pl9---, Pm

are independent. If the parameter t is sufficiently close to, but different

from, the parameter p, condition Γ[m) implies that S{m) (Ply ••• , Pm, t\

TO) is uniquely defined. Thus t ς£ S(m~υ (Plf , Pm; τύ)=S(m-ι).

COROLLARY. If A satisfies condition Γ[m) at p, and S{k) is any k-

sphere, then t(£S(IC) when the parameter t is sufficiently close to, but

different from, the parameter p (fc=0, 1, ••• , m — 1).

In particular, this holds when m=n — l.

[m\THEOREM 2. Let l < m < % ; l<Lk<Lm. If A satisfies Γ

Γ^m) at p, then Γ[m~ι\ . . . , Γ^-^ will hold there and

(1) S^iPu , Pm_ r; r r )=Π S(ίΛ)(Pi, , Pm-r, P\ τr).
P

Conversely, let A satisfy Γ[m~ι\ . . . , Γ*"-" at p, and let S^'ι)φp if

fc=ra. If Pm-r+1ςtS{m-ι)(Plf ••• , P m _ r ; r r ) , then Γ?

Cm) will hold for the

points Pl9 , P m _ r + 1 and

( 2 ) &m\P19 , PT O- r + 1; rr)=Sf(m)[-Pw-r+i; Sf(TO-υ(Pi, , P m - r ; rr)]

REMARK. In general, Γ^-υ, . . . , Γf-1} do not imply Γ{m\

(see [3], §7).

Proof, (by induction with respect to k): Suppose k=l; l
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Let Γ[m) hold. If P19 , Pm-l9 P, p are independent points, S{m)(Plf' ,
PTO_i, P, ί r0) exists when £ is sufficiently close to vΛΦv, te A. Thus
Pl9 , Pm-i, P, £, p, are also independent, S{m~ι)(Pl9 , Pm-l9 t; r0) ex-
ists, and

(m-i)(p . . . p /.r)_TTCW

p

If t-»p, S(m)(Plf , PTO_!, P, t; r0) converges, and hence S(m-1}(Ply

Pm-ι, t; r0) also converges, Γίm~υ is satisfied, and

s<m-»(plf , pT O_ i ; r2)=IT ^ c m )(Pn , Pm-i, P; ̂ :)
P

N e x t , s u p p o s e t h a t Γ 1

f m " 1 ) is satisfied, a n d PmqLS(m-1}(Ply ••• , P m _ t ;
rO T h e n Pmς£Sim-ι)(Pl9 ••• , PTO_χ, ί; τ0) w h e n ί is sufficiently close to
p , ί e i , tφp9 a n d

f(m)/ p ΐ. \Ί

exists. Hence when t->p, S(m)(Pl9 , PTO, t; r0) converges, ΓJm) is
satisfied relative to the points Plf , PTO, and

S (m)(p . . . p . \ C(m)Γp . O(m-l)/p . . . p . \~|

Thus Theorem 2 is satisfied when k=l.
Assume that Theorem 2 holds when k is replaced by 1,2, ••• , A,

where 1 <I A < & <I m .

Let ΓCΓ}, , A ΐ i hold. Then S(9n)(Pχ, , Pm-h-l9 P, ί; rft) exists
when ί is sufficiently close to p9 tφp, teA. Now Γ[m\ . . . , Γ ^ imply
Γ\m-υ, ••• , /lm- 1 } . If A = w - 1 , nw- υ=Λ cΓ-"i υ implies that SiTO-1} =
S(m-1}(ί; τm_0 exists, if ί ^ p . If h<Cm-l, ΛCm"υ, , ΠΓl) imply
Γ{m-2), , Γ^-^. Thus S^-^ίPj, , PTO-Λ-!, rΛ) exists. Furthermore,
Γ[m~l) a n d T h e o r e m 1 i m p l y t h a t t ςt S(m-*\Pl9 ••• , Pm-h-i', τ h ) . B u t
then Theorem 2, equation (2), with A; replaced by h9 implies that

exists. By Theorem 2, equation (1), with k replaced by h9

S«"-»(P19 , PT O.Λ-1, ί; r Λ ) = Π S(W)(P,, , Pm-h-l9 P, ί; rΛ).
P

When ί ->p, ^^XPi, • • , Pm-h-l9 P, ί; rΛ) converges, hence S(m-iy(Pl9 ,
Pm_Λ-!, ί; τΛ) also converges, A + ϊ υ is satisfied, and

Cf(m-l)/p . . . p . _ \ TT Q(m)(p p p . \

P

N e x t , s u p p o s e Γ ξ m - ^ , . . . , Γ ^ r υ h o l d , a n d l e t P m _ A ς ί S ^ " 1 ^ , ••• ,
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iV A -i; τh+1). Then Pn-h<£S<m-ι>(Pl9 , Pm- f t-i, t; τh) if t is sufficiently
close to p, teAy tφp. But Theorem 2, with k replaced by h, then
implies that

S™(Pl9 , Pm-h-l9 Pn-h9 t; τh)=S™[Pm-h; S^\Ply • , Pm-Λ-l9 t; rft)]

exists. Hence when £->p, S(m)(Ply , P m - Λ , ί; rΛ) converges, Γ ^ is
satisfied for Pl9 , PTO_Λ, and

COROLLARY 1. Le£ l<^m<^n. If A is (m+iytimes differentiable
at p then it is m-times differentiable there.

COROLLARY 2. // A satisfies Γ^-^, . . . , Γ%-p at p, then it is
times differentiable there

COROLLARY 3.

Proo/. By (1),

S(m\t;

Hence ^K

The last remark implies the following.

COROLLARY 4. Lei l ^ m < r c . // Sffl^p, then Sc

rZ=P (r=0, 1,
• , m —1). ΓΛ ŝ ί/̂ e?̂  is α?z index i, where 1 <Li<Ln such that S?2i=P

for r=0, 1, ••• , i — 1 , but S^φp, if r^>i.

COROLLARY 5. Let l<Lm<[n; 1 <Lr<Lm. Then

Proof.

q(m)(p . . . p . _ ^ —liτn Q(mHP . . . P /• T Ί
O ^ ! , , ± m + i-r, Tr) — l i m O \L\i > -Lm+l-r> l> τr~l)

From Corollary 5, we get the following.

COROLLARY 6. Let l<Lm<Cn; l<Lr^m. If P T O + 2 _ r CS ( m ) (P l y

P m + 1 _ r ; τr) and Pm+2-r^S(m-υ(Ply ••• . P m + 1 - r ; rr_
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THEOREM 3. Let l<Lr<Lm<.n. Suppose Γ[m\ - - - , Γ?

Cm)

satisfied at p.

(i) If S £ r - υ ^ p , 4 m ) consists of all the m-spheres through S?-1 }.

(ii) Let S ? - : ) = p . Choose any S?

(.r)6r?

(.r). Then r;

Cm) is the set of

all the m-spheres which touch Sίr) at p.

Proof of (i). By Theorem 2, equation (1),

Let S ( m ) be any m-sphere through S^K By Theorem 2, if P ^ S ^ ,

Suppose S(fc)(Px, ••• ,P f c + 1_ r;r r)CS (™\ ( r ^ A : < m ) . Choose
Pk+2-r^S(k)(Pu , P f c + 1- r; r r). Then by Theorem 2,

For fc=m-l, this yields S ( W )(P :, ••• , P m + 1 _ r ; r r ) = S ( m ) . Thus S(m)eτ<TO).

Proof of (ii). Suppose Srr~υ=p. As above, we have

O(m)_ Cf(w)/p . . . p r - N i - ^ . . . ~ ^ Q(r)(p . ^ \

Let S(r)(Q; rr) be any Sc

r

r)e4r\ By Theorem 2, equation (1),

Let P and Q be variable points and let S(r'υ be a variable (r —1)-
sphere converging to a fixed point. Suppose there is an (n — l)-sphere
which separates this point from P and Q. Then

lim < [S ( r )(P; S(?-1}), S(r)(Q; S(r-1})] = 0

whether or not the spheres S(r)(P; S(r-ί}) and S(r)(Q; S(r-1}) themselves
converge. In particular,

( 3 ) lim < [S<">(P, t; τr^)9 S"(Q, t; rr_0] = 0 .

Thus S ( r )(P; τr) touches S(r)(Q; rr) at p. Furthermore, if S(r)(P; τr)
and S(r)(Q; τr) have a point ^ p in common, they coincide. Thus r?

(.r)

consists of the family of r-spheres which touch S(r)(Q; τr) at p.
Suppose r < m and an m-sphere S(

r

m)=S(m)(P1, , P m + i- r ; rr) of 4 m )

has a point Λ ^ p in common with Sc

r

m)(Q; τr). From the above,
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S(r\R; τr)=S(r\Q; τr). If R C £ ( r ) ( P l f r r ) we have

while if R ς£ ̂ ( P ^ r r ), we have, by Theorem 2,

gCm) ^ gO-M)^. S(D(P l f . Γ j.)]
= S ( " 1 ) ( P 1 , Λ; r r ) = S ( r + 1 ) [ P 1 ; S(r>(Λ; r r)] D S<r)(i2; r r )=S< r ) (Q; r r ) .

On the other hand, suppose an m-sphere S(m) touches Sίr)=S(r)(Q; τr)

at p. If S ' - O ^ it follows, as in the proof of part ( i ) , t h a t S ( m >

e4m). Suppose S(m) Γ]S(

r

r)=p. Choose an S(r>CZS(m) such t h a t S ( r )

touches SW(Q; τr) a t p . Thus Slr> C 4 r ) . I t again follows that S ( m )

C -Cm)

COROLLARY 1. Let Γγ~ι\ ••• , Γ^-^ Λoίd and let S(

r

r~l)=p. Suppose

limS{r)(P, t; rr_2) exists for a single point P, Pφp. Then ΓQ

r

r) holds at
t->p

p (l<Cr<Cn).

Proof. This follows from equation (3).

COROLLARY 2. There is only one S/

(m) of the pencil τc

r

m) which con-

tains (m + l — r) points which do not lie on the same S£TO~1}.

Proof. Such an S[m) can be uniquely constructed as in the proof of

(i), Theorem 3.

(m~υCOROLLARY 3. If two Sίm)'s intersect in an S(m-υ then this S

Proof. The Sc

r

m)'$ and hence also S ( w " υ contain S?"". In case

-'^p, let RCS^-v, Rφp. Then each of the S(

r

m)'$ and hence also

m-D contains S(r\R; τr).

COROLLARY 4.

Proof. When k<Cm, or when k=m and S^'^φp, Theorem 3

implies that τim) is the set of all the m-spheres through Sίk~1}. Hence

SCΆ, being the limit of a sequence of such m-spheres, must itself con-

tain S^- 1 }, and by Theorem 3, SΆeτί^. Suppose k=m and Sc™-1}=p.

By Theorem 3, r?

c™} is the set of all the m-spheres which touch a given

m-sphere S^φp of τίn) a t p. Hence S S ^ , being the limit of a se-

quence of such m-spheres, must itself touch S^ a t p, and, again by



308 N. D. LANE

Theorem 3, S^βr™.

THEOREM 4, Let l < m < r c ; l<Lk<Lm, and suppose that fig1"1'
φp if k=m. If the conditions Γ[m\ - • , Γc

k

m) hold at p, then Γk™\ also
holds there.

Proof. By Theorem 2, Γ^-ι\ , Γj^-" hold at p. Hence if p,
Pi, , Pro-* are independent points Sr(m~1)(P1, , Pm_ f c; rfc) is defined.
Furthermore, by Theorem 1, we can assume that t ς£ S{m~1)(Plt , Pm_ f t;
rA) and by Theorem 2 again,

Thus S(m)(Piy ••• , Pm- f c, ί; rΛ) exists when ί is close to p, ίe^4, tφp.
Choose P ^ C S ^ ί P i , ••• , PT O-*;rΛ), Pm+1-,ςtS(m~2)(Pu . . . , P/7l_fc;
Γft-i). Then Theorem 2 implies that

when & < m , or A:=m and S^z)φp; if A:=m and Sϊ

cΓ_"1

2)=p, this equa-
tion follows from Theorem 3, Corollary 4. Hence

lim ς W f P . . . P /• <r ̂ —liTYi Sf(m)Γ/ Q ^ - W P . . . P -r M
urn o v^i, , x^m-fc, t , r fc; — n m o L6J *̂  l-^i, > -̂  m+i-Λ> rfc-iλl

Thus Γ ^ holds at p and

COROLLARY 1. // Γ™ holds at p, then Γ?

Cm) holds there, r=l, 2,
•••, m. Furthermore, if S^~ι)φp, A is m-fl times differentiable
at p.

COROLLARY 2. If Γ[n~l) holds at p, then p is a differentiable point
of A if and only if l i m S ^ - 1 ^ ; τn-τ) exists and converges if t tends to p.

COROLLARY 3. // Γ[n~ι) holds at p, and S^s^φp, then p is a dif-
ferentiable point of A.

COROLLARY 4. If Γ[m) holds at p, all the conditions Γc/\ except
possibly Γ%219 automatically hold at p ( 1 ^ / b ^

Let p be a differentiable point of A. We define the index i of p
as in Theorem 2, Corollary 4. Let P CZ S^ly Pφp. Let S%n)=S(m)(P;
τm), m=0, 1, ••• , i. Then the set of τc

r

m)'s is completely determined by
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the sequence

S^ C Sίυ C C SS'^Sί'Λ C S&ψ C C Sg1-" .

Its structure is determined by the single index i.

6. Support and intersection. Let p be an interior point of A.
Then we call p a poiwί of support (intersection) with respect to an
(n — l)-sphere S if a sufficiently small neighbourhood of p is decomposed
by p into two one-sided neighbourhoods which lie in the same region (in
different regions) bounded by S. S is then called a supporting (inter-
secting) (n — l)-sphere of A at p. Thus S supports A at p if pςtS.
By definition, the point (n — l)-sphere p always supports A at p.

It is possible for an (n — l)-sphere to have points Φ p in common
with every neighbourhood of p on A. In this case, S neither supports
nor intersects A at p.

7 Support and intersection properties of τQ

r

n~1} — r£+7υ. Let p be a
differentiate interior point of A. In the following,

r(w-l)__ (M-l)

will denote the family of those (n — l)-spheres of τf"l) which do not
belong to τc

r

n

+Ί1} (cf. Theorem 3, Corollary 4). Our classification of the
differentiable points p of A will be based on the index i of p, and on
the support and intersection properties of S^ι~i} and the families Tc

r

n~i}

— r£+Ίυ, r = 0 , 1, , 92 — 1. We shall omit the superscript (w —1) of
τc

r

n-1} when there is no ambiguity; thus τr=τc

r

n~ι).

THEOREM 5. Every (n — l)-sphere φ S?~ υ either supports or inter-
sects A at p.

Proof. If an (n — l)-sphere S neither supports nor intersects A at
p, then p CIS and there exists a sequence of points t ~->p, t C A Γ\S,
tφp. Suppose p,Pι, ••• , Pn are independent points on S. Suppose
that for some r, 0 < > O - l , S=S(n-1\P1, ••• ,Pn-r;τr). By Theorem
2, equation (1),

By Theorem 1, t ς£ S{n-2)(Plf ••• , P n . r . 1 ; rr) and again by Theorem 2,
equation (2),

S=S^lt; &»-*>(Plf , P n - r - ! ; r r)]=S (»""(P1, , P , - , - , ί; r r)

for each ί. Condition Γ(Λ"i1} now implies that
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o — o {JLI, , rn-r-ly τr+ι) .

Thus we get, in this way,

By Theorem 2, S^S^, and by Theorem 1, t ς£ S2Ll2) when the para-
meter £ is close to, but different from, the parameter p. If SCn-ιι)φp,
Theorem 2, equation 2, implies that S=S(n-ι)[t; S?_Γi2)] = Sr(n-1)(ί; rn_i),
while if S£Ll2)=p, Theorem 3 implies that S^S(n~l)(t; τn_λ). Applying
condition Γff-u, we are led to the conclusion S==SCn"~1).

THEOREM 6. If SCn~1}=P, then the (n — ΐ)-spheres of τn-λ — τn all
intersect A at p, or they all support.

Proof. Let S and S' be two distinct (w--l)-spheres of τn-ι — τn.
Since *Sί" 1 )=p, Theorem 2, Corollary 4 implies that S<ί\2)=p, and
Theorem 3 implies that S and Sf touch at p. Thus we may assume

that S' d(p\J S) and SC(p{JS'). Suppose now, for example, that

S supports A at p while S' intersects. Then A Γ\S' is not void and

A(Z(P\J S). Let t ->p in A f\ S\ Hence S(n~ι)(t; rn-0 C (S7 Π S')\Jp.

Consequently, Sf(ί; τn_1) can not converge to SS*~υ=p, as ί tends to ??.

Thus S and S' must both support, or both intersect A at p.

THEOREM 7. If S^liφp while Sr~ι=p, then every {n-l)-sphere of
τr—τr+1 supports A at p (l^r<Ln — l).

Proof. Suppose S(

r

r~l)=p, so that by Theorem 3, the r-spheres of

τc

r

r) all touch any (n— l)-sphere of τr. Let Se τr — τr+1, Sφp. If a

sequence of points t exists such that t (ZA Γ\S, t -> p, then each

S(r)(t; τr) lies in the closure of S. Hence S ^ will also lie in the same

closed domain. Since S!^ e r£r), either S?Λ=ί>, or it touches S at p.

Since Sφτr+l1 Sί2i must lie in p{JS. Similarly, the existence of a

sequence f <ZS Γ\A, t' ->p, implies that S^CZpVJ S. Thus if S inter-

sects A at p, S(rZC:(p\JS) Γ\(P\J S)=7>; that is, S£rΛ=2>.

THEOREM 8. AW ίAe (n — Y)-spheres of τr — τr+ι support A at p, or
they all intersect; r = 0 , 1, , n — 1 .

Proof. Let S' and 5 ' be two distinct (w — l)-spheres of τr. Sup-

pose, for the moment, that the intersection S' Γ\S" is a proper (n — 2)-

sphere S(n~2){Plf , Pn-r-ι', τr). Suppose, for example, that S' inter-

sects, while S" supports A at p. Thus A Γ\ S' and A Γ\ ~S' are not void.
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With no loss in generality, we may assume that i C S ^ U P If £ is
close to p, tφp, Theorem 1 implies that t ςt S(n-2)(Plf ••• , P n - r -ii rP)
and Theorem 2, equation 2, implies that

If ί C A Π S ' , then S ^ - 1 ^ , , Pn_ r-i, ί; rr) lies in the closure of

Letting £ tend to p, we conclude that S(n-υ(Plf , Pn~r-il *v+1) lies in

the same closed domain. By letting t converge to p through S' f\ A, we

obtain symmetrically that S{n~ι)(Ply , Pn.r^; τr+1) also lies in the

closure of

Hence S(n~1}(Plf , Pn-r-ι, τr+1) lies in the intersection S/ \J S'' of these
two domains, that is, S^-^Pi, , Pn-r-λ

%, τr+1) is either S r or S^v, in other
words, one of the (^-l)-spheres S' and S" belongs to r r + 1. Thus if AS7

and S" belong to τr — τr+1 and have a proper S(w~2) in common, they both
support or both of them intersect.

Suppose now that S' Γ\ S"=p. Theorem 3 implies that Sc

r

r'1}=p.
In view of Theorems 6 and 7, there remain to be considered only the
cases where r < [ w — 1 , and, indeed, when r<Ln — 2, we have only to
consider those cases for which Spl^p.

By Theorem 3, any S(n'l) which touches an Sc/\ but which does not
touch an Ŝ +"i1) belongs to τr — τr+1. Hence there exists an (n— l)-sphere
S of τr — τr+1 which intersects S' and Sf/ respectively in a proper (n — 2)-
sphere. From the above, S and S', and also S and S7/ both support or
both intersect A at p. Thus S' and Sv both support or both intersect
A at p in this case also.

8 Characteristic and classification of the difFerentiable points. The
characteristic (α0, a19 , αw; i) of a differentiate point p of an arc A is
defined as follows:

α r = l or 2 when r<Cn; α w = l , 2, or oo. The index i = l , 2, , w.
αΰ^ +α,. is even or odd according as every Sr$.w"1) of τ r - τ r + 1 sup-

ports or intersects A at p; r=0, 1, , ^ — 1.
αo+ +α w is even if S?~ υ supports, odd if S^~υ intersects, while

αw=-co if S^~υ neither supports nor intersects A at p.
Finally the characteristic of p has index i if and only if Siί~1)=py

while S & T ^ P .

Theorem 7, and the convention that Sc

7Γ
υ supports A at p when

S<:n-i)==:pf lead to the following restriction on the characteristic (a0, au

• , an; i):



312 N. D. LANE

Σ αfc = 0 (mod 2) .

As a result of this restriction, the number of types of differentia-
ble points corresponding to each value of i < n is 3(2)W~L, and there are
2n types when ί=n. Thus there are (Sn — l)2n~1 types altogether.

If we introduce a rectangular Cartesian coordinate system into the
conformal w-space, examples of each of the (Sn — l)2n~1 types are given
by the curves

( I ) a?!=ίm i, a? 2 =r2, . . . , xn=tmn

in the cases αn = l or 2, and

(Π) j
tmn sin ί"1, if

0 , if ί = 0

for the cases in which an=m> all relative to the point ί = 0 . The mr

are positive integers and mx <C m2 <O < m w . The different types are
determined by the parities of the mi and by the relative magnitudes of
the mr and 2mι. In each of these examples, the S[m) touch the a^-axis
at the origin; m=l, 2, ••• , n — 1.

When mί<C2m1<Cmί+1, the point t=0 has a characteristic of the
form (α0, c&i, , an; i) where an can be 1, 2, or oo, and i<^n.

When mn<C2m1, the point t=0 has a characteristic of the form
(α0, OΊ, , αw; %) where αw is either 1 or 2. The following table lists
some of the properties of a differentiable point p having the characteris-
t i c (ao,al9 ••• , an;i):

( α 0 , α 1 ? ••• , α w ; i )

Index an

Osculating

(i— l)-sphere

— l or 2

or 2

^-sphere

Supporting
family

Restriction

(mod 2)

Example
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